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“Life isn’t about waiting for the storm to pass... It’s about learning
how to dance in the rain.”

Vivian Greene
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ABSTRACT

In order to develop a passive microwave-based satellite precipitation estimation al-
gorithm optimized for Brazil, this work was divided in two parts. The first part
consisted in extending the cloud-radiation database used as a priori information for
the Cloud Dynamics and Radiation Database (CDRD) Bayesian algorithm in order
to include the cloud resolving model simulations representative of brazilian rainfall
regimes. Simulations of microphysical, dynamical and meteorological profiles were
then generated using the University of Wisconsin - Nonhydrostatic Modeling System
and the brightness temperature (TB) simulations were generated using the Radia-
tive Transfer Equation Modeling System for the CHUVA (Amazon and Vale) golden
cases and compared with observed TB. The results demonstrated that the simula-
tions detected perturbations in the TB fields (in space and time) however in terms
of the range of temperature values, the model did not reproduce the lowest values of
TB that were present in the observations. The model also seemed to struggle with
the riming process on graupel formation, providing small amounts of graupel con-
tent. These results demonstrated that the models needed adjustments to be able to
describe the regional features of TB across a wide range of meteorological systems in
Brazil. For these reasons, the second part of the work was developed by making use
of an observational database from the sensors GPM Microwave Imager and Dual-
frequency Precipitation Radar (GMI/DPR-CMB) in order to develop a screening
of precipitation and rainfall retrieval algorithm over Brazil, based on artificial neu-
ral networks (ANN) and called Neural Network IMplementation of the Brazilian
MUltilayer Perceptron for Screening and precipitation retrieval (NNIMBUS). The
precipitation screening proved to be very effective in both detecting larger systems
and smaller or isolated systems. Regarding the GMI/DPR-CMB validation dataset,
the screening performed well, with an accuracy of 0.95, POD of 0.80, FAR of 0.39
and bias of 1.34. When compared to the Goddard profiling algorithm (GPROF) the
screening still had good performance, however with slightly smaller scores. It was
observed that through the comparison maps with GPROF the NNIMBUS can detect
agglomerates very similarly, however it does not detect the borders of the systems
very well. This behavior might be associated with the precipitation thresholds that
were configured with the training dataset (0.2 a 60 mm/h), which might be lead-
ing more stratiform regions of the systems to go undetected. The rainfall retrieval
model also performed well when compared to the GMI/DPR-CMB observations,
with an MAE of 4.19, standard deviation of 3.23 and RMSE of 5.59 for the valida-
tion dataset. Analyzing the rain rate classes, the retrieval tends to underestimate
classes between 0.2 and 1 mm/h, overestimate classes between 1 and 10 mm/h and
underestimate classes greater than 10 mm/h. These features can be associated with
the input dataset distribution, as well as with the criteria applied in data cleaning
process.

Keywords: Satellite. Precipitation. Artificial neural networks. Passive microwave.
GPM Microwave Imager (GMI). Observational database.
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DESENVOLVIMENTO DE UM ALGORITMO DE ESTIMATIVA DE
PRECIPITAÇÃO BASEADA EM MICROONDAS PASSIVO PARA O

BRASIL

RESUMO

Com objetivo de desenvolver um algoritmo de estimativa de precipitação por satélite
baseado em microondas passivo otimizado para o Brasil, este trabalho foi dividido
em duas partes. A primeira parte consistiu em estender o banco de dados de radi-
ação de nuvens usado como informação a priori para o algoritmo Bayesiano Cloud
Dynamics and Radiation Database (CDRD), a fim de incluir as simulações repre-
sentativas dos regimes de precipitação do Brazil. Simulações dos perfis microfísicos,
dinâmicos e meteorológicos foram geradas usando o University of Wisconsin – No-
nhydrostatic Modeling System e as simulações de temperatura de brilho (TB) foram
geradas usando o Radiative Transfer Equation Modeling System para os sitemas pre-
cipitantes observados durante o projeto CHUVA (campanhas do Vale do Paraíba e
Manaus). Os resultados demonstraram que as simulações detectaram as perturba-
ções nos campos de TB (no espaço e no tempo), porém em termos do intervalos de
TB, o modelo não reproduziu os menores valores de TB presentes nas observações.
O modelo aparentou ter dificuldade em gerar o processo de formação de graupel,
gerando pequenas valores de conteúdo de graupel. Esses resultados demonstraram
que os modelos precisavam de ajustes para poder descrever as características regio-
nais da TB para ampla gama de sistemas meteorológicos no Brasil. Por estas razões,
a segunda parte do trabalho consistiu no desenvolvimento de um algoritmo de re-
des neurais artificais (denominado Neural Network Implementation of the Brazilian
Multilayer Perceptron for Screening and precipitation retrieval (NNIMBUS), tanto
para detecção da área precipitante screening como para recuperação da intensidade
da precipitação, utilizando um banco de dados observacionais provindos dos sensores
GPM Microwave Imager e Dual-frequency Precipitation Radar (GMI/DPR-CMB).
A detecção de precipitação (screening) provou ser muito eficaz na detecção de sis-
temas maiores e sistemas menores ou isolados. Em relação ao conjunto de dados
de validação do GMI/DPR-CMB, o algoritmo apresentou bom desempenho, com
acurácia de 0,95, POD de 0,80, FAR de 0,39 e viés de 1,34. Quando comparado ao
algoritmo Goddard profiling algorithm (GPROF), a detecção de precipitação ainda
apresentava bom desempenho, porém com estatísticas ligeiramente menores. Atra-
vés dos mapas de comparação com o GPROF, foi possível perceber que o NNIMBUS
consegue detectar os aglomerados de forma muito semelhante, porém não detecta
muito bem as bordas dos sistemas. Esse comportamento pode estar associado aos
limiares de precipitação que foram configurados com o conjunto de dados de treina-
mento (0,2 a 60 mm/h), o que pode estar levando a que regiões mais estratiformes dos
sistemas não sejam detectadas. O modelo de recuperação da precipitação também
teve um bom desempenho quando comparado com as observações GMI/DPR-CMB,
com um MAE de 4,19, desvio padrão de 3,23 e RMSE de 5,59 para o conjunto de
dados de validação. Analisando as classes de taxa de chuva, a recuperação tende
a subestimar as classes entre 0,2 e 1 mm/h, superestimar as classes entre 1 e 10
mm/h e subestimar as classes acima de 10 mm/h. Essas características podem estar
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associadass à distribuição do conjunto de dados de entrada, bem como aos critérios
aplicados no processo de limpeza de dados.

Palavras-chave: Precipitação por satélite. Redes Neurais Artificais. Microondas pas-
sivo. GMI. DPR. CMB. Banco de dados observacional.
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1 INTRODUCTION

1.1 Introduction and context

The knowledge about the distribution of water around the globe is an aspect of
extreme importance for the management of natural resources. Within the hydro-
logical cycle, the precipitation acts as a central component regulating the energy
balance through the interactions of water vapor (a primary greenhouse gas) and
clouds, which redistribute latent heat in the atmosphere. On the surface, the pre-
cipitation, besides affecting from the domestic to the industrial sectors, is a primary
source of freshwater in a world that has been facing emerging crises in terms of water
availability.

The quantification and estimation of precipitation around the globe, in terms of
frequency and intensity, is made by pluviometric networks and meteorological radars
[single and double polarization] on ground. But, in turn, they have a sparse and
unequal distribution, especially in mountain regions, forest and ocean. Thus, satellite
precipitation estimates can fill these gaps.

As exposed by Kummerow et al. (1996) the microwave remote sensing of clouds
and precipitation has shown great promise by virtue of its direct interaction with
hydrometeors and differently from the infrared measurements which interact only
to the highest layer of clouds, the microwave radiation has the ability to penetrate
through the clouds and offer insight about the rainfall structure. In this context,
several algorithms have been developed within the purpose to improve rainfall esti-
mation based on passive microwave, some main algorithms can be cited: the Goddard
Profiling Algorithm (GPROF) (KUMMEROW et al., 1996), which uses an Bayesian
approximation to retrieve the instantaneous rainfall globally; the Bayesian approach
Cloud Dynamics and Radiation Database (CDRD) (CASELLA et al., 2013) and the
Passive Microwave Neural Network Precipitation Retrieval (PNPR) (SANÒ et al.,
2015).

In the last decades, many studies were able to provide improvements in rain-
fall retrievals and one method for this was the development of precipitating
cloud–radiation databases that can be derived from cloud resolving model (CRM)
simulations or from radar measurements, or from a combination of them (Evans et
al. (1995), Kummerow et al. (2001), Mugnai et al. (1993). Normally, these databases
are composed by thousands of microphysical-meteorological reproduced by numer-
ical and cloud resolving models concerning the occurrence of precipitating events
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and they are coupled to radiative transfer models that reproduce the simulated
brightness temperatures (TB) associated with their respective profiles (CASELLA et

al., 2012). This type of database is affected by the classical non-uniqueness (am-
biguity) problem inherent to multi-value mathematical functions, which it implies
that multiple solutions are possible by reason of different vertical profiles of micro-
physical hydrometeors can lead to exactly or nearly exactly the same TB vector.
And in order to minimize the ambiguity Smith et al. (2013) identified and applied
optimal geophysical and meteorological tags that constrain and refine the selection
of candidate microphysical profiles used for the Bayesian retrieval (CDRD).

In order to improve the understanding of the precipitation physics and its space–time
variability, besides providing global rainfall monitoring, the Global Precipitation
Measurement (GPM) mission launched the GPM Core Observatory (GPM-CO)
spacecraft which carries the most advanced precipitation sensors currently in space.
These sensors include the Ku- and Ka-band Dual-frequency Precipitation Radar
(DPR) provided by Japan Aerospace Exploration Agency (JAXA) that measures
three-dimensional (3D) structures of precipitation, and the GPM Microwave Im-
ager (GMI), a well-calibrated multi-frequency radiometer capable of providing wide-
swath precipitation data. Therefore the GPM-CO, in addition to the Tropical Rain-
fall Measuring Mission (TRMM) (previous mission), offered the opportunity to use
a large observational/empirical database of coincident TRMM/GPM space-borne
radar (precipitation radar (PR)/DPR) and radiometer observations (TMI/GMI)
instead of a database built from several simulations (Cloud Resolving Models
(CRM) coupled to Radiative Transfer Equation (RTE) models). As mentioned by
Skofronick-Jackson et al. (2018) the first three years of GPM operations showed
some noteworthy achievements, including: algorithms updated with improved cali-
bration of the DPR, an observational database for the GMI retrieval algorithm, and
updates on the representation of light rain, falling snow, and non-spherical particles.

In addition to these advances, from the computational point of view, Machine Learn-
ing (ML) techniques have proven to be excellent tools to handle with difficult prob-
lems from a variety of applications, among them Atmospheric Science, Remote Sens-
ing and Weather Prediction. These are typically problems related to classification,
prediction, optimization, among others. Increasingly facilitated access to these tech-
niques (mainly the open source languages and tools) provided a larger understanding
of how they work and allowed their broader applicability.

Ground-based measurements of the cloud processes of the main precipitating sys-
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tems over Brazil (e.g., squall lines (SL); Mesoscale Convective Complexes (MCC),
cold fronts, South Atlantic Convergence Zone (SACZ), Intertropical Convergence
Zone (ITCZ), warm clouds, local convection) were collected during field campaigns
by the CHUVA project (MACHADO et al., 2014). These measurements provided a
representative set of case studies to evaluate the performance of the algorithms for
different types of events and brought knowledge about cloud microphysical pro-
cesses. It is worth to remember that the country has an area of 8.5 million square
kilometers and lies primarily south of the equator (and within the tropics), being
ideally situated for studies of tropical continental convection over a broad range of
precipitation regimes within a single country. The territorial extension also implies
a surface type and land use heterogeneity, large coastline length and orographic di-
versity, which contributed to increase the complexity of estimate rainfall over the
country.

Taking into account the absence of a optimized microwave precipitation retrieval to
reproduce the brazilian rainfall variability, and even more so for operational pur-
poses, this study proposes the development of a passive microwave-based satellite
precipitation estimation algorithm for Brazil. To achieve this goal, this study seeks
to answer the following specific questions:

a) What is the Cloud Dynamics and Radiation Database (CDRD) algorithm
performance (optimized for Europe and Africa) to retrieve the rainfall rates
over the central Amazon and Southeast region of Brazil? (Chapter 3)

b) Is the cloud resolving model from University of Wisconsin - Nonhydro-
statisc Modeling System (UW-NMS) used in CDRD able to reproduce
the typical precipitating systems in the Amazon and Southeast region of
Brazil? (Chapter 4)

c) Assuming the GMI/DPR-CMB as the ground truth, is it possible to achieve
a representative rainfall retrieval over Brazil through the use of Artificial
Neural Network (ANN) methods? (Chapter 5)

1.2 Objectives

The main objective of this study is to develop a passive microwave-based satellite
precipitation estimation algorithm for Brazil. As an initial proposal of the PhD,
the goal was to extend the cloud-radiation database used as a priori information
for the CDRD Bayesian algorithm (SSMIS - denominated H01) developed at the
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EUMETSAT Satellite Application Facility on Support to Operational Hydrology
and Water Management (H-SAF), by means of cloud resolving model simulations
for Brazil. Thus, the representativeness of the algorithm for this region could be
improved (the algorithm is currently optimized for Europe and Mediterranean area,
Africa and Southern Atlantic). Once the simulations were done, it was intended to
identify the meteorological tags characteristic of the brazilian rainfall regimes.

After the first verification studies of the simulations, using the current CDRD algo-
rithm, some constraints and difficulties associated with the cloud resolving model
and radiative transfer equation system were found. As such limitations could not be
overcome, for technical reasons, a new line was explored. Considering that during
last years the scientific community was already migrating from cloud resolving model
simulations to observational/empirical database as a priori information, it was opted
out for a new approach which consists in the development of a land rainfall retrieval
algorithm based on artificial neural Network (ANN) for the Brazilian territory. The
ANN will be trained with observational measurements from GMI/DPR matchups
(DPR/GMI Combined (CMB) - Version 5) from the GPM satellite core provided
by the Colorado State University (CSU). In this way, the new specific objectives are
presented:

• Verify the performance (limitations and potentials) of the current a priori
database CDRD algorithm (not optimized for Brazil, i.e. composed by sim-
ulations only for Europe and Africa) in comparison with the ground based
information collected during CHUVA (Amazon and Vale) campaigns.

• Generate simulations of microphysical, dynamical and meteorological pro-
files using the University of Wisconsin – Nonhydrostatic Modeling System
(UW-NMS) and generate brightness temperature (TB) simulations using
the RTE/RMS (Radiative Transfer Equation Modeling System) for the
CHUVA (Amazon and Vale) representative case studies (named as golden
cases) and compare with observed TB.

• Develop an optimal ANN architecture for precipitation (rain/no-rain area
delineation) and retrieval, through statistical and empirical analysis over
the training database.

• Verify the performance of the optimal ANN using independent GMI ob-
servations (not used in the training process).
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1.3 Document structure

This thesis is structured in five chapters that are presented on Figure 1.1. A brief
introduction to the thesis theme with the motivation, scientific questions and objec-
tives is provided in Chapter 1. The Chapter 2 presents a literature overview of
the physical principles associated with passive microwave sensors; satellite precipi-
tation estimation; machine learning methods for rainfall retrieval and structure, and
main parameters related to artificial neural networks. The Chapter 3 shows the
validation of the H-SAF precipitation products in Brazil during two CHUVA field
campaigns. The Chapter 4 discusses the results concerning the CHUVA golden
cases simulated with the UW-NMS and RTE/RMS models. The Chapter 5 brings
up all the steps of the ANN development, from the a priori dataset treatment up
to the ANN training process and performance verification. Finally, the main conclu-
sions and suggestions for future works are addressed in Chapter 6.

Figure 1.1 - Overview of the thesis and its main addressed points.
DEVELOPMENT OF A PASSIVE MICROWAVE-BASED SATELLITE 

PRECIPITATION ESTIMATION ALGORITHM FOR BRAZIL
2. Literature Review and Considerations1. Introduction

• Covers the importance of quantifying precipitation and how 
modern algorithms tackle inversion problems for rainfall 
estimation. 

• Highlights the contributions of the GPM mission and machine 
learning techniques for precipitation retrieval.

• Proposes to develop a microwave precipitation retrieval method 
optimized to brazilian precipitation regimes.

• Physical principles associated with passive microwave 
sensors (PMW)

• Satellite Precipitation Estimation
• Machine learning methods for rainfall retrieval
• Artificial Neural Networks structure and parameters

3. Assessment of ground-reference data and validation of the H-SAF precipitation 
products in Brazil
In order to answer the first scientific question (Section 1.2), this chapter is divided in two main goals: (i) to apply the H-SAF consolidated 
radar data processing to the X-band radar used in the CHUVA campaigns and; (ii) apply the consolidated H-SAF validation procedure to 
these data and verify the quality of H-SAF products over specific regions in Brazil.

