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Abstract
The numerical simulation of hydrodynamic stability and aeroacoustic problems requires the use of high-order, low-dispersion 
and low-dissipation numerical methods. It also requires appropriate boundary conditions to avoid reflections of outgoing 
waves at the boundaries of the computational domain. There are many different methods to avoid wave reflection at the 
boundaries such as the buffer zone and boundary conditions based on characteristic equations. This paper considers the 
use of a methodology called perfectly matched layer (PML). The PML is evaluated for the simulation of an acoustic pulse 
in a uniform flow and the Kelvin–Helmholtz instability in a mixing layer using the linear and nonlinear form of the Euler 
equation. PML results are compared with other non-reflecting boundary condition methods in terms of effectiveness and 
computational cost. The other non-reflecting boundary conditions implemented were the buffer zone (BZ), widely used in 
aeroacoustic and hydrodynamic problems, and the energy transfer and annihilation (ETA), a very simple boundary condition 
to be implemented. The results show that the PML is an effective boundary condition method, but can be computationally 
expensive. The PML is also more complex to implement and requires careful stability analysis. The other boundary condi-
tions, the BZ and the ETA, are also effective and may perform better than the PML depending on the flow conditions. These 
two methods have an advantage in terms of robustness and are much simpler to implement than the PML.

Keywords  PML · Non-reflecting boundary conditions · High-order numerical methods · Euler equations · Hydrodynamic 
stability

1  Introduction

In numerical simulations of transient phenomena such as 
aeroacoustics, laminar-turbulent transition and hydrody-
namic stability, waves propagate in space and time. There-
fore, it is important to implement boundary conditions that 
allow the outflow of these waves through the boundaries of 
the computational domain without affecting the solutions 
inside the domain. The correct treatment of the boundary 
conditions prevents numerical instabilities such that bound-
ary disturbances do not interfere in the formation of eddy 
structures associated with instability or turbulence. It also 

reduces the simulation computational effort compared to 
solutions with far enough boundaries to avoid reflections 
from interfering with the flow structures in the region of 
interest.

The non-reflecting boundary conditions (NRBC) can be 
classified in three different types. The first one is based on 
the characteristic directions of the governing equations [8, 
9, 11, 24]. It is based on the characteristic in one dimension 
and looses effectiveness when waves impinge on the bound-
ary at an angle [5].

Another type of NRBC is based on the asymptotic solu-
tion of the governing equations in the far field. The govern-
ing equations are solved in the far field in a region where the 
flow is uniform or simpler. For the linearized Euler equa-
tions, Bayliss and Turkel [1] and Hagstrom, Haariharan and 
Thompson [10] derived outflow boundary conditions based 
on this approach. This type of boundary condition works 
quite accurately if the boundaries are placed sufficiently far, 
which results in a high computational cost. Another problem 
of the asymptotic boundary condition is that the asymptotic 
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solutions may not be always available for complex flows or 
nonlinear problems.

A third type of NRBC is based on damping zones, where 
the computational domain is extended and numerical filter-
ing, stretching, damping or a combination of them is applied 
[6, 16, 25]. This type of boundary condition is frequently 
used because it is easy to implement and does not depend 
on the flow characteristics. The effectiveness of this method 
depends on the size of the damping zone and on the com-
bination of the parameters that are used. However, in some 
problems, specially for high-order methods, quite large 
damping zones are used to get the desired precision, which 
means high computational cost.

The main objective of this work is the evaluation of three 
damping zone non-reflecting boundary conditions in a high-
order numerical model for the solution of the linear and non-
linear Euler equations.

One of the damping zone methods of boundary condition 
treatment is the perfectly matched layer (PML). The PML 
is one of the most recent damping zone-type non-reflecting 
boundary condition developments, with promising results in 
effectiveness for damping outgoing waves and in terms of 
computational costs.

Hu [12] developed the PML for aeroacoustic and fluid 
mechanics applications based on Berenger [2] formulation 
for the solution of the Maxwell’s equations. A latter work 
[13] demonstrated that Berenger’s formulation could lead 
to numerical instabilities generated by the inconsistency 
between the waves phase velocity and the group velocity. 
To solve this problem, [13] proposed a stable formulation 
for the linearized Euler equations for uniform flows. Hu [14] 
extended Hu’s work for the implementation of PML for non-
uniform flows and linear Euler equations considering the 
case of the mixing layers. For non-uniform flows and non-
linear Euler equations, [17] reformulated the PML.

In order to evaluate the PML, it will be compared to other 
two damping zone types of non-reflecting boundary condi-
tions, the buffer zone and the energy transfer and annihila-
tion (ETA). The buffer zone was formulated by Wasistho 
et al. [25] and is one of the most used in the literature. It is 
effective for absorbing Tollmien–Schlichting waves, presents 
good results in aeroacoustic as shown by Morris et al. [21] 
for supersonic jets, and was successfully applied on the solu-
tion of the Euler equations by Richards et al. [22].

The second non-reflecting boundary condition compared 
to the PML is the ETA. It was formulated by Edgar and Vis-
bal [7] and used in aeroacoustic problems. The ETA is very 
simple to implement since it is based on grid stretching and 
filtering methods widely used in the simulation of hydrody-
namic instability analysis and aeroacoustics problems.