4. Simulations
Presents an example of the cloud resolving model simulation for 
CHUVA golden cases.

5. NNIMBUS
Covers the development of a Neural Network IMplementation of 
the Brazi l ian  mU l t i layer  perceptron for  Screening and 
precipitation retrieval (NNIMBUS)

6. Conclusions
Main conclusions and future work.

SOURCE: Author’s production

The studies presented from chapters 3 to 5 resulted in the following publications:
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Chapter 3: Martins Costa do Amaral, L.; Barbieri, S.; Vila, D.; Puca, S.; Vulpiani,
G.; Panegrossi, G.; Biscaro, T.; Sanò, P.; Petracca, M.; Marra, A.C.; Gosset, M.;
Dietrich, S. Assessment of Ground-Reference Data and Validation of the H-SAF
Precipitation Products in Brazil. Remote Sens. 2018, 10, 1743.

Chapter 4: Poster “Investigation on CDRD and GPROF performance over cen-
tral Amazon region during GoAmazon/CHUVA campaigns” presented at 8◦ Inter-
national Precipitation Working Group (IPWG) and 5◦ International Workshop on
Space-based Snowfall Measurement (IWSSM) Joint Workshop, 2016, Bologna, Italy.

Chapter 5: “Regional land rainfall retrieval based on artificial neural network for
the Brazilian territory.” Abstract submitted for the 2019 Joint Satellite Conference -
American Meteorological Society.
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2 LITERATURE REVIEW AND CONSIDERATIONS

This work is based on the passive microwave observations in order to propose an
algorithm optimized to retrieve precipitation over the Brazilian territory. Therefore,
the following subsections present a review about the main topics related to the
this subject: physical principles associated with passive microwave sensors; satellite
precipitation estimation; screening of precipitation; recent studies over Brazilian
territory; machine learning methods for rainfall retrieval and structure, and main
parameters related to artificial neural networks (ANN or NN).

2.1 Physical principles associated with passive microwave sensors
(PMW)

Differently from the visible (VIS) and infrared (IR) electromagnetic spectra, the
remote sensing techniques using microwave frequencies(MW), millimeter waves and
sub-millimeter waves are able to penetrate through clouds and precipitation with
sensitivity to hydrometeors (STAELIN, 1981). In the frequencies of MW, hydromete-
ors are the main source of radiation attenuation. Therefore, the rainfall in MW are
physically more direct than VIS/IR. In the absence of scatter targets the predomi-
nant process in MW is the absorption and emission with stronger effect at certain
intervals due to presence of certain atmospheric constituents, such as O2 and H2O.
The Figure 2.1 shows the atmospheric transmittance in the MW spectrum, where
some absorption bands and atmospheric windows can be observed.
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Figure 2.1 - Spectrum of atmospheric transmittance in MW, for a standard atmosphere.
Exhibition of the absorption bands and atmospheric windows and channels
used by different radiometers in passive MW.

SOURCE: Casella (2010).

Passive microwave sensors (PMW) can be classified as: imager and sounder sensors.
The imagers operate, essentially, in the window regions of the MW spectrum, far
from absorption lines of water vapor and oxygen. The atmosphere tends to be trans-
parent in these regions, thereby a strong signal can be obtained as a function of the
total water in the atmospheric column. Examples of imager sensors that use atmo-
spheric windows are: Special Sensor Microwave/Imager(SSM/I) (HOLLINGER et al.,
1990), TRMM’s Microwave Imager (TMI) (KUMMEROW et al., 1998), Advanced Mi-
crowave Scanning Radiometer-Earth Observing System (AMSR-E) (KAWANISHI et

al., 2003), AMSR-2 (SHIMODA, 2005) and (IMAOKA et al., 2010) and GPM Microwave
Imager (GMI) (DRAPER et al., 2015). These sensors typically operate on conical scan
with a fixed tilt angle of 53◦ along the scan where the signals of the vertical (V) and
horizontal (H) polarizations are not mixed as in the cross-track sensors.

The sounder sensors operate in the oxygen absorption (60 and 118GHz) and wa-
ter vapor (183GHz) lines. These frequencies are a proxy for the temperature and
water vapor atmospheric profiles. Example of sounder sensors are: Advanced mi-
crowave Sound Unit (AMSU-A and AMSU-B) (ATKINSON, 2001), Microwave Hu-
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midity Sounder (MHS) (COSTES et al., 1999) and the Advanced Technology Mi-
crowave Sounder (ATMS) (BOUKABARA S. A. AND GARRET K. AND BLACKWELL B.,
2011).

The hydrometeors (liquid or fronzen water particles suspended or falling in the
atmosphere) can cause measurable changes in the microwave brightness temperature
by the processes of absorption, emission and scattering. The liquid hydrometeors
(radius less than 50 µm) absorb substantially MW radiation, but scatter barely.
Larger liquid hydrometeors (e.g., rain) or the majority of the frozen hydrometeors
(e.g., snow, hail and cirrus ice) MW scattering can be significant, mainly in high
frequencies. Additionally,these processes of absorption and scattering are dependent
of some features, as: hydrometeor phase, shape parameters, particle-size distribution
and total water density (GASIEWSKI, 1993).

In term of MW frequency channels, the channels bellow 22GHz are affected by the
absorption of the liquid hydrometeors and the ice particles above the rain layer
are practically transparent. Meanwhile the channels above 60GHz are affected by
the presence of ice scattering. For the channels in the this range (between 22GHz
and 60GHz) the radiation interacts with the variety of hydrometeors, being water
particles or droplets (liquid or frozen) (LEVIZZANI V., 2002).

The surface type has a important influence in rainfall retrieval. The oceans present
relatively constant and low emissivity (approximately 0.4) so that the radiation emit-
ted from it is small being "colder" and precipitation (emissivity around 0.8) appears
"warmer" due the increased radiation detected by the sensor through emission. Ad-
ditionally, the high sea surface polarization contrasts a lot with the low polarization
of precipitation. On the other hand, the land surfaces have high and variable emis-
sivities (between 0.7 and 0.9), low polarization and the precipitation increase the
upwelling radiation at the same time that absorbs radiation, making it difficult to
distinguish rainy areas (Levizzani V. (2002), Biscaro e Morales (2008), Michaelides
et al. (2009)). For this reason, the use of high frequencies channels (associated to
ice scattering signal) are suitable to retrieve precipitation over continent.

Based on the characteristic that liquid surfaces have different emissivities at different
polarizations, Spencer et al. (1989) developed a linear combination of horizontally
polarized and vertically polarized brightness temperatures to correct this difference
(BISCARO, 2006). As exposed by Cecil e Chronis (2018): "the PCT is then useful
for identifying scenes with precipitation, with less ambiguity related to the under-
lying surface type or surface conditions". Recently, these authors developed a new
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formulation for the PCT coefficients for the 10-, 19-, 37- and 89-GHz (and similar)
frequencies to minimize differences between land and water surfaces, and also in or-
der to discern deep convection from water surfaces. The authors also highlight that
for 10- and 19-GHz frequencies have been non-existent or seldom used in the past
and the new formulations for these frequencies hold promise for identification and
investigation of intense convection.

2.2 Satellite Precipitation Estimation

The satellite precipitation estimation based in PMW is based on the detection of
the emerging electromagnetic radiation from hydrometeors and its conversion in
brightness temperature (TB). To obtain the estimate of some variable (precipitation
rate, water vapor content, etc.) from the brightness temperatures it is necessary to
know the relation between the observed brightness temperatures and the variable in
question.

The main algorithms to retrieve precipitation in PMW can be classified as physical,
statistical or the combination of both approaches. The physical algorithms use the
radiative transfer equation to explain the interaction of the emerging electromagnetic
energy and the atmospheric constituents. Meanwhile, the statistical algorithms seek
to adjust the relationship between observed precipitation data with the measured
TB through empirical and statistical relations (BISCARO; MORALES, 2008). The
physical algorithms are composed by two parts: an a priori database of atmospheric
information and a radiative transfer code. This a priori database is usually derived
from cloud resolving and numerical weather models, such as Mugnai et al. (1993),
Evans et al. (1995), Kummerow et al. (1996), while the radiative transfer code is used
to identify the brightness temperature profile associated with hydrometeor profiles
and rain rate.

A well-known example of this type of algorithm is the Goddard Profiling Algorithm
(GPROF), initially described by (KUMMEROW et al., 1996) for retrieving the instan-
taneous rainfall rate globally by using a Bayesian approach to match the brightness
temperatures to hydrometeor profiles derived from cloud resolving models (CRM).
Originally, the algorithm was developed for the SSM/I (KUMMEROW et al., 1996),
applied to TMI, through the algorithm 2A12 (KUMMEROW et al., 2001) was also later
adapted to the SSMI/S, from the F-16, F-17 and F-18 satellites (VILA et al., 2013).
It has been adapted over the years and also improved for GPM, being applicable for
different PMW sensors (imagers and sounders) (OLIVEIRA, 2017).
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Still in this context, there are also the PMW precipitation products within the EU-
METSAT H-SAF (MUGNAI et al., 2013) which are in constant development and re-
finement to exploit all available radiometers in the GPM constellation and validation
activity. The physically based Bayesian Cloud Dynamics and Radiation Database
(CDRD) algorithm (CASELLA et al., 2013), (SMITH et al., 2013), (CASELLA et al., 2015)
and (CASELLA et al., 2017) is applied to conically scanning radiometers and relies
on the incorporation of meteorological and geographical parameters (meteorological
tags) to reduce the ambiguities. There is also the Passive Microwave Neural Network
Precipitation Retrieval (PNPR) which has been developed and applied primarily to
cross-track sensors (Sanò et al. (2015), Sanò et al. (2016)) and recently adapted to
the connical GMI radiometer (SANÒ et al., 2018).

Several factors make the quantitative estimation of precipitation from space particu-
larly challenging: the intrinsic large spatial and temporal variability of precipitation;
the conversion of radiometric measurements into quantitative precipitation estimates
due to the non uniqueness relationship (ambiguity) between surface rain rate (RR)
and observed TB (PANEGROSSI et al., 1998); the impact of the background surface
on the upwelling radiation, that under some conditions masks the signal originating
from the precipitating cloud; and uncertainties associated with rain gauges and radar
measurements (i.e., attenuation, beam-blocking) used for verification of consistency
and accuracy of precipitation retrieval (TANG et al., 2014).

Notably, for the physical algorithms the quality of the final estimates relies criti-
cally on the ability of the coupled "cloud resolving model-weather numerical model-
radiative transfer code" in representing the atmospheric variables, microphysical
properties and ultimately the multi-frequency PMW TB observation (TB vector)
(CASELLA et al., 2013). For example, to improve the quality of the database (VIL-

TARD et al., 2006) created a hybrid database using PR (KUMMEROW et al., 1998)
reflectivity profiles and numerical simulations. The PR profiles add a realistic char-
acter to the database, but it represents ice poorly. This deficiency is just partly
supplied by the cloud models. However, CRM also has difficulties when representing
the different types of ice (hail, snow, etc.)

The advent of satellites/missions such as the Tropical Rainfall Measuring Mission
(TRMM) (KUMMEROW et al., 1998) and the Global Precipitation Measurement
(GPM) (HOU et al., 2014), offered the opportunity to use of a large observation-
al/empirical database of coincident TRMM/GPM space-borne radar (PR/DPR)
and radiometer observations (TMI/GMI) instead of a database built from several
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simulations (of a CRM coupled to an RTE model).

As exposed by Sanò et al. (2018), an empirical database overcomes the limitations
of cloud-radiation model generated databases, such as uncertainties in surface prop-
erties characterization (e.g., surface emissivity), single scattering properties of ice or
mixed phase hydrometeors and cloud microphysics parameterizations. On the other
hand, the use of empirical databases is dependent of the accuracy and limitations
of the precipitation products used as reference (GMI/DPR CMB). And the use of
the database is limited to radiometers with similar characteristics (i.e., frequencies,
polarizations, scanning geometry and spatial resolution). Description of detailed al-
gorithms built with empirical databases can be found in Kummerow et al. (2011),
Casella et al. (2017) and Sanò et al. (2018).

For deeper knowledge about the vast majority of satellite retrievals (IR, MW,
blended techniques) and its main features (input data, spatial and temporal scales,
areal coverage, developers, etc) the reader can access a detailed survey made by
(TAPIADOR et al., 2012).

2.3 Rain/no-rain classification (RNC)/screening of precipitation

A main part of the PMW satellite rainfall retrievals is the module that precedes
rainfall retrieval denominated rain/no-rain classification (RNC) or screening of pre-
cipitation, which is the delineation of rainfall signatures from microwave footprints
and is an essential pre-processing step which assists in the estimation of the rainfall
intensity (the rainfall retrieval itself). Due the influence of the surface emissivity
in the MW frequencies, typically over ocean screening techniques are essentially
emission based. Unlike the oceans, over land the algorithms rely solely on the ice
scattering phenomenon using the PMW high-frequencies.

The Grody–Ferraro screening methodology Ferraro et al. (1986) and Grody (1991))
has been the most applied methodology for microwave land precipitation since its
introduction. As the precipitation is radiometrically characterized at higher frequen-
cies by the scattering by ice, it leads to a depression of TB in 89GHz in relation to
TB in channel 24 (both in vertical polarization). The presence of rain was identified
when TB in 89GHz (V) was less than 270K and the scattering index (SI) [TB24V –
TB89V] was greater than 8K. Subsequent calculations were necessary to determine
if the instantaneous fields of view (IFOV) was contaminated by desert, snow, or
ice surfaces and are presented by Meyers et al. (2015) as updates for GPROF2010
(KUMMEROW et al., 2001) rainfall screening over land, focusing on recognizing inac-
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curacies in separating precipitation from frozen surfaces by applying a climatological
snow screen.

Sanò et al. (2018) presented a new rain/no-rain classification scheme (RNC) based on
the ANN approach, which provides different rainfall masks for different RR classes.
The scheme is based on two years of GPM observational database and due the
extremely large size of the database, they used two neural networks, which was
more suitable than use multiple parameters in one single complex network. The first
ANN input selection was based on the PCA with the addition of two TB-based
indexes, SI and PCT. The second ANN is based on the use the polarization signal
difference (TB (V) - TB(H)) from the 5 window channels at 10.65, 18.70, 36.5, 89.0
and 166.0 GHz, and the ancillary variables: surface type and the ECMWF T2m.
According to the categorization of the training database (associated to three RNC
flag values), the two networks return the outputs in terms of the same flag values (0,
1 and 2). At this way, a rain/no-rain classification index (RNCI) is therefore built
by combining the outputs from the two ANN.

2.4 Rainfall retrievals studies over Brazil

On the subject of satellite-based precipitation studies over Brazil using microwave
channels, it is possible to notice few studies where each one of them was focused in
different topics to contribute for the improvement of rainfall satellite estimation over
Brazil. They cover topics such as error modeling, microphysical characteristics asso-
ciated with different regimes of precipitation and also associated with larger error in
the estimates, development of methods and rainfall retrieval, etc. It is possible start
by mentioning the development of a statistical algorithm to estimate precipitation
for the Amazon region made by Biscaro (2006). The algorithm was built based on
coincident observations of TMI and PR sensors during the period from January to
April 1999. Besides the retrieval of precipitation, the algorithm also includes the de-
velopment of a screening of precipitation. The screening of precipitation was created
based on the identification of the relation of the parameters: a) scatter index (SI),
b) a maximum threshold of the PCT and c) the standard deviation of TB in 85GHz
(V) in a neighborhood of 5× 5 pixels. For the rainfall retrieval, the algorithm con-
sidered the Probability Matching Method (PMM) which relates the calculation the
cumulative distribution of rain rates and PCT, which give us information about the
probabilities of both variables in order to establish a relation between them. For vali-
dation procedure, the author compared the performance of the its algorithm (named
USProb) with another four widely used algorithms: GPROF, GSCAT and two ver-
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sions of the method from Ferraro e Marks (1995) FM1 and FM2) used operationally
at National Environmental Satellite, Data, and Information Service (NESDIS). In
terms of screening of precipitation the GPROF showed the best performance with
probability of detection (POD) of 0.763 and false alarm ratio (FAR) of 0.298 in
comparison with POD of 0.710 and FAR of 0.398 for the algorithm. In terms of
precipitation distribution the USProb has a good performance presenting rainfall
average value of 7% higher than the PR, meanwhile FM1, GSCAT and GPROF
presented 250%, 11% and 43% higher and FM2 presented 16.4% less than PR mean
values.

In order to contribute to the estimation of satellite precipitation from warm clouds,
Calheiros (2013) analyzed the microphysical and radiative properties in four field
campaigns of the CHUVA project (North, Northeast and Southeast regions of
Brazil). For this, the author considered measurements from ground-based instru-
ments as MW radiometer, disdrometers and the rainfall events were identified by
the vertical profile of reflectivity (VPR) and polarimetric variables derived from a
X-Band radar. Non-precipitating cloud characteristics were also analyzed. For pre-
cipitating clouds liquid water content (LWCR) and integrated liquid water content
(ILWR) were analyzed. In relation to non-precipitating clouds the integrated liquid
water (ILWC) and integrated water vapor content (IWVC) were considered and
they presented the highest values in locations close to the coast in the Northeast
region. The convective clouds presented higher ILWR values, followed by stratiform
systems and warm clouds. The Vale do Paraíba region and Belém presented the
highest reflectivities at higher levels, while in Alcântara and Fortaleza the highest
reflectivity values were located in the warm cloud layer. The authors also performed
analyzes to quantify the impact of the microphysical and thermodynamic parame-
ters on the emerging radiation signal, but this one was identified as small. However,
they observed that the integration of the channel difference in MW can serve as an
indicative of the presence of warm clouds and may be useful in the estimation of
precipitation by satellite.

As mention by Oliveira (2017) the comprehension and quantification of errors in
satellite rainfall estimate products are extremely important for many applications
(hydrological modeling, data assimilation systems, etc) and for this reason the author
verified the uncertainty of Integrated Multi-satellitE Retrievals for GPM (IMERG)
(level-3) and the Goddard Profiling Algorithm (GPROF) (level-2) algorithms in
representing the main precipitation systems from Vale do Paraíba and Amazonian
regions. The algorithms were compared in relation to ground-based radar obser-
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vations, from the Amazon Protection National System (SIPAM) and the X-band
dual polarization weather radar (X-band CHUVA radar). In their results, for the
Vale do Paraíba campaign the GPROF presented relatively good agreement (spa-
tial distribution and accumulated rainfall), notably for convective events, were there
were significant presence of ice scattering. However for the intensity and volume of
light/moderate rain rates the algorithm presented overestimation, meanwhile showed
underestimation for the light/heavy rain rate classes. For the Amazon region, the
IMERG product (using GPROF2014 for GMI sensor) showed significantly overesti-
mation of the frequency of heavy rainfall volumes at around 00:00–04:00 UTC and
15:00–18:00 UTC during the wet season. It was noticed by the authors an evident
overestimation over the Negro, Solimões and Amazon rivers due the poorly repre-
sentation of water bodies surfaces in the algorithm. Diversely, in the dry season the
IMERG underestimate the mean precipitation in comparison to the S-band SIPAM
radar, since it is derived from isolated convective cells not detected by the algorithm.
The authors also carried out a study of error modeling through the Precipitation
Uncertainties for Satellite Hydrology (PUSH) framework which demonstrated that
the PUSH model was able to predict the error distribution in terms of spatial and
intensity distributions.

Recently, Costa (2018) studied the radiative and microphysical properties of clouds
that show errors in the rainfall estimation by satellite from passive MW sensors,
focusing mainly on clouds where the ice content is not directly associated with pre-
cipitation, which are usually the cases of warm clouds. It was analyzed ten years of
TRMM data (2002-2011) on the central region of the Amazon. They identified that
the frequency distribution of the error resembles Gaussian distribution and they di-
vided it in three classes: consistent (from 20 to 80 percentiles) and the distribution
tails representing the underestimation and overestimation. For these last two classes
they evaluated the vertical structure of the clouds and it was verified that the under-
estimation error is related to all cloud properties (rain rate, cloud high, liquid water
path (LWP), ice content (IWP), polarization and polarized corrected temperature
at 85GHz (PCT85)) meanwhile the overestimation error is only function of IWP.
It was also studied the relation between ice content and precipitation, as well the
error in the precipitation estimate and the ice content estimators considering the
GPM (DPR/GMI Combined) observations from September 2014 until August 2015.
From this analysis, they pointed out that there is a problem in determining IWP by
GPROF caused by the Bayesian method, where the approach tends to adjust the
higher values, which occur less frequently, to lower values that occur more frequently.
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2.5 Machine learning methods for rainfall retrieval

The Machine Learning (ML) term can be described as a science that studies the
prediction of patterns in data through the use of computational algorithms and
statistical models without using explicit instructions to perform this task (KOZA et

al., 1996). ML is often considered a subset of the Artificial Intelligence (AI) field and,
currently, it is widely used in several daily tasks such as anti-spam filters in emails
(GUZELLA; CAMINHAS, 2009), classification of skin cancer (ESTEVA et al., 2017), etc.

There is a plethora of material available on ML topics and methods in the literature,
among these Haykin (2009) and Brownlee (2016) makes a great work in comprehen-
sively describing a theoretical foundation of ML algorithms. Broadly speaking, they
describe ML in two main topics: supervised and unsupervised learning. The super-
vised learning is where given a set of input variables X and an output variable Y
and an algorithm is used to learn the relation between (by means of a function)
the input and output information (like trying to predict for example Y = rainrate

given the available X = TB). The goal is to approximate this function so well that
when there is new input data (TB), the algorithm can predict the output variables
(rain rate) effectively from that learned process (generalization capability). In this
kind of learning, the network is able to compare its own outcomes with the observed
outputs provided, adjusting the weight given to the synapses in order to reduce the
difference between the observed outputs and the network estimation (TAPIADOR et

al., 2004). Example of this type of algorithms are:

• Classification: is when the output variable is a category.

• Regression: is when the output problem variable is a real value.

Some popular examples of supervised ML algorithms are: Linear regression (for
regression problems), random forest (for classification and regression problems) and
support vector machine (SVM) for classification problems.

On the other hand the unsupervised learning consists of input data (TB) but no
corresponding output target variables (rain rate) and the aim is to model the fun-
damental structure or distribution in the data in order to learn more about that
data and there is not a reference to compared check if the model is performing well
during the training phase. Examples of unsupervised algorithms are: K-means (for
clustering problems) and Apriori algorithm for association rule problems.
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In the ML context, the Artificial Neural Networks (ANN) are computational models
inspired by the neural structure of intelligent organisms and the imitation of the
elements and organisms from nature itself with the purpose of enhancing the human
experience within its environment is called Biomimetics or Biomimicry (VINCENT

et al., ). Much like the human brain, the ANN is also composed of interconnected
artificial neurons that transfer signals to each other through edges (similar to the
axons in the organic neuron), further propagating these signals through weights and
activation functions (illustrated in Figure 2.2 that apply mathematical transforma-
tions on those signals in one or several hidden layers of the network. The specific
parameters that compose a ANN will be further detailed in the next Subsection 2.6.

In the atmospheric sciences field, we can cite the use of multilayer perceptron Neu-
ral Networks (NN) for many applications as Marzban e Stumpf (1996) to predict
the existence of tornadoes, McCann (1992) to forecast the presence or absence of
significant thunderstorms and Navone e Ceccatto (1994) for Indian monsoon rainfall
forecasting.

Compared to pure physically-based methods for rainfall retrieval, some potentialities
can be considered in the use of ANN: the ability to extract nonlinear relationships is
a very valuable feature, it can also deal with large amounts of data in a automated
context, presenting adaptability, learning from examples, also offering parallel and
distributed processing capabilities, generalization capacity, fault tolerance and low
computational costs (after training) (HAYKIN, 1998) and (ANOCHI, 2015). Moreover,
the literature suggests that ANN models outperform other statistical modeling ap-
proaches when it comes to data that exhibits non-parametric behaviour (GARDNER;

DORLING, 1998), not necessarily fitting a normal distribution. Which is often the
case of the nature of the precipitation data. Gardner e Dorling (1998) also suggests
that the dynamics of severe weather phenomena are not easily included in current
numerical weather prediction models due to their small scale, and often cases, the
currently limited understanding of them.

It is worth mentioning as an example of ANN applied to rainfall estimation, the H-
SAF Passive microwave Neural network Precipitation Retrieval algorithm (PNPR)
adapted for cross-track scanning radiometers AMSU/MHS (SANÒ et al., 2015),
ATMS (SANÒ et al., 2016) and for the conical radiometer GMI (SANÒ et al., 2018).
Another algorithm based in ANN neural networks as an adaptive system is the PER-
SIANN (Precipitation Estimation from Remotely Sensed Information using Neural
Network), described in detail by (HSU et al., 1997). The fundamental algorithm is
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based on a ANN and can, therefore, be easily adapted to incorporate relevant infor-
mation as it becomes available (IR and MW imagery, rain gauge and radar data).

Meyer et al. (2015) compared four ML algorithms — random forests (RF), neu-
ral networks (NN), averaged neural networks (AVNN) and support vector machines
(SVM) — for rainfall area detection and rainfall rate assignment using MSG SEVIRI
data over Germany. Satellite-based proxies for cloud top height, cloud top tempera-
ture, cloud phase and cloud water path were considered as predictor variables. The
results indicated an overestimation of rainfall area delineation regardless of the ML
algorithm (averaged bias = 1.8) but a high probability of detection ranging from
81% (SVM) to 85% (NN). Though the differences in the algorithms performance
were rather small, NN and AVNN were identified as the most suitable algorithms.
On average, they demonstrated the best performance in rainfall area delineation as
well as in rainfall rate assignment. The authors also concluded that NN computa-
tional speed is an additional advantage when working with large datasets such as in
remote sensing based rainfall retrievals.

Beusch et al. (2018) developed and compared satellite rainfall retrievals based on
generalized linear models and ANN. They used as input predictors the SEVIRI IR
channels, their differences, the Satellite Application Facility nowcasting (NWC-SAF)
products and geographical auxiliary variables. Their rainfall retrieval was built by
two modules: the screening of precipitation, treated as a classification problem and
the rainfall intensity retrieval, treated as a regression problem. They demonstrated
that use of ANN improved the prediction skill and reduced false alarms.

2.6 Artificial Neural Networks structure and parameters

The schemes in Figure 2.2 show the main segments that compose a ANN architec-
ture. The initial information of the ANN are the input variables (or predictor at-
tributes) as independent variables and the output variable (predicted attributes)
as the dependent variables. The neuron is the information processing unit, in which
the refinement of the function will be done iteratively by adjusting weights for each
neuron. Broadly speaking, it is possible to say that the learning of the network is
to identify the best set of weights for a database, therefore the knowledge of the
network lies in the weights found for each neuron. The calculation of the best set of
weights occurs in the synapses where the input data is multiplied by the synaptic
weight wi and this process is represented by the summing function.

Ultimately the activation function defines the neuron output by limiting the neu-
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Figure 2.2 - Generic architecture of an ANN and a neuron model description.
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ron amplitude. There is a vast set of functions and activation functions, and they
can be chosen depending on the nature of the data and problem (classification and
regression). The following list describes some of the most popular activation func-
tions and their respective ranges: identity (−∞,∞), sigmoid (0,1), tanh (-1,1), relu
[0,∞) and softplus (0,∞).

As explained by Brownlee (2016) s the error related to each iteration and the aim
is to minimize the error. Important parameters arise from the iterative process. The
cost function represents the error calculated from the observed output and the
outcome estimated by the ANN and the aim is to minimize the error. For example,
the batch size is how many records will be considered for each weight update and
the number of epochs is how many times the weight update will be executed.
The learning rate refers to the amount that the weights are updated in the end
of each batch size, meanwhile the momentum controls how much the previous
update should influence the update of the actual weight. There is also the weight
initialization that refers to a suite of different techniques to choose the initial small
random values.

Another crucial component is the optimizer which represents the mathematical
method to make the weight update in order to minimize the loss function and make
the predictions as correct as possible. The loss function by pointing out whether the
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error is decreasing or increasing serves as a guide to the optimizer appointing if it
is moving in the right or wrong direction.

The most popular optimizer is called Gradient Descent being fast, robust, and
flexible. Basically, it calculates partial derivatives and then it determines which
specific operation should be performed on the weights and adjusts each individual
weight based on its gradient. As most popular gradient-based optimizer methods,
can be found: Stochastic Gradiente Descent (SGD), Batch Gradient Descent, Adam,
Adagrad, Adadelta, Nesterov accelerated gradient, etc.

Although there are currently a wide range of ANN types, for the sake of brevity this
work will only concern with the multilayer perceptron, which is the method used
in this thesis. For further understanding of the several types of ANN, referring to
Haykin (2009) is suggested.
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3 ASSESSMENT OF GROUND-REFERENCE DATA AND VALIDA-
TION OF THE H-SAF PRECIPITATION PRODCUTS IN BRAZIL

In order to verify the performance (limitations and potentials) of the current a priori
database CDRD algorithm (not optimized for Brazil, i.e. composed by simulations
only for Europe and Africa) in comparison with the ground based information col-
lected during CHUVA (Amazon and Vale) campaign, a validation of CDRD and
PNPR algorithms in Brazil are carried out.

First, an assessment of the reference data (ground-based radar) was done with the
collaboration of researcher Stefano Barbieri and a brief summary of this part will
be presented here. Full access to the details of data processing can be done through
Barbieri S. (2017) and Amaral et al. (2018).

In Section 3.1, the study areas, radar characteristic and rain gauge distribution are
described. In the same section, the methodology for radar data treatment (quality
index) and radar-based rainfall algorithms are briefly described. A brief description
of satellite algorithms is also provided. In Section 3.3 the results of the evaluation
of rainfall radar estimates with respect to the rain gauges are presented, as well the
results from the satellite verification process, where statistical and pixel by pixel
evaluations are performed. Finally, a summary of the main results is presented in
Section 3.5.

3.1 Study Area and Data Sources (Radar and Rain Gauges)

This study was developed based on two CHUVA field campaigns. The first exper-
iment occurred in the Vale do Paraíba region located in the southeastern part of
Brazil and the second campaign took place in Manaus city in the northern region of
Brazil (centrally located in the Amazon basin). The satellite-based evaluation pro-
cess considers the precipitating events with largest rain rates for both campaigns.
Specifically, the case studies analyzed in Manaus took place on 15, 21, 23, 24, 25, 26
February and 2 and 8 March 2014 (8 days) while in the Vale do Paraíba campaign
6 days were considered: 11, 13 November and 1, 8, 14 and 20 December 2011 for a
total of 14 precipitating events. For both campaigns the X-band polarimetric radar,
manufactured by Gematronik (Germany) has been employed with the main charac-
teristics: Magnetron with 35 Kw per channel, simultaneous horizontal and vertical
polarization, pulse width of 0.5µs, operative pulse repetition frequency (PRF) of
1500 Hz, 1.8 m antenna diameter, 1.3◦ beam width, operation frequency of 9.375
GHz, 150 m of range resolution and maximum distance of 100 km.
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The Vale do Paraíba campaign occurred in São Paulo State in an elevated valley
between the Serra da Mantiqueira and Serra do Mar mountain ranges. This field
campaign had the longest duration for the CHUVA experiment, with an Intensive
Observation Period (IOP) starting from 1 November to 22 December 2011, followed
by a second period with less intensive measurements through 31 March 2012. The
site strategy is indicated in Figure 3.1, where the X-band polarimetric radar was
installed near São José dos Campos (Lat. 23◦12′31.33′′S, Lon. 45◦57′7.87′′W, 650 m
ASL) above the roof of the UNIVAP building (Vale do Paraíba University) being
approximately 82 km inland from the ocean. The radar scanning strategy produced
a volume scan with 13 elevations (varying from 1 to 25 degrees) with repetition time
each 6 minutes. Seven measurement sites (called UNIVAP, CTA, IEAV, Jambeiro,
CESP, Pousada and Caragua) were established and equipped with rain gauges lo-
cated at 9, 11, 22, 43, 51 and 75 km from the radar site, respectively, along a
perpendicular line towards the ocean (Figure 3.1).

Figure 3.1 - Position of the X-band radar and of the rain gauges indicated with a thumb-
tack in each site, during the Vale do Paraíba campaign.

SOURCE: Adapted from Barbieri S. (2017).

The main rainfall systems that were observed during the campaign were caused by
the penetration of cold fronts, local convection and organized mesoscale systems.
The presence of a 500 hPa trough to the east (first half of the period) and west
(second part) was responsible for the atmospheric moisture flow over the region and,
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consequently, the precipitation regime. Several thunderstorm events, some associated
with hail, were reported during the campaign (CALHEIROS; MACHADO, 2014).

During the Manaus campaign, the X-band polarimetric radar was installed in the
Amazon rainforest about 60 km from Manaus, between the Negro and Amazon
rivers (Lat. 3◦12′46.86′′S, Lon. 60◦35′53.92′′W, 69 m ASL). The X-band radar scan-
ning strategy produced one volume scan with 15 elevations (varying from 0.5 to 30
degrees) every 10 min. Two measurement sites (called T3 and Manacapuru) were
established and equipped with rain gauges. T3 is located in the same position of the
radar site while Manacapuru is approximately 10 km from the radar site (Figure
3.2). The field campaign occurred in two IOPs, the first happened from 13 February
to 31 March 2014 during the wet season, and the second one between 1 and 30
September 2014 at the end of the dry season.

Figure 3.2 - Position of the X-band radar and of the rain gauges indicated with a thumb-
tack in each site, during Manaus campaign.

SOURCE: Adapted from Barbieri S. (2017).

The austral winter corresponds to the dry season in most of the Amazon region,
although it represents a rainy maximum for the far northwest of the basin (NUNES

et al., 2016). Well-defined wet and dry seasons are associated with the so-called South
American Monsoon System (SAMS) (CARVALHO et al., 2011).
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3.2 Data and methodology

3.2.1 Radar Data Quality Index

As considered by Amaral et al. (2018) to perform a reliable validation procedure,
the common validation methodology developed by the H-SAF Precipitation Product
Validation Group (PPVG) was applied to the CHUVA radar data. The methodology
aims to compensate, minimize or eliminate the uncertainties by applying a quality
index where each source of error is considered. The main error sources considered
were: ground clutter, partial beam blocking (PBB), range distance, non-uniform
vertical profiles of reflectivity (VPR), differential phase processing and rain induced
attenuation (BRINGI; CHANDRASEKAR, 2001) and are shown in Figure 3.3.

Figure 3.3 - Weather radar data processing chain.

SOURCE: Adapted from Barbieri S. (2017).