The paper is organized as follows: first, the formulation 
of the PML, BZ and ETA is presented. Then, the numeri-
cal method used to solve the Euler equations is described. 

Finally, the results for the comparison of different types of 
non-reflecting boundary conditions are presented followed 
by conclusions.

2 � Non‑reflecting boundary conditions

The PML consists in defining a region around the domain of 
interest. In this region the governing equations being solved 
are modified to include dissipation terms which damp dis-
turbance waves travel out of the domain of interest. Figure 1 
shows schematically the domain of interest where solution 
of the Euler equations is sought and the boundary condition 
domain around it with dimensions Dx and Dy.

Hu [13, 14] proposed a well-posed and stable formulation 
for the PML which involves three steps; in the first step an 
appropriate space-time, (�, t) , transformation is determined 
and applied to the governing equations.

where � is a coefficient that depends on the flow field. This 
transformation will ensure consistency between the group 
velocity and the phase velocity such that they are in the same 
direction [13].

As a second step, the equations are brought to the fre-
quency domain using the Laplace transform and modified 
with a change of variables. The change of variables for a 
problem in two dimensions is defined as:

where � is the wave frequency and �x and �y are positive 
functions of the x, y coordinate directions and are known as 
the absorption coefficients.

In the final step, the non-reflecting boundary conditions 
are obtained rewriting the equations back in the spatial and 
temporal original coordinates.

(1)t = t + ��,

(2)
�

�x
=

1

1 + i�x∕�

�

�x
,

�

�y
=

1

1 + i�y∕�

�

�y
,

Fig. 1   Representation of the domain showing the region of interest 
and the boundary condition regions around it
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2.1 � PML formulation for the Euler equations

The PML and other non-reflecting boundary conditions 
were implemented for three different flow problems. The 
first implementation was for the linearized Euler equations 
for uniform flows. The second implementation was made to 
linearized Euler equations for non-uniform flows. Finally, 
the boundary conditions were implemented for nonlinear 
Euler equations to solve mixing layer-type flows.

For the linearized Euler equations for uniform flow, [13] 
proposed a stable PML, which ensures the elimination of 
perturbations in a damping zone. The equations are defined 
as:

where � is an auxiliary variable, M is the free-stream Mach 
number and � is the specific heat ratio. The solution vector 
components are the density ( � ), the velocity components in 
the streamwise (u) and normal (v) directions and the pres-
sure (p).

The PML equation defined by Hu [14] for the linearized 
Euler equations for non-uniform flows is:

with

For the nonlinear Euler equations, [17] proposed the follow-
ing formulation for the PML. The nonlinear Euler equations 
are first split in a mean flow � independent of time and a 

(3)
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time-dependent perturbation �′ . The vector � can be writ-
ten as:

With this partition, it is more efficient to absorb only the 
temporal fluctuations.

Lin et al. [17] defined the PML for the nonlinear Euler 
equations for non-uniform flow as:

with

For the PML implementation, [14] recommended the fol-
lowing grid stretching in the PML zone:

where n represents the coordinate direction x or y accord-
ing to the direction of application of the PML and �(n) is a 
stretching function,

The absorption coefficient � used in the PML Eq. (3) as 
recommended by Hu [13] is:

where �m(n) controls the intensity of absorption within the 
PML. �m(x) and �m(y) were chosen according to [13].

2.2 � Other non‑reflecting boundary conditions

The first NRBC implemented for comparison with the PML 
is known as the buffer zone (BZ) and is based on numerical 
damping. As in the PML, to use this condition it is necessary 
to increase the domain including zones where the numerical 
damping will be applied (Fig. 1). Within the buffer zone, the 
amplitude of outgoing waves is damped to a value deter-
mined by a damping function � . Defining � n

= (�, u, v, p) 
as the solution vector at each time step, the buffer zone can 
be applied as:

(8)� = � + ��.
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where �n+1 is the solution vector for each time step after 
the application of the damping. The �target used in (15) sets 
the required value � on the buffer zone, which is defined 
depending on the problem. For the linearized Euler equa-
tions �target is set to zero so that the perturbation that enters 
the buffer zone is removed from the base flow. For nonlinear 
Euler equations, �target can be defined as the base flow for 
instantaneous variables as defined in (8). The damping func-
tion � in (15) is defined in Sect. 4.

For the BZ the absorption coefficient, � applied was based 
on Wasistho et al. [25]:

where ns and ne are points on the domain corresponding to 
the beginning and end of the damping zone, n represents 
the coordinates x and y, depending on the direction of 
application of the boundary condition. C1 and C2 define the 
transition mode of � within the buffer zone and are set as 
0 ≦ C1 ≦ 0.1 and 10 ≦ C2 ≦ 20 . Several values of C1 and 
C2 were tested to find which presented the best results. The 
same grid stretching presented in (13) was used.

The third non-reflecting boundary condition implemented 
in this investigation is known as ETA (energy transfer and 
annihilation) and was formulated by Edgar and Visbal [7]. 
It is based on grid stretching and filtering. The energy of 
waves that goes out of the domain is transferred to higher-
wavenumber waves using grid stretching. The set of high-
wavenumber waves is eliminated by a high-order numerical 
filter. For the ETA non-reflecting boundary condition, the 
following grid stretching was applied:

where nl is a domain point where the grid stretching begins, 
n represent the coordinates x or y and dn represents the grid 
spacing in the respective direction.