As exposed by Barbieri S. (2017) the overall quality index is composed by multiplying
the partial indices as shown in the following equations:

Q = qblank · qrange ·max {qloss · qnoise} (3.1)

where qrange consider the geometric characteristics (as distance, elevation) defined
as:

qrange = qdistance · qV P R (3.2)

And the qloss group the quality index related to the signal (Zh) correction and qnoise

related to the signal KDP :
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qloss = qP BB · qatt (3.3)

Once the quality control was applied to the radar data, tests were also carried out
with different precipitation estimation algorithms for the radar rainfall retrieval in
order to identify which would be more suitable for the areas under analysis. In
the tests, several combinations were analyzed including simple Z-R relations and
polarimetric variables as KDP -R relations. As mentioned on the beginning of this
chapter the detailed methodology applied for each error source and radar rainfall
estimation is presented in detail in Barbieri S. (2017) and Amaral et al. (2018).

3.2.2 Satellite Products and Dataset Generation

The passive microwave (PMW) precipitation products within the EUMETSAT H-
SAF are based on the development and refinement of retrieval techniques exploiting
all available radiometers in the GPM constellation (MUGNAI et al., 2013). In this
context, operational PMW precipitation products for the different radiometers are
being released within H-SAF and they are based on two approaches (MUGNAI et

al., 2013): the physically based Bayesian Cloud Dynamics and Radiation Database
(CDRD) algorithm (CASELLA et al., 2013; SMITH et al., 2013) for conically scanning
radiometers and the Passive microwave Neural network Precipitation Retrieval al-
gorithm (PNPR) for cross-track scanning radiometers (SANÒ et al., 2015; SANÒ et

al., 2016). Three PMW H-SAF products were considered in this study: H01 (CDRD
approach applied to SSMIS), H02 (PNPR developed for AMSU/MHS), and H18
(PNPR adapted to ATMS).

The algorithms are based on the use of a cloud-radiation database made up of thou-
sands of microphysical-meteorological profiles derived from cloud-resolving model
simulations of different precipitation events including 60 simulations over the Euro-
pean/Mediterranean area (CASELLA et al., 2013) and 34 simulations over Africa and
Southern Atlantic. The main features of each product can be accessed in detail in
the respective references cited above.

To perform the validation over Brazil, we had to acquire all the input data (bright-
ness temperatures in TB) for the the CHUVA experiments timeframe, and then,
to process the H-SAF products to extend the coverage of the retrievals in order to
include the whole country (extended to 75◦N–60◦S and 80◦W–80◦E). The inputs
for the H01 were the SSMI/S orbits of the DMSP F16, F17 and F18 satellites. For
the H02 algorithm, the input files were the AMSU-A, AMSU-B and MHS orbits
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from NOAA-18, NOAA-19, MetOp-A and MetOp-B. In addition, lastly, we used
the ATMS orbits from the Suomi-NPP satellite as input for the H18 algorithm.
Though we have analyzed the three products: H01, H02 and H18 for the Manaus
campaign, we only analyzed the H01 and H02 products for the Vale do Paraíba
campaign because the ATMS data was not available in 2011.

3.2.3 Application of the Common Validation Code (CVC)

The common validation code (CVC) developed by the Precipitation Product Vali-
dation Group (PPVG) enables implementation of a common validation procedure
to make the validation results comparable (PUCA et al., 2014). The products to be
validated differ in terms of retrieval technique, spatial and temporal resolutions.
Therefore, each product requires a specific validation procedure. The methodology
can be divided on the following general steps:

• Ground data error analysis;

• Upscaling of radar data to match the satellite product nominal resolution;

• Temporal matching of precipitation products (satellite and ground);

• Application of evaluation statistical methods (continuous and multi-
categorical) to all available overpasses, for each pixel pair (satellite-
ground).

In order to use the CVC on the Brazilian radar data, the code had to be adapted by
including the new radar coordinates (Vale do Paraíba and Manaus) and changing
the reading routine to the new radar data. As each campaign had a slightly different
radar scan time (6 and 10 min, Vale do Paraíba and Manaus) the CVC was config-
ured to match a maximum temporal difference between satellite and radar of 16 min.
Although this may impact a difference of a few minutes in the comparison between
the radar and the satellite, at least it ensures that there are at least 3 or 2 radar
images to be comparable with one satellite overpass. The radar data was upscaled to
the satellite product nominal resolution, considering the antenna pattern (Gaussian
function), viewing geometry, and scanning strategy (conical and cross-track) of the
MW radiometers. As the radar data was filtered beforehand (quality control), the
pixels with low quality were eliminated in the upscale processing. To investigate the
performance of the precipitation products, the statistical scores commonly used in
the pixel-based validation by the H-SAF PPVG were considered.
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3.3 Results

In this section, we summarize the results of the evaluation of rain gauge measure-
ments and the performance radar-based rainfall algorithms. Sequentially, we per-
formed the validation of the H01, H02 and H18 algorithms, breaking it down into
two phases, the statistical evaluation and pixel-by-pixel analysis. In order to sum-
marize the results for all case studies, we chose to exhibit one representative event
for each campaign; however, the results of the remaining cases will also be discussed
further ahead.

A performance verification of the radar-based rainfall retrievals was made regarding
the rain gauges (figures and tables were not shown here). The comparison consid-
ering the nearest value shows better results. In general, the radar-based rainfall RZ

(just based on reflectivity) presented underestimation, the KDP -based algorithms
had good performance when compared with rain gauges measurements. The best
estimator was the Rq2V u15, because it presented the perfect correlation coefficient
score, which is one. And bias, mean absolute error and root mean square not higher
than 0.11, 0.13 and 0.41, respectively.

3.3.1 Validation of H-SAF Precipitation Products

The second part, which is the main focus of this study, is to identify the performance
of the H-SAF products in order to provide the algorithm developers with informa-
tion on the limitations and issues of the retrievals over specific regions in Brazil.
The case studies under analysis are the same 14 cases (for both campaigns) that
were considered previously on the radar data quality analysis. As mentioned before,
three satellite rainfall products were analyzed: H01 (CDRD approach applied to SS-
MIS), H02b (PNPR v1 developed for AMSU/MHS), and H18 (PNPR v2 adapted
to ATMS). We present a statistical analysis based on continuous and dichotomous
statistical scores computed within the CVC, along with an in-depth analysis of the
selected cases, followed by a pixel by pixel analysis. The considerations concerning
the acquisition of the matching pairs (radar × satellite) are exposed in Section 3.2.3.

3.3.1.1 Statistical Evaluation

As exposed in Barbieri S. (2017) the Rq2V u15 algorithm for radar rainfall retrieval
presented the best estimate performance and for this reason it was chosen for the
statistical evaluation. In order to investigate the impact of different quality indexes in
the radar retrievals, we performed a sensitivity analysis (not shown here). According
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to this analysis, we found that a quality index value equal or greater than 0.7 could
be considered a good compromise between the desired performance of the statistical
scores and the size of the dataset (that guarantees the reliability of the results),
i.e., the number of pixels in the sample. The statistical scores used in the validation
procedure are presented in Tables A.3 and A.2. The continuous statistical scores
were computed for the pixels in which both radar and satellite give rainfall estimates
larger than 0.25 mm/h (hits only). On the other hand, all pixels are considered for
the multicategory scores. The number of pixels for each algorithm is different because
it depends on the number of available satellite overpasses.

For Manaus, the events under analysis counted a total of 33 overpass matchings
(which means correspondence in time and space for both the satellite and radar
measurements) for H01, 49 matchings for H02 and 13 matchings for H18. Since
ATMS is aboard a single satellite, the number of overpasses over the region of interest
is less than the other sensors (consequently, lower number of matched pixel pairs).

Table 3.1 presents continuous scores for the algorithms in analysis, the number
inside the brackets refers to the number of matched pixel pairs for each algorithm.
All algorithms tend to overestimate the X-band radar estimates. The H01 presented
the largest values for ME, RMSE and FSE. In general H02 had slightly better scores
than H01, such as lower mean rainfall rate values, ME, RMSE, SD and FSE. Finally,
the H18 presents intermediate scores in relation to the other algorithms, having just
the smallest FSE. It is worth to mention also the possibility that radar mean value
may be lower due some radar attenuation process, which should be investigated in
greater detail in the future. Regarding multicategory scores (Table 3.2), it is worth
noticing that both algorithms based on the neural network approach presented better
detection skills than H01, the highest POD (0.96 and 0.81), the lowest FAR (0.47
and 0.39) and highest critical CSI (0.51 and 0.53), respectively.

Table 3.1 - Statistical continuous scores for Manaus for H01, H02 and H18. The num-
ber inside parenthesis represents the number of matched pixel pairs for each
algorithm.

Algorithm Sat. Mean Rad. Mean ME RMSE SD FSE CORR
H01 (406) 4.60 0.93 3.67 5.20 3.69 5.59 0.40
H02 (631) 3.78 1.18 2.59 5.11 4.40 4.32 0.32
H18 (140) 4.53 1.46 3.07 5.10 4.07 3.48 0.34
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Table 3.2 - Multicategory scores for Manaus for H01, H02 and H18. The number inside
parenthesis concerns the number of matched pixel pairs for each algorithm.

Algorithm POD FAR CSI
H01 (3149) 0.75 0.54 0.39
H02 (1889) 0.96 0.47 0.51
H18 (916) 0.81 0.39 0.53

3.3.1.2 Pixel by Pixel Analysis

In order to further analyze the algorithms performance, a case study analysis for
each product and each campaign, with pixel by pixel comparison, was carried out.

A case study for Manaus, which occurred on 21 December 2014 was presented, with
the overall quality index shown in Figure 3.3.1.2a and the radar rainfall field in
its original resolution in Figure3.3.1.2b. On this day, a well defined squall line ap-
proached the X-band radar region. The systems persisted on the region from the
morning around 08:20 UTC to the afternoon 15:40 UTC. It is possible to see the
presence of convective cores with rainfall rate upwards to 35 mm/h in the regions
between the north-west and the south-west quadrants in Figure 3.3.1.2b. The re-
maining regions are dominated by light and stratiform precipitation with rainfall
rates going up to 6 mm/h. In Figure 3.5a it is possible to see the filtered radar
data by applying the quality index threshold at 0.7 and upscaled to the satellite
native grid, and in Figure 3.5b the respective H01 rainfall retrieval is shown. The
light rain rate provided by the radar (light blue), is associated with moderate pre-
cipitation values by H01 (shades of green). Additionally, the moderate rain rates
from radar (green and dark blue) is strongly overestimated by the H01 (orange to
red) algorithm. We can say that H01 has a general tendency to overestimate all
rainfall classes.
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Figure 3.4 - (a) Overall radar quality index and (b) Rain rate from radar on 21 February
2014 at 12:10 UTC.

(a) (b)
production.

SOURCE: Adapted from Barbieri S. (2017).

For H02, one overpass for the case which occurred on 8 March 2014 (at 05:30 UTC) is
shown. Convective cells are visible along the border of the Rio Negro River, followed
by smaller convective cells over the Southeast quadrant (Figure 3.6). Figure 3.7a,b
shows that the H02 algorithm provides precipitations from light to moderate values
(shades of green) in pixels where the radar detects absence of precipitation (gray
pixels). This tendency to produce a large area of precipitating pixels is related to the
precipitation screening, which is the algorithm module where potential precipitating
pixels are selected. This feature is related to the relatively high FAR scores (shown
in Table A.2).
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Figure 3.5 - (a) Rain rate from radar upscaled to the satellite grid and (b) H01 rain rate
retrieval in Manaus on 21 February 2014 at 12:10 UTC.

(a) (b)
SOURCE: Author’s production.

Figure 3.6 - (a) Overall radar quality index and (b) Rain rate from radar on 8 March 2014
at 05:30 UTC.

(a) (b)
SOURCE: Adapted from Barbieri S. (2017).
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Figure 3.7 - (a) Rain rate from radar upscaled to the satellite grid and (b) H02 rain rate
map in Manaus on 8 March 2014 at 05:30 UTC.

(a) (b)
SOURCE: Author’s production.

The example for H18 shown in Figures 3.8 and 3.9 is for the same event presented
in H02, on 8 March 2014 but at 05:10 UTC. Despite the fact that the satellite over-
passes (H02 and H18) were very close in time (20 min of difference) it was enough
time to see differences in the precipitation field. The H18 precipitation pattern is
similar to H02 because they are based on the same precipitation screening method.
It is worth pointing out that the screening of precipitation is equal for all products
in analysis in this study and it is applied over all background surfaces, except over
desert. It is very likely that the screening procedure is not well tuned for the at-
mospheric conditions of the Amazon region, characterized by the high water vapor
content. On the other hand, in the area with the most intense convective cores,
the H18 tends to produce a lower overestimation rate when compared to H02. This
aspect is related to the difference in the two retrieval algorithms (PNPR for AM-
SU/MHS and PNPR for ATMS) (as pointed out by (SANÒ et al., 2016), where H18 is
based on just one neural network for all surface types, trained with a unique database
with the additional channels in the water vapor absorption band at TB183±3 (SANÒ

et al., 2016).
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Figure 3.8 - (a) Overall radar quality index and (b) Rain rate from radar on 8 March 2014
at 05:10 UTC.

(a) (b)
SOURCE: Adapted from Barbieri S. (2017).

Figure 3.9 - (a) Rain rate from radar upscaled to the satellite grid and (b) H18 rain rate
map in Manaus on 8 March 2014 at 05:10 UTC.

(a) (b)
SOURCE: Author’s production.

It is noticeable that the three algorithms have a tendency to overestimate the larger
rain rates. The study in reference (OLIVEIRA et al., 2016) evaluated the ability of
two GPM rainfall algorithms (GPROF2014 and IMERG) in reproducing the main
characteristics and the diurnal cycle of precipitation as observed by the S-band
SIPAM radar, in the Manaus region during the CHUVA campaign. The authors
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have found similar results where GPROF2014 (GMI) presents large overestimation
of the rain rate volume and occurrence greater than 10 mm h−1 during IOP1.

The first example for the Vale do Paraíba campaign refers to the presence of con-
vective clusters associated with the SACZ (South Atlantic Convergence Zone). The
coincident overpass between the satellite and the radar occurred at 21:18 UTC and
shows the presence of a few intense convective cells in the northwest, north and
northeast quadrants of the radar (Figure 3.10b). The overall quality index (Figure
3.10a) in this region is most affected by the blocking effects caused by two mountain
ranges, the Serra da Mantiqueira (western) and Serra do Mar (eastern). Analyzing
the upscaled maps (Figure 3.11) it is clear that, differently from Manaus, the pre-
cipitation pattern is well detected by the H01. Concerning the rainfall estimation, in
this case, the tendency of the algorithm is to underestimate the highest precipitation
rates seen by the radar. Despite this feature, the estimates are in better agreement
with the radar than the estimates in the Manaus campaign (as shown by the lower
ME for this region in Table 3.3).

Table 3.3 - Continuous scores for Vale do Paraíba for H01 and H02. The number inside
parenthesis concerns the number of matched pixel pairs for each algorithm.

Algorithm Sat. Mean Rad. Mean ME RMSE SD FSE CORR
H01 (181) 2.53 2.89 −0.35 4.00 3.98 1.38 0.44
H02 (124) 2.45 2.76 −0.30 3.56 3.55 1.29 0.37

Table 3.4 - Multi-category scores for Vale do Paraíba for H01 and H02. The number inside
parenthesis concerns the number of matched pixel pairs for each algorithm.

Algorithm POD FAR CSI
H01 (2420) 0.49 0.49 0.33
H02 (991) 0.43 0.21 0.39
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Figure 3.10 - (a) Overall radar quality index and (b) Rain rate from radar on 1 December
2011 at 21:18 UTC.

(a) (b)
SOURCE: Adapted from Barbieri S. (2017).

Figure 3.11 - (a) Rain rate from radar upscaled to the satellite grid and (b) H01 rain rate
map in Vale do Paraíba on 1 December 2011 at 21:18 UTC.

(a)
(b)

SOURCE: Author’s production.

The second example for the Vale do Paraíba campaign (Figures 3.12 and 3.13)
consists of the occurrence of local convection with sparse intense convective cells

35



occurring predominantly in the afternoon (Figure 3.12b). During this event, the
precipitation pattern is also quite close to the ground-based reference, which is also
reflected on the lowest FAR values (Table 3.4). Concerning the rainfall estimation,
in this case, the algorithm tends to underestimate the highest precipitation rates
observed by the radar. However, the PMW estimates are in better agreement with
the radar observations than the estimates generated in the Manaus campaign (as
indicated by the lower ME for this region in Table 3.3).

Figure 3.12 - (a) Overall radar quality index and (b) Rain rate from radar on 8 December
2011 at 18:06 UTC.

(a) (b)
SOURCE: Adapted from Barbieri S. (2017).
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Figure 3.13 - (a) Rain rate from radar upscaled to the satellite grid and (b) H02 rain rate
map in Vale do Paraíba on 8 December 2011 at 18:06 UTC.

(a) (b)
SOURCE: Author’s production.

3.4 Discussion

We will discuss the main features of the H01 algorithm that mostly influence the re-
sults in Brazilian areas: the precipitation screening process, the surface classification
and the representativeness of the cloud model simulations in the a priori database.
The first part of the retrieval processing, the screening of precipitation, is a impor-
tant module because defines the amount of pixels selected as potentially precipitating
pixels and thus affects the final precipitation field. The screening used in the algo-
rithms is based on the method described by Chen e Staelin (2003), which uses the
comparison of the TBs, which are the water vapor absorption band at TB183±3 and
TB183±7 GHz and the TB53GHz channel in the oxygen absorption band around 50
GHz. A detailed description of the implementation of the H-SAF products screening
process can be accessed in Mugnai et al. (2013), Sanò et al. (2015).

Figure 3.14 present the radiative signatures from the TB183±3, TB183±7 and
TB53GHz channels for Manaus for the case study on 21 February 2014. and we
can notice that in Amazon region (Figure 3.14 a,b) both water vapor absorption
channels present a strong TB decay (minimal values around 160–180 K). This pat-
tern seems to be associated with a change in the weight function peak of these
channels in the presence of high water content, typical of the Amazon rainforest. As
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a consequence, the efficiency of the screening can be affected generating an extensive
area of precipitation can be seen in the screening map and in the final rainfall rates
(Figure 3.14 d,e).

On the other hand, for the Vale do Paraíba region (Figure 3.15), the channels 183 ±
7 and 183 ± 3 GHz do not present an extensive are of strong decay in TB inside the
radar area and the screening map (Figure 3.15 d) follows the same pattern that was
observed in 183 ± 7 GHz channel (Figure 3.15 b). Differently from Manaus, we can
see that the retrieval does not generate precipitation (gray pixels in Figure 3.15 e)
in the entire area provided by the screening as potentially precipitating (indicated
by red in Figure 3.15 d).

Figure 3.14 - (a) TB183±3 GHz, (b) TB183±7 GHz, (c) TB53 GHz, (d) Screening of pre-
cipitation (0—no rain, 1—rain) and (e) Surface Precipitation (mm/h) on 21
February 2014 at 12:10 UTC in the Manaus region.

(a) (b) (c)

(d) (e)
SOURCE: Author’s production.
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Figure 3.15 - (a) TB183±3 GHz, (b) TB183±7 GHz, (c) TB53 GHz, (d) Screening of pre-
cipitation (0—no rain, 1—rain) and (e) Surface Precipitation (mm/h) on 1
December 2011 at 21:18 UTC in the Vale do Paraíba region.

(a) (b) (c)

(d) (e)
SOURCE: Author’s production.

In the Amazon region we have noticed that the surface characteristics were not
properly classified. This region is dominated by large inland water bodies (Amazonas
and Rio Negro rivers) and surrounded by vegetated land. Figure 3.16a shows that,
in the radar area, the algorithm classifies the surface as coastal pixels, which is the
least populated database, therefore, the least representative and usually affected
by larger uncertainties. In the Vale do Paraíba region (Figure 3.16b) the algorithm
considers large part of the radar area as vegetated land and the Bayesian approach
look for land profiles, which leads to the choice of more appropriate rain rate profiles.

In the Bayesian approach, the surface classification impacts the choice of channels
used in retrieval processing, which influences the selection of hydrometeor profiles
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in the a priori database and, ultimately, the rainfall rate retrieval.

Finally, the representativeness of the cloud model simulations in the a priori
database, which is currently optimized for Europe and Africa, does not properly
represent the typical microphysical and rainfall profiles of brazilian regions. Improv-
ing the database including simulations that represent the brazilian rainfall regimes
could solve the issue.

Figure 3.16 - Surface Identification (1—Ocean, 2—Land, 3—Coast) for (a) Manaus and
(b) Vale do Paraíba.

(a) (b)
SOURCE: Author’s production.

3.5 Conclusions

In this chapter was analyzed the data collected by mobile X-band polarimetric radars
during two campaigns of the CHUVA project, both in the Vale do Paraíba and Man-
aus regions. First, in order to ensure that the verification of the H-SAF precipitation
products is based on well-treated data, the ground radar data was submitted to a
quality control procedure and the rainfall estimates were tested with different al-
gorithms, obtaining the best results the algorithm Rq2V u15 based on polarimetric
variables (Barbieri S. (2017) and Amaral et al. (2018)).
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Regarding the results from the satellite algorithms validation, for the Manaus re-
gion, the CDRD algorithm (H01) tends to overestimate all rain rates classes (light to
heavy). The PNPR algorithm for AMSU-A/AMSU-B/MHS sensors (H02) presents
better POD than H01, but it also presents high FAR values. The PNPR for the
ATMS sensor (H18) presents lower overestimation of heavy rain rates when com-
pared to H02, probably due to the different neural network used on H18. It is worth
considering that the sample size for this verification study (14 cases) was quite
small, and a more extensive validation with a larger ground-based dataset would be
suggested to perform a more comprehensive quality-assessment.

All analyzed rainfall retrieval algorithms for the Amazon region showed high FAR
values and larger precipitation patterns which are deeply related to the precipita-
tion screening scheme. The screening seems to be substantially affected by the high
water vapor content in this region. The H01 (CDRD for SSMIS-Bayesian approach),
in specific, it was affected by highly variable surface emissivities, impacting the se-
lection of hydrometeor profiles in the a priori database and, ultimately, the rainfall
rate retrieval produzing the results found in this assessment. Moreover, we must take
into account the uncertainties on precipitation estimates, which in the Bayesian ap-
proach are represented by the coefficients of error covariance matrices (for TBs, and
ancillary and meteorological parameters) as analyzed in Smith et al. (2013). For the
Vale do Paraíba region, both algorithms, H01 and H02, produced ME values that
were quite close to zero (or negative) and lower FAR values (from 0.21 to 0.49) than
Manaus. Unlike the Manaus case, the precipitation patterns were well detected and
the estimations were in good agreement with the reference as indicated by the low
ME values.
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4 DEVELOPMENT OF THE CLOUD DYNAMICS AND RADIATION
DATABASE (CDRD) FOR RAINFALL SATELLITE RETRIEVALS
OVER BRAZIL

The initial aim of this study was to develop the cloud-radiation database representa-
tive of the physical, microphysical and radiative processes of precipitation systems
that operate in different regions of Brazil. Such database to be used in the pas-
sive microwave (PMW) Cloud Dynamic Radiation Database retrieval algorithms
(CDRD) in order to improve satellite rainfall estimates. The CDRD is a Bayesian
algorithm performing the retrieval of precipitation from measurements of conical
scanning PMW radiometers (i.e., SSMIS, AMSR-2, GMI). And the focus was to
develop the database based on SSMIS overpasses.

For generation of the database a characterization of rainfall in Brazil was take into
account the data collected during the campaigns of the CHUVA project (based on se-
lection of golden cases). After identifying these precipitating events, cloud resolving-
model simulations for these cases were carried out in order to simulate microphysical
profiles associated with radiometric measurements of passive microwaves. The sim-
ulations were made from the combination of a model mesoscale University of Wis-
cosin Nonhydrostatic Modeling System (UW-NMS) and a model of Radiative Trans-
fer Equation Model (RMS). The UW-NMS is a non-hydrostatic, three-dimensional,
nested model, ranging from the microphysical scale to the synoptic and with non-
Boussinessq dynamics (TRIPOLI, 1992; TRIPOLI; SMITH, 2014a; TRIPOLI; SMITH,
2014b). Once the previous steps are reached the cloud-radiation database can be
generated from the simulations and can be implemented in the Bayesian inversion
algorithm for generating the estimate of precipitation over Brazil. To achieve this
goal some steps were delineated, namely:

For the elaboration of the database,

• Identify the representative cases (“golden cases”) of several type of pre-
cipitation systems over Brazil, using as initial basis the CHUVA project
data;

• Generate simulations of microphysical, dynamical and meteorological pro-
files using the University of Wisconsin – Nonhydrostatic Modeling System
(UW-NMS) and generate brightness temperature (TB) simulations using
the RTE/RMS (Radiative Transfer Equation Modeling System) for the
CHUVA (Amazon and Vale) golden cases and compare with observed TB
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• Develop the cloud-radiation database simulating the brightness temper-
atures for different PMW radiometers using of radiative transfer model
(Radiative Transfer Equation Modeling System - RMS)

• Identify which are the main meteorological variables (meteorological tags)
that influence and characterize the formation of different precipitation sys-
tems.

• Evaluate the performance of the CDRD algorithm using the new database
developed for the Brazilian territory.

4.1 CHUVA golden cases and model configurations

From the six CHUVA field campaigns, it was decided to initiate the generation of
the simulations from the Vale do Paraíba and Manaus campaigns, because they had
longer period of data observations. From these campaigns, the selected golden cases
are presented in Table 4.1.

Table 4.1 - Selected golden cases of Vale do Paraíba and Manaus campaigns for initial
simulations.

CHUVA Campaign Date Precipitation System
Vale do Paraíba 11/11/2011 Local convection
Vale do Paraíba 13/11/2011 Frontal system
Vale do Paraíba 01/12/2011 Umidity convergence zone (ZCOU)
Vale do Paraíba 08/12/2011 Local convection
Manaus 08/03/2014 Convective/stratiform system
Manaus 12/03/2014 Convective system
Manaus 19/03/2014 Convective system
Manaus 20/03/2014 Convective system

After selection of the golden cases, it is necessary to check the matching satellite
PMW sensors (SSMIS F16, F17 and F18) with the region and duration of each event.
Beyond to serve as input data for the Bayesian inversion algorithm, this data also
allows to characterize the brightness temperatures (TB) measured by these sensors
in each precipitation regime. Checking the matching passages of the SSMI/S sensor
and obtaining the data (SDR - Data Data Sensor) were made through the Integrated
Management System (CLASS-NOAA), which consists of an electronic library for the
distribution of data from NOAA operational satellites and derived data.
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The initial and boundary conditions for the NMS were from the operational analysis
data (every six hours) of the GFS/NOAA model. The model was configured with
three nested grids with: 92× 92 points (∆ x = 50km× 50km), 92× 92 points (∆ x
= 10km× 10km) and 252× 252 points (∆ x = 2km× 2km). The two most refined
grids make up the CRM module and the grid vertical was configured with 36 ver-
tical levels up to 17km with grid-dependent spacing with height. Finally, the RTE
system represents the integration of a single scatter model for the multicomponent
and heterogeneous hydrometeor cloud-precipitation medium and an Eddington ap-
proximation solution to the classical, inelastic, steady state RTE (CASELLA, 2010).

4.2 Simulation results for Vale do Paraíba golden case

The case study that will be presented as an example is the golden case for the Vale
do Paraíba campaign that occurred on 13 November 2011 associated with the dis-
placement of a frontal system with strong convection on the southeastern part of
South America (Rio Grande do Sul, Santa Catarina and Paraná), as shown in Fig-
ure 4.1. Over the northern part of São Paulo some isolated convective activity can
be seen. The observational CHUVA data campaign registered precipitation between
20:00 and 00:00UTC. From the CHUVA ground-based measurements the pluviome-
ters and disdrometers on the IEAV site registered precipitation with maximum value
around 45mm/h between 20:00 and 00:00 UTC.
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Figure 4.1 - Infrared brightness temperature on 13/11/2011 at 20:00UTC (GOES 12).

SOURCE: DSA/CPTEC/INPE (2011).

Figure 4.2 shows the density of electromagnetic pulses in daily VHF of the LMA
network with a resolution of 2km×2km for the day of 13 November 2011. Although
the precipitation was detected from 20:00 UTC, the electrical activity began before
recording pulses in VHF as of 17:00 UTC. The VHF pulses were detected with
increased density and displacement from the northeast of the state of São Paulo to
the south of the state of Rio de Janeiro, with a maximum density of more than 1,000
pulses per 4 km2, which implies that the region in analysis was affected by strong
convective activity.
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Figure 4.2 - Density of electromagnetic pulses in daily VHF of the LMA network with
resolution of 2km× 2km on 13 November 2011.

SOURCE: DSA/CPTEC/INPE (2011).

From the ground-based X Band dual-pol radar, Figure 4.3 can be observed, in which
systems arise around 19:00 UTC, and convective cores with maximum values of rain
rate varying from 50 – 80 mm/h are visible on the northwest sector of the radar
(between 270o to 330o azimuth angle). These nuclei move on northwest – southeast
direction, crossing the center of the radar around 21:40 UTC which is fairly close to
the first coincident satellite overpass (F16 – 21:23 UTC). At around 20:30 UTC the
occurrence of attenuation due to intense precipitation (northwest sector) is already
noticeable. During the second coincident satellite overpass (F18 – 22:52 UTC) there
are few intense convective cores and they are located northeast of the radar (close
to the city of Taubaté).

The simulation was made for São José dos Campos from 13 November 2011 starting
at 00:00 UTC with 30 hours of duration (with hourly output) where the first 12
hours corresponded to the model spin up time. The simulation ran with the “default”
parameters used for the european database. During this event there were 2 SSMIS
coincident overpasses (F16 at 21:23 UTC and F18 at 22:52 UTC).

47



Figure 4.3 - X Band radar observations on 13/11/2011 at a) 19:00 UTC, b) 20:30 UTC,
c) 21:48 UTC and d) 22:54 UTC.

(a) (b)

(c) (d)

SOURCE: Adapted from Barbieri S. (2017).
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To verify the general behavior of the model during the simulations the next figures
present the scatter plots of TB observed by the SSMIS (for the two overpasses) and
simulated scatter plot of TB x TB x RR divided by surface for the 18 hours of
simulations.

The Figure 4.4 presents information from the vertically polarized channels 37GHz
and 91GHz from the observations (left) and from simulations (right) for the different
surface types. We can see for land pixels (Fig. 4.4a and b) that both populations
present a downward linear tendency and the radiative transfer model (Fig. 4.4b) has
the tendency to provide a branch of warmer pixels on this type of surface as seen
between 270-300K for both temperatures. The precipitating pixels are associated
with the coldest pixels for both frequencies, however the simulations gave coldest
minimal values for 91GHz (180K) against 215K measured on the observations.

In relation to ocean pixels the observations (Fig. 4.4c) have a relatively high disper-
sion with a colder branch in 91GHz reaching minimal values around 213K, meanwhile
the simulations (Fig. 4.4d) show a different distribution pattern. This population
presented a higher number of pixels associated with higher 91GHz temperature val-
ues associated with lower 37GHz temperature values and the precipitating pixels
does not have a specific pattern, they are highly spread. The observations associ-
ated with coast pixels show a tendency relatively linear with a small branch of colder
pixels (205K) in 91GHz (Fig. 4.4e) meanwhile the simulations does not reach such
cold temperatures (minimum of 230K for 91GHz in Fig. 4.4f). The precipitating pix-
els are associated with a tendency of colder TB in 91GHz associated with warmer
temperatures in 37GHz.
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Figure 4.4 - Scatter plot from TB at 37GHz × 91GHz at vertical polarization from SSMIS
observations (left) and TB at 37GHz × 91GHz × Rain Rate (mm/h) from
all simulation times (right) for a) and b) for land pixels; c) and d) for ocean
pixels and e) and f) for coast pixels, respectively.

(a) (b)

(c) (d)

(e) (f)
SOURCE: Author’s production.
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The Figure 4.5 presents information from the horizontally polarized TB from the
channels 150GHz × 90GHz × observed by the SSMIS (for the two overpasses) and
the simulated scatter plot of 150GHz × 90GHz × Rain Rate (mm/h) for the different
surface types.

For the land pixels both datasets has a similar behavior with a downward linear
tendency relative to the TB decrease by the presence of ice content. The large dif-
ference is that the radiative transfer model (Fig. 4.5b) provided a trend reaching
colder temperatures around 165K in 150GHz and around 180K in 91GHz meanwhile
the observations detected minimal temperatures around 215K in 150GHz and 195K
in 91GHz. Although they present the same tendency they present great differences
in terms of the minimum values. The simulation (Fig. 4.5b) presented the precipitat-
ing pixels associated with temperatures lower than 250K for both frequencies. The
simulations presented a tendency to generated much higher TB values associated
with lower rain rate values (between 0 and 5 mm/h), showing values reaching 295K
meanwhile the observations were restricted to values not higher than 260K.

For the ocean pixels the observations (Fig. 4.5c) show a downward tendency reaching
minimal values of 225K on 15GHz0H-Pol and 210K on 91GHz. It is possible to see
the tendency of the model (Fig. 4.5d) in provide a high density of pixels concentrated,
in this case, between 270-280K on 150GHz and 240-260K 91GHz and producing a
population of pixels with warmer values (until 280K). It is possible to notice that
the precipitating pixels does not show a specific trend (Fig. 4.5d).

The population of the coast pixels has the smaller number of points and presents the
greater spread (Fig. 4.5e and Fig. 4.5f). On these frequencies the observations has
a similar behavior of the ocean pixels, with a downward tendency reaching minimal
values of 225K on 150GHz and 210K on 91GHz (Fig. 4.5e) and with the simulations
presenting a high density of pixels concentrated, in this case, between 275-280K
on 150GHz and 245-285K on 91GHz and the precipitating pixels show a slightly
tendency with decreasing of temperature in both frequencies (Fig. 4.5f).
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Figure 4.5 - Scatter plot from TB TB at 150GHz × 91GHz at horizontal polarization from
SSMIS observations (left) and TB at 150GHz × 91GHz × Rain Rate (mm/h)
from all simulation times (right) for a) and b) for land pixels; c) and d) for
ocean pixels and e) and f) for coast pixels, respectively.