All non-reflecting boundary conditions were implemented 
on all boundaries, setting Dx = D�x , Dy = D�y as the sizes 
of the non-reflecting boundary regions, D as the number of 
grid points and �x and �y de grid spacing.

3 � Numerical method

Before the analysis of the different boundary condition 
techniques presented above, multiple spatial and temporal 
discretization methods were evaluated with respect to disper-
sion, dissipation and efficiency [19]. The objective was to 
determine the best discretization method to solve a mixing 
layer hydrodynamic stability problem.

(16)

�n = (1 − C1n
2
b
)

(
1 −

1 − eC2n
2
b

1 − eC2

)
with, nb =

n − ns

ne − ns
,

(17)n = dn
(n − nl

dn

)�

+ nl,

The different methods were evaluated solving the wave 
equation in one dimension, as the wave equation is well posed 
and has analytic solution. In addition, it has characteristics 
similar to the mixing layer problem, in a sense that it is an 
unsteady, wave propagation problem, where the dispersion 
relation should be maintained.

For the discretization of the spatial and temporal terms, the 
following schemes were implemented:

Spatial Schemes

–	 Fourth-order central finite difference (DF4).
–	 Sixth-order compact finite difference (CPT) [18].
–	 Fourth-order dispersion relation-preserving finite differ-

ence (DRP) [23].

Temporal Schemes

–	 Fourth-order four-step Runge–Kutta (RK4).
–	 Fourth-order low-dissipation and low-dispersion Runge–

Kutta (LDDRK4) [15].
–	 Fourth-order low-storage six-stage Runge–Kutta for non-

linear operators (RK46) [3].

In order to make a proper comparison, all schemes tested have 
the same order, except for the compact scheme, which achieves 
a high order with the same number of points of a fourth-order 
compact scheme by simply using different coefficients in its 
definition.

For the evaluation, a Gaussian pulse was transmitted and 
the best result was obtained with the compact (CPT) method 
with the Runge–Kutta six-step temporal scheme for nonlin-
ear operators (RK46). Of all the schemes implemented, this 
scheme has the lowest dispersion and dissipation for the 
Gaussian pulse [19].

The compact scheme needs the solution of a tridiagonal 
matrix for each time step, which is more expensive computa-
tionally. The second best scheme is the DRP scheme, also with 
the six-step Runge–Kutta for nonlinear operators. This sec-
ond explicit scheme is not as expensive as the compact finite 
difference scheme, but the results are similar. Therefore, the 
chosen scheme to discretize the Euler equations was the DRP 
for space discretization and the RK46 for time discretization.

In the numerical solution of the Euler equations, specially 
in the ETA non-reflecting boundary condition, a fourth-order 
13-point numerical filter was used as proposed by Bogey 
and Bailly [4].

4 � Results

This section presents the results for the numerical solution 
of the Euler equations with different types of boundary 
conditions. Section 4.1 presents results for the disturbance 
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pulse on a uniform flow and comparisons with exact ana-
lytic solutions, while Sect. 4.2 presents linear results for the 
spatial development of Kelvin–Helmholtz instability on a 
mixing layer. Section 4.2 also presents comparisons between 
numerical results and linear stability theory results as a veri-
fication test case. Finally, Sect. 4.3 presents results for the 
nonlinear development of Kelvin–Helmholtz instability on 
a mixing layer.

4.1 � Linearized Euler equations, uniform flow

For the solution of the linearized Euler equations for a pres-
sure pulse in a uniform flow with Mach number M = 0.5 , 
the PML is compared to the BZ and ETA boundary condi-
tions and with the analytic solution available for this simple 
case. A reference solution is also compared to the analytic 
solution. In the reference solution, the domain is suffi-
ciently large to ensure that the initial pulse does not reach 
the boundaries during the total computation time and such 
that no reflections interfere with the solution. The reference 
domain size was defined as (xmin, xmax) = (− 400, 400) and 
(ymin, ymax) = (− 400, 400) . The reference case was solved 
with the same numerical scheme presented in Sect. 3, and 
the numerical filter was applied every time step.

Table 1 summarizes the parameters used to implement the 
different non-reflecting boundary conditions in the numeri-
cal solution of the linearized Euler equations with uniform 
flow.

The Euler equations support three different waves: acous-
tic, entropy and vorticity waves. A presents the Gaussian 
pulses for the acoustic, vorticity and entropy waves used as 
initial conditions.

Figures 2, 3 and 4 show comparisons between the PML, 
BZ and ETA boundary conditions in terms of pressure con-
tours for two different times, 30 and 50 time units. The lines 
of constant pressure go from − 0.15 to 0.15 in increments of 
.01. The PML and the ETA boundary condition initially will 
use 10 grid points on the damping zone, while the BZ will 
use 20 grid points. Twenty grid points is the minimum size 
supported by the BZ condition to avoid stability problems 
in the time interval evaluated. As will be shown, increasing 
the number of points in the NRBC zone for the ETA did 
not improve the results further. For the other NRBC, the 

results improve increasing the number of grid points in the 
damping zone.

Qualitatively, the PML and the BZ give very similar 
results in the domain of interest. The ETA condition is not 
as accurate as the PML or the BZ and shows more reflections 
close to the boundaries during the passage of the wave front.