(a) (b)

(c) (d)

(e) (f)
SOURCE: Author’s production.
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This brief analysis represented the patterns seen on the simulations for the Vale do
Paraíba and Manaus (not shown here) where the simulations presented discrepan-
cies in representing the manifold of brightness temperatures observed by the SSMIS
overpasses. Must be taking into account that this differences in the population of
points are also related with the fact that the simulations refer to a larger number of
pixels. In general, the simulations for land pixels presented a tendency to generate
lower minimum temperatures (less than 200K) while the observations had mini-
mum thresholds above 200K. This pattern was seen mainly in the high frequency
(91GHz and 150GHz) channels. The simulations for the ocean tended to produce
warmer temperatures on the higher frequency channels (91GHz and 150GHz) and
the distributions for the coast pixels were those with the highest scatter and lower
agreement in the temperature thresholds. Similar results were found for the Ama-
zonian simulations (figures not included here) and due its greater surface variability
in the central area of study, the simulated TB values are even more affected due to
the presence of the Negro and Amazonas rivers.

It should be noted that a deeper analysis with an extensive number of simulations
could ensure good representativeness of the simulated multichannel TBs in order to
better describe the regional features of TB across a wide range of meteorological
systems and microphysical conditions containing precipitation.

Deep adjustments in mesoscale models and improvements mostly in the radiative
transfer (mainly the scattering by non-spherical ice particles) could contribute for
gains in performance of the simulations in different regions of Brazil. Unfortunately,
by the time this stage of work was completed, we did not have the technical condi-
tions to implement such changes. For this reason, we migrated towards the use of an
observational database in order to develop a rainfall retrieval algorithm over Brazil,
as will be shown in the next chapter.
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5 NNIMBUS

In this chapter, the development of the rainfall retrieval based on artificial neu-
ral network (ANN) optimized for continental territory of Brazil is presented. For
practical purposes, the algorithm will be called : Neural Network IMplementation
of the Brazilian mUltilayer perceptron for Screening and precipitation retrieval
(NNIMBUS) and this name will be used hereafter. Furthermore, all Python 3
codes used in this thesis and their respective libraries will be available in the NNIM-
BUS GitHub Repository � or available through the link: https://github.com/
acmlia/nnimbus/.

Section 5.1 is subdivided into three topics: subsection 5.1.1 describes the main fea-
tures from the DPR instrument and GPM core scan patterns and swaths, subsection
5.1.2 shows the GMI radiometer characteristics as channels, footprints and resolu-
tions and subsection 5.1.3 describes the observational dataset used as a priori dataset
to train the ANN.

An exploratory data analysis of the observational dataset is described in section 5.2
in order to further identify and summarize the main characteristics of the variables
contained in the dataset, and if they are representative in terms of typology of me-
teorological events in order to allow for a reliable training procedure. The design
methodology of the NNIMBUS algorithm, as well as network training settings, pa-
rameters and network architecture are described in details in subsection 5.3. The
verification of NNIMBUS performance is made for one month of data extracted from
the database (i.e., an independent part of the observational database, based on 2B-
CMB (V05), and not used in the training and design phase of the algorithm) is also
presented in subsection 5.4.

5.1 Data

5.1.1 DPR instrument

The DPR instrument is comprised of two, essentially independent radars. One radar
operates in the Ku-band at 13.6 GHz, also known as KuPR (Ku-band Precipitation
Radar). The other radar operates in the Ka-band at 35.55 GHz, known as KaPR
(Ka-band Precipitation Radar). By measuring the reflectivities of rain at two widely
different radar frequencies, it is possible to infer information regarding rain rate,
cloud type and its three-dimensional structure, and drop-size distribution. The DPR
has an improvement in the detection of light precipitation, in the information on the
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distribution of particle size of precipitation and snow, as well as in the identification
of vertical structure consistent to the particles in the mixed, ice and liquid phases
(IGUCHI et al., 2002).

The KuPR has a 245 km measurement swath and the KaPR has a high sensitivity
mode which provides an interlacing scan with a swath width of 120 km. This high
sensitivity mode contributes to the measurement of light rain and snow. Figure 5.2
shows the KuPR, KaPR and KaPR (interlaced) footprints disposal. The KuPR has
49 footprints, meanwhile the KaPR has 24 footprints, and both have swath width
of 5km. The footprints relating to the KaPR high sensitive mode are highlighted in
pink color.

Figure 5.1 - GPM Core observation geometries.

SOURCE: NASA (2018).
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Figure 5.2 - DPR antenna scanning and footprints.
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5.1.2 GMI instrument

The GMI instrument is a conical-scanning, polarization-sensitive and multi-
frequency passive radiometer for rainfall measurement. The conical scan geometry
of GMI is shown previously in 5.1 where the off-nadir-angle defining the cone swept
out by the GMI is set at 48.5o which represents an Earth incidence angle of 52.8o

(identical to that of TMI on TRMM). The swath represents 885 km on Earth’s sur-
face. The radiometer is a multichannel radiometer with frequencies ranging from 10
to 183GHz.

The GMI is a multichannel, conical-scanning, total power MW radiometer equipped
with 10 dual-polarization (V and H) window channels at 5 frequencies (10.65, 18.70,
36.5, 89.0 and 166.0 GHz) and three single-polarization (V) channels, one at 23.8
GHz and two in the water vapour absorption band at 183.31 GHz (V polarization)
(SANÒ et al., 2018).
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All these frequencies are actually considered as the most appropriate for detecting
the wide spectrum (heavy, moderate and light) of precipitation intensities (HOU

et al., 2014). The four high frequency, millimetre-wave channels at 166 GHz and
183.31 GHz, can be exploited for light precipitation and snowfall retrieval at higher
latitudes (e.g., Panegrossi et al. (2017)). A better spatial resolution than most of
the previous radiometers up to roughly 4 km × 7 km at the high frequency channels
and around 11 km × 18 km at 19 GHz, as can be seen in Figure 5.3.

Figure 5.3 - GMI instantaneous field-of-view (IFOV) projections on Earth surface
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SOURCE: Adapted from NASA (2018).

5.1.3 GMI/DPR observational database

For the algorithm development, the observational measurements from GMI/DPR
matchups (DPR/GMI Combined (CMB)-Version 5) from the GPM satellite core
provided by the Colorado State University (CSU) were used. The GPROF for GPM
V5 retains the previous version (i.e. GPM V4) of the CMB and DPR-Ku products
for its databases. Because the CMB V04 algorithm appeared to significantly over-
estimate precipitation over land, the a priori databases were constructed from the
CMB (V4) over ocean and from the DPR Ku (V4) over land and coastal regions.

Some practical details about the database are: a) approximately 400 million matched
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GMI/Surface precipitation profiles from all sources (globally); b) CMB database uses
only the middle 21 pixels; c) TBs are in their native resolution; d) ECMWF , and
GANAL databases are used for defining pixels total column water content (TCWV)
, and temperature at 2m (T2m) and surface wet bulb temperature and e) the dataset
surface classification is divided in 14 surface types.

5.2 Exploratory Analysis

In order to build an accurate model it is necessary to understand and extract insights
from the a priori dataset that the model will be built upon. This section will present
an overview of the behaviour of the observational database introduced in Section
5.1.3. The database is composed of 2D (two dimensions) variables and of vertical
profiles (derived from DPR). For this study, only the 2D variables were considered,
which are: latitude, longitude, surface code (sfccode) temperature at 2m (T2m), total
water vapor content (tcwv), skin temperature (skint), surface precipitation (sfcprcp),
convective precipitation (cvprcp), all 13 GMI frequencies and their respective surface
emissivities.

5.2.1 Statistical analysis of observational database over Brazil

A first analysis is made using box plots to provide insights about the distribution
and discriminate the range of data falling between the 25th and 75th percentiles (the
box), the median value is represented by the horizontal line inside the box and the
complete range of the data is represented by the whiskers.

For this analysis, the variables were divided according to four precipitation classes,
which are designated as: values between 0-1 mm/h (C1), 1-10 mm/h (C2), 10-
20 mm/h (C3) and larger than 20 mm/h (C4). For the Brazilian territory, the
dataset contains observations from 3603771 pixels.

Figure 5.4 shows the total number of pixels, where only 14,3% (515560) are pre-
cipitating pixels. From this sample, the C1 represents 71,6% (369267), C2 contains
26,5% (136797), C3 has 1,3% (6852), and C4 contains the smaller percentage of
0.5% (2644) pixels.

In terms of occurrence, C2 and C3 present median values around 2,25 and 13 mm/h,
respectively. Class C4 presents the distribution with higher range, with the box
percentiles between 23 and 36 mm/h and the remaining range (and outlier points)
with values up to 56 mm/h.
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Figure 5.5, shows that the values responsible for the larger population of C1 are the
values from 0,05 and 0,4 mm/h (the box percentiles).

Figure 5.4 - Box plot of surface precipitation (mm/h) divided by classes.

SOURCE: Author’s production.
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Figure 5.5 - Box plot of Surface Precipitation in class C1 (0-1 mm/h).

SOURCE: Author’s production.

Regarding the TB signatures, the analyses for the lower frequency channels 10-
36GHz (V) are shown in Figure 5.6. These frequencies have the box plot distributions
shifted to high TB values (higher than 260K) for all the four precipitation classes (C1
to C4) because of the high emission surface signal. The 10 and 18GHz frequencies
associate classes C1 and C2 with a larger range of TB, extending the outliers up
to 200K. This could be due to the low emissivity of relatively clear inland water
bodies. Frequencies between 23 and 36 GHz presented larger range of TB for classes
C2, C3 and C4, respectively. In these channels, the TB value starts to decay with
the increase of the precipitation rate, as is expected due to ice scattering the signal.
The 36GHz frequency channel presents the lowest TB values for all analyzed classes,
reaching 140K in some cases.
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Figure 5.6 - Box plot of brightness temperature at 10, 18, 23 and 36GHz (V).

(a) 10V (b) 18V

(c) 23V (d) 36V

SOURCE: Author’s production.

Figure 5.7 shows the signal scattering behaviour of ice, better visible at higher
rain rates, at 89GHz with vertical polarization. All classes present minimum values
of around 60K, and C1 presents the larger range for these outliers. Very low TB
associated with light precipitation rates or no rain can be associated with high
scattering processes in cold surfaces like deserts (see Figure 17 in Grody e Wen
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(2008)).

Figure 5.7 - Box plot of brightness temperature at 89GHz (V).

SOURCE: Author’s production.

Considering the possibility of extracting additional information using the vertically
(V) and horizontally (H) polarized radiances, the polarimetric differences (PD) from
GMI frequencies were also computed. An example of the PD application is the use
of TB at 89 and 166GHz. As found by Gong e Wu (2017) the scattering by frozen
particles is highly polarized, with V–H PD being positive throughout the tropics and
the winter hemisphere mid-latitude jet regions. High polarization occurs mostly near
convective outflow regions (i.e., anvils or stratiform precipitation), while the polar-
ization signal is small inside deep convective cores as well as at the remote cirrus
regions. Figures 5.8 and 5.9 present PD values of 89GHz and 166GHz, respectively.
It is noticeable that 166GHz PD reaches more negative values for all classes, and
for classes C2, C3 and C4 it has the largest amplitude. This behaviour can be inter-
preted as the better ability of 166GHz PD to distinguish better the variation from
convective cores to anvil outflow and further to clear sky than 89GHz PD. This oc-
curs due to the increasing contribution of ice particle scattering at higher-frequency
microwave channels. This kind of statistical analysis can bring complementary in-
formation for the screening and rainfall retrieval process.
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Figure 5.8 - Box plot of polarimetric difference (PD) at 89GHz (V-H).

SOURCE: Author’s production.

Figure 5.9 - Box plot of polarimetric difference (PD) at 166GHz (V-H).

SOURCE: Author’s production.
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Based on this analysis, the expected physical relationship between precipitation and
the TB signatures is detected and it is well represented in the dataset. Furthermore,
variables derived from polarimetric differences can be also be exploited to supply
additional information from microphysical features of the precipitating systems.

5.3 Methodology

The NNIMBUS algorithm is composed of two main modules, where the first iden-
tifies the precipitating areas (screening of precipitation) and the second retrieves
the rainfall intensity. Both modules are based in the use of ANN and the detailed
methodology used to build each module will be presented in details in subsections
5.3.1 and 5.3.2.

The main steps taken in the construction of a neural network are presented in Fig-
ure 5.10. The 2D variables from the GMI/DPR database (and additional variables
derived from it) are used as input predictors and a thorough cleaning and pre-
processing treatment is applied in order to make the data readable for the network.
In this stage, some of the treatments are: data format conversion, regional extraction
from the global dataset, file concatenation, creation of additional variables and ex-
ploratory analysis. Right after that, the treated data is inserted in the ANN training
process, where it is split into three samples. The first sample is the training dataset,
which is the data the ANN will be trained with (this is the sample from which the
network will learn the knowledge), the second is the test sample used to check the
validity and usefulness of different ANN models during the training phase, and the
third sample is called the validation dataset.

Until an optimal ANN design is not found, the training processing is repeated as
many times as necessary until an ideal weight adjustment is defined. Once an optimal
ANN adjustment is found, its performance is verified by comparing its results to the
validation dataset. In our case, since only one year of observations is available, one
month of the observational data was extracted to be used as the validation dataset
(coincident geo-colocated CMB data). We decided to extract the month of November
2014 as the validation dataset because it presented neither excess nor the lack of
rainfall events (verified by the total precipitation observed by rainfall monitoring
from CPTEC/INPE).
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Figure 5.10 - Workflow of the general steps used to train ANNs.
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SOURCE: Author’s production.

The whole NNIMBUS algorithm was writen and tested for Python 3.6.8 (also avail-
able through the link: https://www.python.org/downloads/). It have also made
extensive use of several open-source libraries that will no be cited here for the sake of
brevity, but special emphasis must be given to the machine learning libraries: Ten-
sorFlow, Keras and Scikit Learn. In brief, TensorFlow is an end-to-end open source
platform for machine learning and it has a comprehensive and flexible ecosystem of
tools. It is used for both research and production at Google and it can be consid-
ered as the state-of-the-art in ML (ABADI et al., 2015). Keras is a high-level neural
networks application programming interface (API) capable of running on top of Ten-
sorFlow and with focus on enabling fast experimentation (CHOLLET, FRANÇOIS AND

OTHERS, 2015) and the ScikitLearn is also a ML library with simple and efficient
tools for data mining and data analysis, also providing many useful tools for data
processing (PEDREGOSA et al., 2011).

The capabilities of the hardware in charge of executing all the test rounds during
the NNIMBUS ANNs development is also summarized in the List 5.1. The machines
used for this work were two mirrored clusters, Orion-d11 and Helios. Each cluster
had 20 physical CPUs running at 2.20GHz and hyper-threading capabilities enabled,
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summing up for a total of 40 virtual CPUs in each cluster. A third cluster with
fewer processing cores where also used, but in which the cores operated at a higher
frequency.

Besides the general thesis workflow presented in figure 5.10, the Annex A.1 of this
work also present a more in-depth pipeline synthesizing all the inputs of NNIMBUS,
their processing steps, functionalities and outputs.

1 [ user@orion−d11 ~ ] $ l s cpu
2

3 Arch i t e c tu re : x86_64
4 CPU op−mode( s ) : 32−bit , 64−b i t
5 Byte Order : L i t t l e Endian
6 CPU( s ) : 40
7 On−l i n e CPU( s ) l i s t : 0−39
8 Thread ( s ) per core : 2
9 Core ( s ) per socke t : 10

10 Socket ( s ) : 2
11 NUMA node ( s ) : 2
12 Vendor ID : GenuineInte l
13 CPU fami ly : 6
14 Model : 62
15 Model name : I n t e l (R) Xeon(R) CPU E5−2660 v2 @ 2.20GHz
16 Stepping : 4
17 CPU MHz: 1217.218
18 CPU max MHz: 3000 ,0000
19 CPU min MHz: 1200 ,0000
20 BogoMIPS : 4399.95
21 Vi r t u a l i z a t i o n : VT−x
22 L1d cache : 32K
23 L1i cache : 32K
24 L2 cache : 256K
25 L3 cache : 25600K
26 NUMA node0 CPU( s ) : 0−9,20−29
27 NUMA node1 CPU( s ) : 10−19,30−39

Listing 5.1 - CPU summary for the Orion-d11 cluster

5.3.1 Screening of precipitation

The next sections describe the main pre-processing data treatment done for the
screening model, as well the hyperparameters selection process and model training
architecture.
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5.3.1.1 Pre-processing of the input data

The available inputs to be used as predictors for the ANN training were the following
30 variables: lat, lon, sfccode, T2m, tcwv, skint, 10V, 10H, 18V, 18H, 23V, 36V, 36H,
89V, 89H, 166V, 166H, 186V, 190V, 10VH, 18VH, 36VH, 89VH, 166VH, delta183V,
SI(23V-89V), PCT10, PCT18, PCT36, and PCT89. In order to decide which input
variables could contribute more during the learning process, it is possible to perform
a process called feature selection. In this case, the chosen method of feature selection
is known as recursive feature elimination (RFE). This approach creates a ranking
with recursive feature elimination. Given an external estimator that assigns weights
to features (e.g., the coefficients of a linear model), the goal of the RFE approach
is to select features by recursively considering smaller and smaller sets of features.
First, the estimator is trained on the initial set of features and the importance of
each feature is obtained either through a coefficient attribute or through a feature
importance attribute. Then, the least important features are pruned out from the
current set of features. That procedure is recursively repeated on the pruned set
until the desired number of features to be selected is eventually reached. Among the
most important variables determined by the RFE for the screening, the 10 following
predictors were used: 36V, 89V, 89VH, 166V, 166VH, 186V, 190V, SI(23V-89V),
PCT36 and PCT89.

Another important aspect to be taken into account is that the different input at-
tributes comprise a wide scale range. Most of the ML methods usually expect, or
are more effective, if the data attributes have a consistent scale or distribution,
therefore, two popular data scaling methods are normalization and standardization.
Since precipitation screening is a classification problem (binary classification) the
normalization method was chosen, and it is a method in which the attribute values
are rescaled within the range of 0 and 1.

As mentioned before, the dataset must be split into three smaller datasets, for
training, test and validation. The complete dataset (eleven months) used in this step
contains 3259296 pixels, of which 80% are used for the training process and 20% are
used as test set. The splitting process selected the samples randomly. It is important
to bear in mind that there are no general guidelines on how to split the complete
database into smaller parts, and in this case the sizes of the datasets were defined
in order to balance between obtaining sufficiently large and representative samples
while at the same time attempting to reduce the computational time consumption.
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5.3.1.2 Hyperparameters selection and model training

Considering the large number of input attributes and parameters that need to be set
in neural networks, which make them notoriously difficult to configure, the model hy-
perparameter optimization techniques are an important step to assist in this config-
uration. The GridSearchCV class from Scikit Learn library is one of such techniques.
This technique performs an exhaustive search over specified parameter values for an
estimator. It implements a “fit” and a “score” method and the parameters of the
estimator used to apply these methods are optimized by cross-validated grid-search
over a parameter grid. By default, accuracy is the score that is optimized, but other
scores can be specified. In terms of processing power by default, the grid search will
only use one thread, but it can be set to use all machine cores. Therefore the Grid-
SearchCV process will then construct and evaluate one model for each combination
of parameters; cross validation is then used to evaluate each individual model.

The model to be analyzed is instantiated using the Keras model API. Then, the
Sequential model that is the linear stack of layers is created. And in the layers
structure is where the Dense model is applied, in which the weights matrix created
by each layer and the element-wise activation functions are implemented. As the
screening is a classification problem, the KerasClassifier function is used.

Through the use of the GridSearchCV, several hyperparameter tuning tests were
processed. The optimal ANN for the screening was found using the following pa-
rameters.

• The ANN was trained with 10 predictors: 36V, 89V, 89VH, 166V, 166VH,
186V, 190V, SI, PCT36, and PCT89.

• It has four layers, where the first layer has 10 neurons, the second and
third layers have 32 neurons and the last layer has one neuron (the
output).

• The activation functions which control the non-linearity of the individual
neurons and when they are fired are the relu for the first three layers and
the sigmoid function.

• The batch size in iterative gradient descent is the number of patterns
shown to the network before the weights are updated, and in this case it
was defined as 10. The number of epochs, that is, the number of times
that the entire training dataset is shown to the network during training
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phase, was defined as 100.

• The optimization algorithm used to find the values of parameters (coef-
ficients) of a function (f) that minimizes a cost function (cost) was the
Stochastic Gradient Descent (SGD). The SGD is a simple yet very
efficient approach to discriminative learning of linear classifiers.

• The learning rate, which controls how much to update the weight at the
end of each batch and the momentum that controls how much to let the
previous update influence the current weight update, were set with default
values of lr=0.01 and momentum=0.0, respectively.

• The network weight initialization, which determines how the weight ini-
tialization matrix is configured, was set as uniform where small random
values are determined following an uniform distribution.

The categorical scores for the test dataset and for the validation dataset are pre-
sented in the results subsection 5.5. Where comparisons between the NNIMBUS
output and GMI/DP CMB and GPROF/GMI rain/no-rain maps will also be pre-
sented.

5.3.2 Rainfall retrieval

The next subsections described the main pre-processing data treatment done for the
retrieval model, as well the cleaning criteria applied in the dataset and the model
training architecture.

5.3.2.1 Pre-processing of the input data and model training

After several tests for different ANN architectures and hyperparameter analysis, the
optimal ANN for the rainfall retrieval had 17 input predictors, and the variables
were: sfccode, T2m, tcwv, 10V, 10H, 18V, 18H , 36V , 36H , 89V , 89H, 166V,
166H, 183VH, PCT36, PCT89 and 89VH. A principal component analysis (PCA)
was performed on GMI channels with similar characteristics to explore the possibility
of decrease in the number of inputs and to reduce the effect of surface emission
variability on the measured TBs, which would consequently improve the network
performance in retrieving surface precipitation (SURUSSAVADEE; STAELIN, 2008).
Thereby, the PCA transformation was applied for the subsets: subset PCA1 for
10V, 10H, 18V and 18H channels; and and subset PCA2 for 36V, 36H, 89V, 89H,
166V and 166H channels.
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As mention in subsection 5.3.1.1 is necessary to scale the input attributes, and
since the rainfall is a discrete variable the standardization was applied (instead of a
normalization, like it was previously done in the screening).

As the performance of the ANN is largely dependent on the consistency of the input
data with the current observations, some quality standards have been applied to
the training data-set before feeding the ANN. Therefore, in order to comply with
this premise, the input set was treated using these three criteria: The first criterion
consists in removing samples below 125K at 89GHz (V), since the distribution at
this frequency for all precipitating classes (C1 to C4) presents outlier values below
125K, i.e., they are outside the 25th and 75th percentiles range as shown in the
exploratory analysis (Figure 5.7). Furthermore, the analysis also displayed that the
precipitation class between 0 and 1 mm/h (named C1) corresponds to the larger
portion of the input data (71.6%) with more than 3 million elements (Figure 5.4).
For this reason, the second criterion consisted in randomly under-sampling 90% of
the C1 (which remained with 165313 elements), in such a way that the original
data distribution was still preserved. As demonstrated by Skofronick-Jackson et al.
(2018), the DPR and CORRA quantify rain rates between 0.2 and 110 mm/h, while
GMI estimates rain rates up to 60 mm/h due to the averaging of strong convective
cells by the coarser-resolution radiometer observations. It is worth noting that for
the DPR (GMI) 5 km (15 km) footprint scales, rain rates ≤ 110 mm/h (60 mm/h)
are very infrequent. Thus, the third criteria considered just range of observed values
between 0.2–60 mm/h.

The retrieval model was also instantiated using the Keras model API, with the
Sequential model and Dense model. However, as it is a regression problem,
different from the screening, this module used the KerasRegression fuction. And
after several of hyperparameters tuning tests, the optimal ANN architecture for the
rainfall retrieval was configured as:

• The ANN was trained with 10 predictors: sfccode, T2m, tcwv, 10V, 10H,
18V, 18H , 36V , 36H , 89V , 89H, 166V, 166H, 183VH, PCT36, PCT89
and 89VH. And the PCA was applied in two subsets: PCA1 (10V, 10H,
18V, 18H) and PCA2(36V , 36H , 89V , 89H, 166V, 166H).
• It has four layers, where the first layer has 17 neurons, the second layer

has 51 neurons,the third layer has 10 neurons and the last layer has one
neuron (the output).
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• The activation function which controls the non-linearity of the individual
neurons and when they are fired was the linear function for all the layers.
• The batch size was defined as 10 and the number of epochs was defined

as 1000.
• The optimization algorithm used to find the values of parameters (coef-

ficients) of a function (f) that minimizes a cost function (cost) was the
gradient-based stochastic optimization algorithm Adam.
• After to application of the cleaning criteria, the input dataset contained

165313 pixels, where it was divided in 80% (132250 pixels) for training and
20% (33062) for the test dataset.

The continuous scores for test dataset and for the validation dataset are presented
in the results subsection 5.6. A comparison between the NNIMBUS output and
GMI/DP CMB and GPROF/GMI retrievals will also be presented.

5.4 Results

In this section, the performance of the screening and retrieval NNIMBUS modules,
considering a set of categorical and continuous scores, are presented (the formulas
are given in Annex A). Those scores are performed for two datasets described above:
the test dataset (randomly selected) and the validation dataset (one month of data).
Several case studies over Brazilian territory for a single time slot with each algo-
rithm (single orbits) are performed in order to compare the algorithm’s performance
qualitatively.

5.5 Validation of NNIMBUS screening

For the classification problem, several categorical scores were obtained by comparing
the satellite-estimated precipitating regions for NNIMBUS output and GMI/DPR-
CMB observations as reference. They were calculated from confusion matrices show-
ing agreement and disagreement between predicted and observed rainfall areas.

To identify the level of agreement between the forecast and the observation, the
accuracy is used. The difference between the forecast and the observation is the
error. The lower the error, the greater the accuracy. The bias is the correspondence
between the mean forecast and mean observation, if the rain is underestimated in
the model if the bias is <1; values of >1 indicate overestimation of rain in the model.
This is a pure quantitative measure that does not account for an agreement between
observed and predicted rainfall areas. The probability of detection (POD) gives
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the percentage of rain pixels that the model correctly identified as rain and the
probability of false detection (POFD) gives the proportion of non-rain pixels
that the model incorrectly classified as rain. Similar to POFD, the false alarm ratio
(FAR) gives the proportion of predicted rain where no rain is observed. The critical
success index (CSI) is the proportion of true positives to both kinds of errors
and correctly classified non-rain pixels are not considered. The Hansen–Kuipers
discriminant (HKD) andHeidke skill score (HSS) account for chance agreement,
where the HSS gives the proportion of correct classifications (both rain pixels and
non-rain pixels) after eliminating expected chance agreement and the HKD is the
difference between POD and POFD provides insight into whether predicting a pixel
as rain leads to a considerable increase in false alarms.

A first assessment of the final NNIMBUS screening module has been carried out
using the test dataset which contains 293894 pixels and it is presented in Table
5.1. The model presented an accuracy of 0.94 or, in other words, it could be said
that from the total number of predictions, the model was in agreement with the
truth for 94% of the pixels. The model presented the tendency to overestimate the
rainfall areas with a mean bias value of 1.27. In terms of discrimination between
precipitating and non-precipitating pixels, POD presented value 0.80 and POFD of
0.03, that we can translate that the model predict correctly 80% of the rain pixels,
and with only 3% of no-rain pixels predicted as rain. The FAR corresponded to
0.36(or 36%) and the CSI to 0.55 (or 55%). The HSS presented a value of 0.68 and
the HKD is equal to 0.76.

Table 5.1 - Categorical statistical scores obtained by the NNIMBUS screening for the test
dataset.

Accuracy Bias POD POFD FAR CSI HSS HKD N◦of pixels
0.94 1.27 0.80 0.03 0.36 0.55 0.68 0.76 293894

From those scores, an indication of the behaviour of the screening module considering
the test dataset is obtained. To verify the performance of the network in relation
to an a new set of unseen data, Table 5.2 presents the statistical scores for the
validation dataset that contains 651860 pixels. The accuracy was of 0.95, the bias of
1.34, FAR of 0.39 and HKD of 0.77 shows a small increase, which can be associated
with a larger number of pixels. The CSI and HSS are reduced when compared with
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the test database to 0.52 and 0.66, respectively.

Table 5.2 - Categorical statistical scores obtained by the NNIMBUS screening for the val-
idation dataset.

Accuracy Bias POD POFD FAR CSI HSS HKD N◦ of pixels
0.95 1.34 0.80 0.03 0.39 0.52 0.66 0.77 651860

In order to illustrate an example of the detection of rain/no-rain pattern, Figure
5.11 shows the GMI/DPR orbit on 30 November 2014 at 23:00-03:54 UTC (orbit
n◦ 4922). This satellite overpass detected the presence of raining pixels over the
southeast region of Brazil. It is visible that the NNIMBUS screening (on the left)
fits very well wit the GMI/DPR-CMB data (right). Small differences can be noticed
in both panels, where NNIMBUS presents a noisier pattern at the edges of the
systems, presenting a more pixelated coverage. This behaviour is confirmed by the
scores shown in Table 5.3.

Table 5.3 - Categorical statistical scores obtained by the NNIMBUS screening for the orbit
of GMI on 30 November 2014 at 23:00-03:54 UTC (orbit n◦ 4922).

Accuracy Bias POD POFD FAR CSI HSS HKD N◦ of pixels
0.97 0.95 0.89 0.012 0.05 0.85 0.90 0.88 787
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From the statistical comparison shown above, it is clear that the NNIMBUS screen-
ing procedure performed very well when compared to the DPR/GMI-CMB database.
However, it should be noted that even though these examples refer to different pe-
riods, the reference is derived from the same product. This consideration may be
causing the results presented above to be very similar, since the distribution of the
reference data belongs to the same distribution.

In order to have a different perspective on the performance of this model, mainly
related to the case-to-case variability, a comparison between the NNIMBUS screen-
ing and the GPROF-GMI (V05) is presented for new dates which are not present
in the observational database. Figure 5.12 presents the GMI overpass on 12 March
2014 at 04:44-06:17 UTC (orbit n◦ 195) with 10980 pixels. The NNIMBUS screening
(left) is able to represent both the large and smaller clusters detected by GPROF-
GMI (center). The right panel of the figure shows the overlap of both screenings,
where the GPROF is presented in green and the NNIMBUS is shown in red and it
is visible that the missing regions in NNIMBUS are the edges of the systems, where
NNIMBUS presents the noisiest pattern (pixelated in left panel).

This omission in the edges of the systems is associated with the fact that the screen-
ing was trained for precipitation values with a minimum threshold of 0.2 mm/h.
The design of the NNIMBUS screening was intentionally made more rigorous for
the lower rain rate classes (< 0.2 mm/h) in order to block those pixels to advance
to the next stage: the rainfall retrieval neural network.

Although it is known that the GPROF does not represent the complete truth, it
represents the state-of-the-art of rainfall retrieval algorithms, and the statistical
comparison between NNIMBUS output and GPROF is an important step in this
study. Table 5.4 presents the categorical scores comparing NNIMBUS to GPROF,
corresponding to those 10890 pixels. In this case the bias is smaller when compared
with the DPR/GMI CMB database (0.13) and also, POFD (0.07), FAR (0.30) and
CSI (0.58) but it also presents a small decay in the accuracy of (0.89), POD 0.78,
HSS 0.67 and HKD 0.70.

Table 5.4 - Categorical statistical scores obtained by the NNIMBUS screening for the orbit
of GMI on 12 March 2014 at 04:44-06:17 UTC (orbit n◦ 195).

Accuracy Bias POD POFD FAR CSI HSS HKD N◦ of pixels
0.89 1.13 0.78 0.07 0.30 0.58 0.67 0.70 10890
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Figure 5.13 shows another case study of GPROF-GMI and NNIMBUS. This case
belongs to the overpass on 23 November 2018 at 04:44-06:17 UTC (orbit n◦ 26914),
with 14568 pixels. As in the example before, the NNIMBUS screening (left) is able
to represent both the large and small clusters detected by GPROF-GMI (center),
but it seems to miss more points on the edges of the systems (green pixels in the
right panel) when compared with the previous case. This aspect is confirmed by the
decay of the scores as shown in Table 5.5.

Table 5.5 - Categorical statistical scores obtained by the NNIMBUS screening for the orbit
of GMI on 23 November 2018 at 04:44-06:17 UTC (orbit n◦ 26914).

Accuracy Bias POD POFD FAR CSI HSS HKD N◦ of pixels
0.87 1.08 0.72 0.09 0.33 0.53 0.61 0.63 14568

A very similar study involving neural networks for the GMI, trained with a larger
sample of DPR/GMI-CMB observations and with a new rain/no-rain methodology,
was the study developed by Sanò et al. (2018). In their verification analysis, they
used 100 million pixels from the 2B-CMB rainfall used as truth, and obtained for
the screeening of precipitation the best scores of: POD of 0.72, FAR of 0.15, CSI of
0.63 and HSS of 0.67. Beusch et al. (2018) also developed their screening and rain-
fall retrieval based in ANN, however optimized for geostationary satellite infrared
(IR) brightness temperatures(SEVIRI MSG). For their screening model, they found
performance with POD of 0.65, FAR of 0.4, CSI of 0.45 and HSS and HKD of 0.6.
Another study involving ML approaches was made by Meyer et al. (2015) where they
compared four ML algorithms — random forests (RF), neural networks (NNET),
averaged neural networks (AVNNET) and support vector machines (SVM) — for
rainfall area detection and rainfall rate assignment using MSG SEVIRI data. In
general the NNs presented the best performance. For the screening using NNs, they
obtained values for POD of 0.80, FAR of 0.55, CSI of 0.4, HSS of 0.55 and HKD of
0.6. Comparing our results with these similar studies in the literature, NNIMBUS
screening methodology is capable of achieving a good performance both in relation
to DPR/GMI-CMB (V05) and GPROF (V05) and comparable scores with the re-
cent literature. Remembering that it is necessary to perform an evaluation of the
model in comparison with ground-based measurements.
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5.6 Validation of NNIMBUS retrieval

The performance of the NNIMBUS retrieval is obtained considering a set of contin-
uous scores (the formulas are given in Apendix A. Similar to the screening analysis,
those scores are performed for two datasets: the test dataset and the validation
dataset. The same satellite overpass showed for screening, for 30 November 2014
(orbit n 4299), is analyzed.