After the waves cross the outflow boundary zone, all three 
boundary conditions leave the domain of interest with little 
disturbance and resembles very well the analytic solution at 
70 time units (Fig. 5). In the analytic solution it is not neces-
sary to use damping zone, and the domain is x = (− 50, 50) 
and y = (− 50, 50).

To perform a quantitative comparison between the non-
reflecting boundary conditions, the magnitude of the maxi-
mum reflection error in the pressure is measured. The pres-
sure is measured across the section x = 40 , 10 grid points 
inside the domain away from the right outflow boundary, 
for the three different boundary conditions implemented. 
The results are compared with pressure measured without 
using non-reflecting boundary condition and the pressure 
given by the analytic solution, available in this simple case. 

Table 1   Boundary condition parameters for the uniform flow test case

Domain x = (− 50, 50) , y = (− 50, 50)

(�x,�y,�t) (1, 1, 0.5)
PML �mx = 2, �my = 2, � = 1,D = 10

BZ C1 = 0.01,C2 = 20,D = 20

ETA � = 2,D = 10

(a)

(b)

Fig. 2   Pressure contours for a pulse in a uniform flow with PML 10 
boundary condition at two different times. Ten  grid points on the 
NRBC zone
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The difference between the reference case and the analytic 
solution is also presented which allows the identification 
of errors associated with the numerical method without the 
influence of the boundary condition treatment.

In Fig. 6 a first comparison between the NRBCs imple-
mented is presented. The numbers on the curve labels give 
the number of grid points in the damping region. The BZ 
condition used 20 grid points, because its behavior is unsta-
ble with fewer points. During the passage of the wave, the 
BZ gives the smallest pressure reflection. However, the num-
ber of grid point is greater. The worse performance of the 
ETA boundary condition is clear from the plot.

The improvement with increasing NRBC domain size is 
presented in Figs. 7, 8 and 9. The NRBC domain size was 
increased keeping dx and dy fixed and increasing the number 
of grid points from 10 to 20 and 30 grid points. For the PML 
and the BZ, increasing the NRBC domain size results in 
improved results. For the ETA, increasing the NRBC domain 
size beyond 20 grid points does not improve the results as 
seen in Fig. 8, where the curves for 20 and 30 grid points are 
on top of each other.

Figure 10 shows the final maximum pressure error using 
the best size of the absorption zone for the different bound-
ary conditions. The best performance was obtained with the 
BZ, but the efficiency in terms of computational time has to 
be assessed. The corresponding computational cost of each 
NRBC will be evaluated next.

A comparison of computational time for the different 
non-reflecting boundary conditions with respect to the PML 
time is presented in Table 2. The values correspond to the 
CPU time required to run one hundred time steps. The only 
differences in computer codes are in the application of the 
different non-reflective conditions and on the fact that the fil-
ter for the ETA is applied at every Runge–Kutta step, while 
for the PML and BZ the filter is applied once at each time 
step. For the test cases considered, the PML and BZ condi-
tions have similar performance in terms of computational 
time. The ETA has the smallest computational time and the 
worst results. The reason for using only 10 points for the 
ETA was that, as shown in Fig. 8, the results do not improve 
increasing the NRBC domain size, but the computational 
cost increases without additional benefits.

(a)

(b)

Fig. 3   Pressure contours for a pulse in a uniform flow with buffer 
zone boundary condition at two different times. Twenty grid points 
on the NRBC zone

(a)

(b)

Fig. 4   Pressure contours for a pulse in a uniform flow with ETA 
boundary condition at two different times. Ten grid points on the 
NRBC zone
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(a)

(c)

(b)

(d)

Fig. 5   Pressure contours for a pulse in a uniform flow. Comparison between PML 20, BZ  20 and ETA 10 boundary conditions with the analytic 
solution at t = 70 time units

Fig. 6   Comparison of the maximum pressure error with respect to 
the analytic solution for different non-reflecting boundary condi-
tions. Evolution in time at x = 40 . The reference line refers to a solu-
tion without using NRBC, when the boundaries are sufficiently far to 
avoid reflections in the time interval evaluated

Fig. 7   Evolution in time of the maximum pressure error across 
x = 40 for different sizes of the PML non-reflecting boundary condi-
tion in relation to the analytic solution of a pressure pulse in a uni-
form flow
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Considering both the final maximum pressure error 
and the computational time for the propagation of a pres-
sure pulse using the linear Euler equation, the best result 
is obtained with the BZ non-reflecting boundary condition.

4.2 � Linearized Euler equations, non‑uniform flow, 
mixing layer

This section presents comparisons between results obtained 
with the different types of NRBC defined previously con-
sidering the solution of the linearized Euler equations for a 
non-uniform flow. Before that, a validation test case is pre-
sented to verify the numerical model by comparing results 
with linear stability theory for the instability of compressible 
mixing layers.

4.2.1 � Verification test case

Before the presentation of comparisons between the different 
non-reflecting boundary conditions for a non-uniform flow, 
and to ensure that the numerical solution of the linearized 
Euler equations with the implemented non-reflecting bound-
ary conditions is correct, a verification test case is presented 
considering only the PML.

Comparisons are presented with linear stability theory 
results for the growth rate of Kelvin–Helmholtz instability 
on a compressible mixing layer. The Mach number on the 
upper and lower streams is 0.8 and 0.2, respectively. The lin-
ear stability results were obtained by solving the compress-
ible Rayleigh equation presented in C. For the Euler solver, 
the spatial amplification rate �i is based on the kinetic energy 
growth along the streamwise direction. The comparison is 
presented in Fig. 11 for a range of frequencies � , showing 
good agreement.

4.2.2 � NRBC comparison for the non‑uniform flow

Having verified the numerical model, this section presents 
comparisons between the different non-reflecting boundary 

Fig. 8   Evolution in time of the maximum pressure error across 
x = 40 for different sizes of the ETA non-reflecting boundary condi-
tion in relation to the analytic solution of a pressure pulse in a uni-
form flow

Fig. 9   Evolution in time of the maximum pressure error across 
x = 40 for different sizes of the BZ non-reflecting boundary condition 
in relation to the analytic solution of a pressure pulse in a uniform 
flow

Fig. 10   Comparison of the maximum pressure error for each non-
reflecting boundary condition in relation to the analytic solution for 
the propagation of a pressure pulse in a uniform flow. Evolution in 
time at x = 40 . The reference line refers to a solution without using 
NRBC, where the boundaries are sufficiently far to avoid reflections 
in the time interval evaluated

Table 2   Computational time for each boundary condition type

Non-reflecting boundary condi-
tion

D (points) Relative 
CPU 
time

PML 20 1.0
BZ 20 1.01
ETA 10 0.80
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conditions in a mixing layer flow. The initial conditions for 
a mixing layer flow solved with the linearized Euler equa-
tions are presented in B. To start the development of Kel-
vin–Helmholtz vortices, the mixing layer was perturbed with 
a Gaussian pressure pulse given by

where a = 1 defines the pulse amplitude, w = �∕2 is the 
frequency, x0 = 0 and y0 = 0 define the pulse location and 
r0 = 0.05 is the pulse thickness. The pressure pulse is applied 
at each time step of the Runge–Kutta during the complete 
simulation time.

The same three types of non-reflecting boundary condi-
tions were implemented, BZ, PML and ETA. The size of the 
domain is (xmin, xmax) = (− 2, 8) and (ymin, ymax) = (− 2, 2) . 
This domain is surrounded by the NRBC region. The time 
step is dt = 0.01, and the grid spacing is dx = dy = 0.04 . The 
numerical filter was applied every time step in the PML and 
BZ case, but is applied at each Runge–Kutta stage for the 
ETA boundary condition.

As was done for the uniform flow cases, different absorp-
tion zone lengths were evaluated in order to find the best 
results with the smallest possible computational time. The 
size of the region where NRBC are applied depends on 
the number of grid points used. Table 3 gives the different 
parameters used for each different boundary condition type.

With the ETA, acceptable results were achieved with 
D = 70 . The PML absorption zone was D = 50 . The best 
result with the BZ was obtained using D = 80.

Figures 12, 13, 14 and 15 show the final pressure con-
tours using the best size of the absorption zone for the 
different boundary condition types. The lines of constant 
pressure in the contours go from − 0.15 to 0.15 in incre-
ments of .01. These figures allow the comparison between 

(18)s(x, y, t) = a sin(wt)e−(ln2)[(x−x0)
2+(y−y0)

2]∕r0 ,

the pressure contours using the different boundary condi-
tions with respect to the reference case solution. The refer-
ence case, as in Sect. 4.1, uses a large domain such that the 
Kelvin–Helmholtz vortices do not reach the boundaries, 
avoiding reflections back into the domain of interest.

The pressure contours are similar, but the PML shows 
a better agreement with the reference case. The BZ is 
not as precise, but does not show the levels of reflection 

Fig. 11   Growth rate comparison between numerical solutions with 
PML boundary conditions and linear stability theory

Table 3   Boundary condition parameters for the linearized Euler 
equations and non-uniform flow

Domain x = (− 2, 8) y = (− 2, 2)

(�x, �y, �t) (0.04, 0.04, 0.01)
PML �mx = 20, �my = 20, � = 1∕1.416,D = 50

BZ C1 = 0.01,C2 = 20,D = 80

ETA � = 2,D = 70
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Fig. 12   Pressure contours after t = 50 time units using PML 50, 
fifty grid points on the damping zone. The dashed line represents the 
beginning of the damping region where the NRBC is applied
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Fig. 13   Pressure contours after t = 50 time units using BZ 80, eighty 
grid points on the damping zone. The dashed line represents the 
beginning of the damping region where the NRBC is applied
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presented by the ETA near the boundary of the NRBC 
zone on the right.

Similarly to the uniform flow case in Sect. 4.1, a quan-
titative comparison between the non-reflecting boundary 
conditions is presented. The comparison is based on the 
magnitude of the maximum reflection error in the pressure 
measured during the simulation time. The pressure is meas-
ured across the section x = 7 , for the three different bound-
ary conditions implemented, and the results are compared 
with the pressure measured without using non-reflecting 
boundary conditions, labeled the reference case. Figure 16 
shows the best results selected in terms of the least reflection 
and lowest computational time. The numbers on the curve 
labels give the number of grid points in the NRBC region.

The improvement with increased NRBC domain size 
is presented in Figs. 17, 18 and 19. A relatively mod-
est improvement is observed for the PML increasing the 
NRBC domain from 30 to 60. The same is true for the 
BZ increasing the NRBC from 60 to 80. For the ETA, 

increasing the NRBC domain size from 60 to 70, a signifi-
cant improvement is observed, but beyond 70 grid points 
the results do not improve any further.