The mean absolute error (MAE) gives the average magnitude of the prediction
errors which can be translated as the strength of the prediction error. The root
mean square error (RMSE) is more sensitive to large errors because it squares
the errors and therefore penalizes large deviations from the mean. The difference
between MAE and RMSE error gives valuable information about the variance of the
errors. The standard deviation is a measure that is used to quantify the amount
of variation or dispersion of a set of data values. The fractional standard error
(FSE) gives an idea of the extent to which an estimate is likely to deviate from the
true population. And finally, the correlation coefficient measures the strength
and direction of a linear relationship between the predictions and observations.

Table 5.6 presents the scores for the test dataset, which corresponds to 29298 pixels.
We can see that the observed mean value and the predicted mean value are quite
close (3.44 and 3.48, respectively). The MAE has value of 1.95 and RMSE 3.68. The
standard deviation was equal 2.78, the FSE was equal 1.05 and correlation of 0.56.

Table 5.6 - Continuous scores obtained by the NNIMBUS rainfall retrieval for the test
dataset.

Mean(obs) Mean(pred) MAE RMSE STD FSE CC N◦ of pixels
3.44 3.48 1.95 3.68 2.78 1.05 0.56 29298

For the validation dataset the scores are presented in Table 5.7 and these refer
to 22671 pixels. It is noticed that scores are higher when compared with the test
dataset. The mean precipitation values are higher, presenting mean values of 5.84
in comparison with 2.54 from the observed dataset. The MAE has value of 4.19 and
RMSE of 5.59. The standard deviation was a little bit higher than in the test dataset
with value of 3.23 (compared to 2.78). The FSE also increased, presenting a value
of 2.19 and the correlation remained low with value of 0.53.
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Table 5.7 - Continuous scores obtained by the NNIMBUS rainfall retrieval for the valida-
tion dataset.

Mean(obs) Mean(pred) MAE RMSE STD FSE CC N◦ of pixels
5.84 2.54 4.19 5.59 3.23 2.19 0.53 22671

The evaluation for same the satellite overpass showed for the screening is presented
in Table 5.8. Despite the fact that this overpass refers to the same month of the
validation dataset, it was previously removed from that set in order to be indepen-
dently analyzed. It can be seen that the predicted mean precipitation values are
similar to the validation, 5.34 versus the mean observed value of 2.66. The MAE,
RMSE and FSE were lower than the validation dataset, with values of 3.35, 4.01
and 1.50, respectively. The correlation was higher (0.64) probably due the smaller
number of pixels.

Table 5.8 - Continuous scores obtained by the NNIMBUS rainfall retrieval for the orbit of
DPR/GMI-CMB on 30 November 2014 at 23:00-03:54 UTC (orbit n◦ 4922).

Mean(obs) Mean(pred) MAE RMSE STD FSE CC N◦ of pixels
5.34 2.66 3.35 4.01 3.29 1.50 0.64 784

Contrasting the three evaluations shown above, it is clear that the test dataset tends
to present better scores, even if it is selected randomly from the training database,
and although it is not included in the training, it seems to carry the signature
from the input dataset distribution, which produces better scores when compared
to the other sets that were analyzed. Unlike the analysis which was shown for the
screening (in which we also compared our predictions with GPROF), here we will
cover the rainfall retrieval (Figure 5.14) compared only with the GMI/DPR-CMB,
the reason being that this is the only dataset in which all the input predictors are
geo-colocated. Figure 5.14 also presents the GMI TBs: 10V, 18V, 36V, 89V and
166V on 30 November 2014 at 23:00-03:54 UTC (orbit n◦ 4922). The analysis of the
TB values is important in order to obtain a characterization of the atmosphere for
the orbit to be analyzed, as well as to have an idea of how the input predictors are
behaving in relation to precipitation in the rainfall maps. Thereby, the low frequency
channel of 10GHz, presents the predominance of warm regions (280-290K, orange
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to red colors) with a small region a little colder (250K - light green) at the left
edge of the swath that can be related to presence of some clouds. In the same area
at 18GHz there are more defined colder clusters (240K - green) associated with the
presence of clouds. Also, the 36GHz clearly depicts a larger area with distinguishable
signature from the environment, having cores with lower values around (230K). High
frequencies are shown with a colder color scale, and we can see clusters with colder
cores (130K) at 89GHz. Finally, we can see the larger coverage of the system in
166GHz which is probably depicting the presence of small ice in the anvil and cirrus
clouds, and colder cores in the convective cores (reaching a minimum of 100K).
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Insights about the model performance can also be drawn by verifying the predicted
versus the observed rainfall maps (5.15). The left panel presents the NNIMBUS
retrieval results against the GMI/DPR-CMB on the right with a minimum rainfall
threshold set to 0.2 mm/h. At first glance the model captures the overall rainfall
spatial distribution and detects the most intense cores (orange and reddish pixels). It
is worth noticing that for the classes between 0.2 and 1 mm/h (blue colors) observed
by the CMB, the NNIMBUS tends to overestimate, producing values between 4 and 6
mm/h (blue to light green). And by analyzing in detail the precipitation fields matrix
for this orbit, the maximum observed precipitation rain rate for this overpass was
44 mm/h, meanwhile the NNIMBUS maximum value is in the order of 20 mm/h.

These observed patterns, even for a single orbit, combined with the fact that NNIM-
BUS did not generate classes between 0.2 and 1 (blue pixels) can lead us to suspect
that the second cleaning criterion, the random under-sampling of C1 was very strict
and, in turn, penalized the learning of the network for these classes. Thus, the net-
work tended towards learning about the moderate classes (1 - 10 mm/h) which may
have become more representative, reproducing more values in this range. Another
notable aspect was the inability of NNIMBUS in reproducing the heavy classes (val-
ues > 10 mm/h). This behaviour was observed by ??), where the author analyzed
the variability of the error in the precipitation estimation from the GPROF and
CMB algorithms (V05), i.e., for the same observational database used in our study,
but for subregions in the Amazon region. Their results saw an overestimation of the
precipitation rain rate assessed by GPROF for lower values (< 5 mm/h), regard-
less of the considered subregion, and an underestimation for higher values (> 10
mm/h). Even though they have found this behaviour on the Amazon region, given
the distribution seen in our exploratory analysis (section 5.2), it can be seen that
this pattern is present in the dataset for the entire brazilian territory. Analyzing
mean precipitation values estimated by the GPROF according to the CMB classes
of estimation for the whole period, they found values no higher than 20 mm/h. In
addition, for further understanding of the differences that they had found, they an-
alyzed the relation by rain rate and ice content estimated by CMB product. And
the comparison between the ice water path (IWP) estimates (CMB and GPROF)
were those that presented more concrete differences, indicating that the errors in
the precipitation estimation by GPROF are related to the IWP estimation. This er-
ror is probably related to the Bayesian approach, which tends to favor the median,
inducing a decrease of the highest precipitation values, since these values are the
most frequent in the a priori Bayesian database.
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The results found by Costa (2018) corroborate the hypothesis that the distribution
of the input data greatly impacts the final network’s ability. Also, the hypothesis
that the network architecture requires more adjustments should not be discarded,
since the process is empirical, but from these considerations seen above, it is believed
that a new treatment to make the dataset more properly balanced is the first step
to see improvements in estimates. Futhermore, the construction of a longer dataset
with observations from the new versions of the GPROF and CMB products added to
the neural network adjustments could possibly bring improvements to the estimates
generated by NNIMBUS.
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6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In order to develop a passive microwave-based satellite precipitation estimation al-
gorithm for Brazil, this work was divided in two parts. As an initial proposal, the
goal was to extend the cloud-radiation database used as a priori information for
the CDRD Bayesian algorithm (SSMIS - H01) developed through the generation of
cloud resolving model simulations for Brazil. As a first step it was necessary to eval-
uate the performance of CDRD in retrieving rainfall rates over the central Amazon
and Southeast region of Brazil. The results obtained in the assessment of the CDRD
(plus PNPR) products over Brazil concluded that CDRD tends to overestimate all
the rain rate classes (light to heavy) in the Amazon region.

The performances of the PNPR (H02) for AMSU-A/AMSU-B/MHS sensors and
PNPR (H18) for the AMTS sensor were also analyzed. For this region all the algo-
rithms showed high FAR values and larger precipitation patterns which are deeply
related to the precipitation screening scheme. The screening seems to be substan-
tially affected by the high water vapor content in this region. The H01 specifically,
was affected by highly variable surface emissivities, impacting the selection of hy-
drometeor profiles in the a priori database and, ultimately, the rainfall rate retrieval.
On the other hand, for the Vale do Paraíba region, both algorithms, H01 and H02,
produced ME values that were quite close to zero (or negative) and lower FAR values
(from 0.21 to 0.49) than Manaus. Unlike the Manaus case, the precipitation patterns
were well detected and the estimations were in good agreement with the reference,
as indicated by the low ME values.

Regarding the generation of cloud resolving model simulations for the Vale do
Paraíba and Amazon regions, it was observed that the simulations detected the oc-
currence of perturbations on TB fields in terms of position and time of occurrence,
however in terms of the range of temperature values, the model did not reproduce
the lowest values of TB seen on the observations. As for the microphysical colum-
nar contents, the field that showed an unexpected behavior was the graupel content
where the model seemed to struggle with the riming process on graupel formation.
The largest amount of columnar content was associated with rain. The model seems
to generate a great content of aggregate and snow. Concerning the microphysical
rates the model was able to generate only the rain rate (maximum around 20 mm/h),
being unable to generate the other contents. It should be noted that a deeper anal-
ysis with an extensive number of simulations could ensure good representativeness
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of the simulated multichannel TBs in order to better describe the regional features
of TB across a wide range of meteorological systems and microphysical conditions
containing precipitation. Deep adjustments in mesoscale models and improvements
mostly in the radiative transfer (mainly the scattering by non-spherical ice particles)
could contribute towards gains in performance of the simulations in different regions
of Brazil. Unfortunately, by the time this stage of the work was completed, we did
not have the technical conditions to implement such changes.

For these reasons, the second part of the work was developed, by making use of an
observational database in order to develop a screening of precipitation and rainfall
retrieval algorithm over Brazil, based on ANN.

The NNIMBUS precipitation screening method proved to be very effective in both
detecting larger systems and smaller or isolated systems. Regarding the GMI/DPR-
CMB observations, the screening performed well, with an accuracy of 0.95, POD of
0.80, FAR of 0.39 and bias of 1.34. When compared to the GPROF the screening
still had good performance, however with lower scores. It was observed that through
the comparison maps with GPROF the NNIMBUS can detect agglomerates very
similarly, however it does not detect the borders of the systems very well. This
behavior might be associated with the precipitation thresholds that were configured
with the training dataset (0.2 a 60 mm/h), which might be leading more stratiform
regions of the systems to go undetected.

The NNIMBUS rainfall retrieval model also performed well when compared to the
GMI/DPR-CMB observations, with an MAE of 4.19, standard deviation of 3.23 and
RMSE of 5.59 for the validation dataset. When analyzing the precipitation field that
was forecast for an orbit, it became clear that the retrieval tends to underestimate
classes between 0.2 and 1 mm/h, overestimate classes between 1 and 10 mm/h
and underestimate classes greater than 10 mm/h. The observed behavior towards
lower classes might be related to the data cleaning treatment process, in which
a "random reduction" was performed in the input database, for those values were
exceptionally more frequent than the other classes (76% of the dataset), and that
might have penalized said values during the learning process. Thus, the network
leaned towards learning about the moderate classes (1 - 10 mm/h) which may have
become more representative, reproducing more values in this range. The struggle in
forecasting higher classes, on the other hand, is associated with their distribution
in the input dataset in which these classes are the least frequent and, therefore,
poorly represented. With these results in mind, it becomes clear that a new dataset
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is required, one with greater timeframe and more representativity for higher classes.

Although the literature presents a wide variety of mathematical approaches to tackle
inversion problems, the use of ANN proved through its statistical scores showed to
be highly efficient in solving complex non-linear problems and also dealing with
the high variability of the input data that is inherent to the nature of the rainfall
phenomena.

The NNIMBUS time performance, once trained, was shown to be very effective in
terms of prediction time, generating, in a matter of seconds, a new forecast based on
data from dataset it had not worked with yet. Thus, the ANN is capable of making
complex and accurate predictions (accuracy = 0.80) in less than 60 seconds in new
satellite overpasses, making it extremely fast and highly adequate for operational
environments.

It is also worth mentioning that the time taken to train the NNIMBUS ANN was
calculated for a given hardware configuration and using only the CPU cores. The
Orion and Helios clusters in which the ANN where trained were also equipped with
three NVidia Tesla K20 graphic cards each. These GPU cards where not even used
at the time of this work for library-compatibility reasons, given that the TensorFlow
python library is highly capable of parallelization over GPU resources. The reason
for not using the GPU cores is that the TF, NVIDIA, CUDA, OS and its Kernel
needs to be tightly fitted together regarding the version of the libraries for each of
these softwares. This means that the NNIMBUS has a lot of space for performance
improvement without even changing its code, but instead by calling the tensorflow-
gpu libraries in its core python imports.

6.2 Future work

This work presented important results regarding the development of an artificial
neural network for microwave rainfall retrieval optimized for Brazil, based on the
GMI and DPR (CMB), which are state-of-the-art precipitation sensors. Future work
could build upon the knowledge expressed in this work to delve deeper into some
issues, such as:

• To perform new verifications and validation in a denser and more compre-
hensive ground-based measurements.

• Identification of new criteria to clean and balance the distribution of the
input dataset.
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• To build a longer observational dataset in order to obtain more represen-
tativeness of the rain rate distribution classes.

• Exploitation of the capability of TensorFlow python library to do process-
ing using GPUs.
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APENDIX A - NNIMBUS ALGORITHM WORKFLOW

This sections presents a summarized execution sequence of the NNIMBUS pipeline
from its beginning to end of execution, when it outputs the prediction and validation
graphics. The blue lines represent input data whereas the red lines are the output.

Figure A.1 - Summarized execution sequence of the NNIMBUS pipeline.
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ANNEX A - MULTI-CATEGORICAL AND CONTINUOUS SCORES
EQUATIONS

This section presents the equations used to compute both discrete and categorical
data analysis and statistics.

Table A.1 - Confusion matrix for the base definition of the categorical score variables.

Observation
Rain No-rain

Prediction Rain True positives (TP) False positives (FP)
No-rain False negatives (FN) True negatives (TN)
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This section describes all the material derived from the elaboration of this thesis.

Figure B.1 - First page of the manuscript published in Remote Sensing Journal, Volume
10, Issue 11 (November 2018).
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Abstract: The uncertainties associated with rainfall estimates comprise various measurement scales:
from rain gauges and ground-based radars to the satellite rainfall retrievals. The quality of satellite
rainfall products has improved significantly in recent decades; however, such algorithms require
validation studies using observational rainfall data. For this reason, this study aims to apply the
H-SAF consolidated radar data processing to the X-band radar used in the CHUVA campaigns
and apply the well established H-SAF validation procedure to these data and verify the quality
of EUMETSAT H-SAF operational passive microwave precipitation products in two regions of
Brazil (Vale do Paraíba and Manaus). These products are based on two rainfall retrieval algorithms:
the physically based Bayesian Cloud Dynamics and Radiation Database (CDRD algorithm) for
SSMI/S sensors and the Passive microwave Neural network Precipitation Retrieval algorithm (PNPR)
for cross-track scanning radiometers (AMSU-A/AMSU-B/MHS sensors) and for the ATMS sensor.
These algorithms, optimized for Europe, Africa and the Southern Atlantic region, provide estimates
for the MSG full disk area. Firstly, the radar data was treated with an overall quality index which
includes corrections for different error sources like ground clutter, range distance, rain-induced
attenuation, among others. Different polarimetric and non-polarimetric QPE algorithms have been
tested and the Vulpiani algorithm (hereafter, Rq2Vu15) presents the best precipitation retrievals when
compared with independent rain gauges. Regarding the results from satellite-based algorithms,
generally, all rainfall retrievals tend to detect a larger precipitation area than the ground-based radar
and overestimate intense rain rates for the Manaus region. Such behavior is related to the fact that the
environmental and meteorological conditions of the Amazon region are not well represented in the
algorithms. Differently, for the Vale do Paraíba region, the precipitation patterns were well detected
and the estimates are in accordance with the reference as indicated by the low mean bias values.

Keywords: rain gauges; radar; quality indexes; satellite rainfall retrievals; validation

1. Introduction

The knowledge about the distribution of water around the globe is an aspect of extreme
relevance for the management of natural resources. The precipitation is, within the hydrological

Remote Sens. 2018, 10, 1743; doi:10.3390/rs10111743 www.mdpi.com/journal/remotesensing

SOURCE: Amaral et al. (2018)
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Figure B.2 - First page of the manuscript published in IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, Volume 10, Issue 9
(September 2017).

SOURCE: Casella et al. (2017)
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Table B.1 - Posters and abstracts submitted and presented during the PhD.
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• Poster “Investigation on CDRD and GPROF performance over central
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International Precipitation Working Group (IPWG) and 5o International
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shop, 2016, Bologna, Italy.
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