For the BZ and PML, considering the computational 
time, the sizes of D = 80 and D = 50, respectively, were 
selected. The PML solves additional equations on the 
NRBC zone, but requires fewer grid points to damp unde-
sired reflections at the boundaries. The higher cost of 
solving additional equations is compensated by the use of 
fewer grid points.

Table 4 shows the computational time in seconds for each 
NRBC. The values correspond to the CPU time required to 
run one hundred time steps with respect to the PML time. 
The ETA is the fastest NRBC, but the results are worse than 
the PML results.
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Fig. 14   Pressure contours after t = 50 time units using ETA 70, sev-
enty grid points on the damping zone. The dashed line represents the 
beginning of the damping region where the NRBC is applied

Fig. 15   Pressure contours after t = 50 time units without using 
NRBC. The boundaries are sufficiently distant to avoid reflections 
back into the domain of interest, marked with the dashed line

Fig. 16   Evolution in time of the maximum pressure error across 
x = 7 for the best size of the damping zone for the different non-
reflecting boundary conditions in relation to the reference domain in 
the simulation of a mixing layer. The reference domain does not used 
NRBC, and the boundaries are sufficiently far to avoid reflections in 
the time interval evaluated

Fig. 17   Evolution in time of the maximum pressure error across 
x = 7 for different sizes of PML non-reflecting boundary condition in 
relation to the reference domain in the simulation of a mixing layer
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Considering both the error in pressure and the CPU time, 
it is possible to conclude that the best boundary condition 
implemented in the linearized Euler equations for a mixing 
layer is the PML. The PML is more efficient computation-
ally and has the lowest pressure difference in relation to the 
pressure in the reference case. The BZ and ETA present 

similar results in terms of percentage error with respect to 
the reference case, but the ETA has a lower computational 
time. It is worth emphasizing that the implementation of the 
BZ and ETA is simpler than the PML.

4.3 � Nonlinear Euler equations, non‑uniform flow, 
mixing layer

Finally, the different non-reflecting boundary conditions, 
PML, ETA and BZ, were implemented for the numerical 
solution of nonlinear Euler equations for the mixing layer. 
For each type of non-reflecting boundary condition, differ-
ent parameters were defined, using grid stretching with the 
respective absorption coefficients.

Table 5 shows the parameters that were used for the dif-
ferent boundary conditions for sizes of the absorption zones 
found to give the best results. For the ETA, the best results 
were achieved with D = 50 , and the results do not improve 
significantly using higher sizes, following the same behav-
ior as in the linear cases. For the BZ and the PML, the best 
results were achieved with D = 100 and D = 60 , respec-
tively. Above these NRBC domain sizes, the computational 
cost increases significantly in relation to the best results 
achieved with the ETA, D = 60.

Table 6 shows the computational times for the best results 
for each boundary condition. The values correspond to the 
CPU time required to run one hundred time steps relative to 
the PML CPU time.

Figures 20, 21, 22 and 23 show the final pressure con-
tours using the best size of the absorption zone at t = 50 
and the parameters defined in Table 5. The lines of con-
stant pressure in the contours go from −0.6 to 0.8 in 
increments of 0.005. These figures allow the comparison 
between the pressure contours using the different boundary 

Fig. 18   Evolution in time of the maximum pressure error across 
x = 7 for different sizes of ETA non-reflecting boundary condition in 
relation to the reference domain in the simulation of a mixing layer. 
More points in this NRBC do not produce better results

Fig. 19   Evolution in time of the maximum pressure error across 
x = 7 for different sizes of BZ non-reflecting boundary condition in 
relation to the reference domain in the simulation of a mixing layer

Table 4   Computational time for each boundary condition type

Non-reflecting boundary condi-
tion

D (points) Relative 
CPU 
time

PML 50 1.0
ETA 70 0.92
BZ 80 1.11

Table 5   Boundary condition parameters for the nonlinear Euler equa-
tions and non-uniform flow

Domain x = (− 2, 10) y = (− 1, 1)

(�x, �y, �t) (0.05, 0.01, 0.01)
PML �mx = 40, �my = 40, � = 1∕1.416,D = 60

BZ C1 = 0.01,C2 = 20,D = 100

ETA D = 50

Table 6   Computational time for 
each boundary condition type

NRBC D (points) Relative 
CPU 
time

PML 60 1.0
ETA 50 0.57
BZ 100 1.07
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conditions with respect to the reference case solution. The 
reference case, as in the previous section, uses a large 
domain such that the Kelvin–Helmhotz vortices do not 
reach the boundaries, avoiding reflections back into the 
domain of interest. The pressure contours for the different 
NRBC are very similar in the domain of interest, inside 
the dashed lines, and do not present significant differences.

As was done for the linear cases, a quantitative com-
parison between the non-reflecting boundary conditions is 
presented based on the magnitude of the maximum reflec-
tion error in the pressure measured during the simulation 
time. The pressure is measured across the section x = 10 , 
for the three different boundary conditions implemented, 
and the results are compared with pressure measured with-
out using non-reflecting boundary conditions, labeled the 
reference case. Figure 24 shows the best results selected 
in terms of the least reflection and lowest computational 
time. The numbers on the curve labels give the number of 
grid points in the NRBC region.

The improvement with increased NRBC domain size 
is presented in Figs. 25, 26 and 27. A relatively mod-
est improvement is observed for the PML increasing the 
NRBC domain from 30 to 60. The same is true for the BZ 
increasing the NRBC size from 50 to 100. For the ETA, 
increasing the NRBC domain size from 50 to 60 does not 
improve the results any further.

Table 6 and Fig. 24 allow to conclude that the best 
boundary condition implemented in the nonlinear Euler 
equations for a mixing layer is the ETA. It is more efficient 
computationally and has the lowest pressure difference in 
relation to the pressure in the reference case. The BZ and 
PML present similar results in terms of both computa-
tional efficiency and percentage of error with respect to 
the reference case. It is worth emphasizing that the imple-
mentation of the BZ and ETA is simpler than the PML.

Fig. 20   Pressure contours after t = 50 time units using PML 60, sixty 
grid points on the NRBC zone. The dashed line represents the begin-
ning of the damping region where the NRBC is applied

Fig. 21   Pressure contours after t = 50 time units using BZ 100, one 
hundred grid points on the NRBC zone. The dashed line represents 
the beginning of the damping region where the NRBC is applied

Fig. 22   Pressure contours after t = 50 time units using ETA 50, fifty 
grid points on the NRBC zone. The dashed line represents the begin-
ning of the damping region where the NRBC is applied

Fig. 23   Pressure contours after t = 50 time units without using 
NRBC. The boundaries are sufficiently far to avoid reflections back 
into the domain of interest, marked with the dashed line



Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2019) 41:411 	

1 3

Page 13 of 16    411 

5 � Conclusions

The present work presented comparisons between three 
different non-reflecting boundary condition methods, the 
PML, the BZ and the ETA. The comparisons allow an 
assessment of the PML NRBC method in terms of effec-
tiveness and computational cost. Three different flow con-
ditions were tested: the propagation of a pressure pulse in 
a uniform flow, the propagation of linear Kelvin–Helm-
hotz instabilities and the propagation of nonlinear Kel-
vin–Helmhotz instabilities. For the different cases evalu-
ated, the good behavior of the three boundary conditions 
was evident. All three achieved satisfactory results when 
compared with a reference case.

For the uniform flow problem, the best NRBC is the 
BZ, which has a lower cost in terms of CPU time and the 

best performance in terms of disturbance absorption at 
the domain boundaries. The second best NRBC was the 
PML, in which increasing the damping zone size was able 
to mimic the BZ results, however, at a higher computa-
tion cost.

In the simulation of instabilities in a mixing layer, the 
PML performance was the best, being the maximum pres-
sure error one order lower than the other two boundary con-
dition methods.

In the most complex case evaluated, the nonlinear case 
for the propagation of instabilities in a mixing layer of the 
performance of all models was equivalent in terms of pres-
sure error magnitude, but in terms of the computational cost 
the ETA needed one half of the time needed by the BZ and 
the PML to achieve the same level of accuracy.

Therefore, PML proved to be an efficient non-reflecting 
boundary condition, but with two disadvantages. First, the 

Fig. 24   Evolution in time of the maximum pressure error at x = 10 
for the best damping zone size for the different non-reflecting bound-
ary conditions with respect to the reference domain in the simula-
tion of a mixing layer. The reference domain does not used NRBC, 
and the boundaries are sufficiently far to avoid reflections in the time 
interval evaluated

Fig. 25   Evolution in time of the maximum pressure error at x = 10 
for different sizes of PML non-reflecting boundary condition in rela-
tion to the reference domain in the simulation of a mixing layer

Fig. 26   Evolution in time of the maximum pressure error at x = 10 
for different sizes of ETA non-reflecting boundary condition in rela-
tion to the reference domain in the simulation of a mixing layer

Fig. 27   Evolution in time of the maximum pressure error across 
x = 10 for different sizes of BZ non-reflecting boundary condition in 
relation to the reference domain in the simulation of a mixing layer
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PML can be computationally expensive when compared with 
the other two boundary conditions. In the cases where the 
PML was not the best boundary condition, the magnitude of 
the pressure error can be decreased using more points in the 
damping zone, which resulted in an increase in the computa-
tional cost. This increase in computational cost is due to the 
increased number of equations to be solved in the PML region. 
The second disadvantage is that the formulation of the PML 
is complex and can lead to numerical instabilities. Although 
PML transformations were defined by Hu to be implemented 
in the Euler and Navier–Stokes equations for different types of 
flows, it is necessary to study the PML stability for each new 
flow condition. Similar performance results can be achieved 
with simpler non-reflecting conditions such as the ETA and 
the BZ.

The boundary conditions BZ and ETA are effective in 
reducing reflections. They are simple to implement, and their 
formulation is independent of the equations solved. How-
ever, the BZ and ETA may have a lower performance when 
the damping zone size was not adequate.
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Appendix 1: initial conditions for uniform 
flow

For uniform flow, the following initial conditions were 
defined for acoustic, vorticity and entropy pulses:

The variables A0 , B0 and C0 are the amplitudes, and �a , �b 
and �c are the thicknesses for the acoustic, vorticity and 
entropy pulses, respectively. The positions xa , xb and xc are 
the points of application of the different pulses. All pulses 

(19)
� = A0 exp

[
−ln(2)

(
(x + xa)

2 + (y + ya)
2

�a

)]

+ C0 exp

[
−ln(2)

(
(x + xc)

2 + (y + yc)
2

�c

)]
,

(20)u = B0y exp

[
−ln(2)

(
(x + xb)

2 + (y + yb)
2

�b

)]
,

(21)
v = − B0(x − xb) exp

[
−ln(2)

(
(x + xb)

2 + (y + yb)
2

�b

)]
,

(22)
P = − A0(x − xb) exp

[
−ln(2)

(
(x + xb)

2 + (y + yb)
2

�b

)]
.

used in this work have unitary amplitude and a thickness of 
16 and were located at the origin of the domain.

Appendix 2: initial conditions for a mixing 
layer

For the mixing layer, the initial conditions are:

where the streamwise non-dimensional velocity Mx distri-
bution is

and the non-dimensional density is

with the temperature distribution given by the Crocco–Buse-
mann relation,

The parameter � is the thickness of the mixing layer, and 
Mx(y) represents the streamwise velocity non-dimensional-
ized by the speed of sound. Mx1 and Mx2 are the non-dimen-
sional velocities at the top and bottom of the mixing layer. 
Table 7 shows the parameters used in the mixing layer defi-
nition. A complete study of stability of this mixing layer is 
found in [20]. 

Appendix 3: basic disturbance equations

The compressible Rayleigh stability equation for pressure dis-
turbance � in a two-dimensional, inviscid, parallel flow for a 
mixing layer can be written as:

(23)

⎧
⎪⎨⎪⎩

�0
u0
v0
p0

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

�(y)

Mx(y)

0

1∕�

⎫
⎪⎬⎪⎭
,

(24)Mx(y) =
1

2

[
(Mx1 +Mx2) + (Mx1 −Mx2)tanh

(
2y

�

)]
,

(25)�(y) =
1

T(y)
,

(26)
T(y) =T1

Mx −Mx2

Mx1 −Mx2

+ T2
Mx1 −Mx

Mx1 −Mx2

+
� − 1

2
(Mx1 −Mx)(Mx −Mx2).

(27)

𝜕2𝜋

𝜕y2
−

(
2

M − c

𝜕M

𝜕y
−

T̄ �

T̄

)
𝜕𝜋

𝜕y
− 𝛼2

[
1 −

1

T̄
(M − c)2

]
𝜋 = 0.

Table 7   Parameters for the 
mixing layer definition Mx1 = 0.8 Mx2 = 0.2

T1 = 1.0 T2 = 0.8

� = 1.4 � = 0.4
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To non-dimensionalize Eq. 27, reference values have been 
selected. M = Ū∕a0 is the Mach number of the uniform flow, 
where Ū is the base flow velocity in the streamwise direc-
tion non-dimensionalized by a reference speed of sound a0 , 
y = y�∕l0 where y is the direction normal to the flow non-
dimensionalized by a reference scale l0 , T = T �∕T0 where 
T is the base flow temperature non-dimensionalized by a 
reference temperature T0 , � = p∕(a2

0
�0) where p is the pres-

sure fluctuation, non-dimensionalized by a2
0
�0 , where �0 is a 

reference density. c = �∕� is the disturbance phase velocity, 
non-dimensionalized by the reference speed of sound a0.

To solve Eq. 27 for spatial stability analyses, it is neces-
sary to find the eigenvalues � for a particular � for a nonlinear 
generalized eigenvalue problem:

where D and D2 represent the derivative operators �∕�y and 
�2∕�y2 , respectively.

To solve the nonlinear eigenvalue problem for � , the 
equations need to be linearized to a linear system of equa-
tions using the following transformation:

Using:

(28)

𝛼3

(
M2

T̄
Ū3 − Ū

)
𝜋𝛼2

(
w − 3

M2

T̄
Ū2w

)
𝜋

+ 𝛼

(
3
M2

T̄
Ūw2 − 2Ū�D + ŪD2 +

T̄ �

T̄
ŪD

)
𝜋

=

(
w3M

2

T̄
+

T̄ �

T̄
wD + wD2

)
𝜋,

(29)g = ��,

(30)

𝛼2

(
M2

T̄
Ū3 − Ū

)
g + 𝛼

(
w − 3

M2

T̄
Ū2w

)
g

+

(
3
M2

T̄
Ūw2 − 2Ū�D + ŪD2 +

T̄ �

T̄
ŪD

)
g

=

(
w3M

2

T̄
+

T̄ �

T̄
wD + wD2

)
p.

(31)z = �g,

(32)

𝛼

(
M2

T̄
Ū3 − Ū

)
z +

(
w − 3

M2

T̄
Ū2w

)
z

+

(
3
M2

T̄
Ūw2 − 2Ū�D + ŪD2 +

T̄ �

T̄
ŪD

)
g

=

(
w3M

2

T̄
+

T̄ �

T̄
wD + wD2

)
𝜋,

the final linear system of equations can be written as:

where

The eigenvalue problem 33 is solved using the spectral col-
location method, with Chebyshev collocation points, using 
N = 300 points. As the collocations points are in the interval 
[ − 1, 1 ], the mapping presented in (35) is used.

where � controls the grid stretching and � = 0.2 was used.
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