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1*, Rico Berner2,3, Ewandson L. Lameu4,5, Oleksandr V. PopovychID

6,7,

Serhiy Yanchuk3

1 Neurotechnology Group, Technische Universität Berlin, Berlin, Germany, 2 Institut für Theoretische Physik,

Technische Universität Berlin, Berlin, Germany, 3 Institut für Mathematik, Technische Universität Berlin,

Berlin, Germany, 4 National Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil,
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Abstract

We report the phenomenon of frequency clustering in a network of Hodgkin-Huxley neurons

with spike timing-dependent plasticity. The clustering leads to a splitting of a neural popula-

tion into a few groups synchronized at different frequencies. In this regime, the amplitude of

the mean field undergoes low-frequency modulations, which may contribute to the mecha-

nism of the emergence of slow oscillations of neural activity observed in spectral power of

local field potentials or electroencephalographic signals at high frequencies. In addition to

numerical simulations of such multi-clusters, we investigate the mechanisms of the

observed phenomena using the simplest case of two clusters. In particular, we propose a

phenomenological model which describes the dynamics of two clusters taking into account

the adaptation of coupling weights. We also determine the set of plasticity functions (update

rules), which lead to multi-clustering.

Introduction

Clustering of the dynamics and coupling is observed at several scales of the brain structure and

function. For example, in the data measured by the functional magnetic resonance imaging

(fMRI), the brain networks form functional clusters that can be seen in the matrices of the

functional and effective connectivities for task-based and task-free (resting state) paradigms

[1–6]. Clustering has also been observed for dynamic functional connectivity, where the time

courses of the connectivity exhibit a few discrete states with well pronounced clusters [7]. Dis-

ruption of such clustered states of connectivity may be associated with some brain disorders

[8, 9]. It is therefore important to investigate the emergence of clustering in neural populations

that we address in this study.

Neural networks are able to adapt their structure depending on the activity of the nodes or

external stimuli [10]. One of the possible mechanisms of such an adaptation, which may lead
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to persistent changes in neural connections and relate to learning and memory, is synaptic

plasticity [11]. The efficacy of synapses to transmit the electrical potential between neurons

may increase or decrease depending on the mutual neural activity, which results in short- or

long-term potentiation or, respectively, depression of synapses [12, 13]. An example is spike

timing-dependent plasticity (STDP) which describes the synaptic weight change as a function

of the difference of spiking times between pre- and post-synaptic neurons [14–18].

One of the famous plasticity rules, the Hebbian rule, assumes that the modifications of the

synaptic weights are driven by correlations in the firing activity of pre- and post-synaptic neu-

rons. More specifically, it assumes that those connections are potentiated, for which one neu-

ron contributes to the firing of another [11]. Nevertheless, in many publications, the Hebbian

rule is considered in a more narrow sense of a closeness between the spiking times: the smaller

the distances between the spikes are the higher is the potentiation of the corresponding syn-

apse [19, 20]. In this work, we are dealing with spike-based learning rules rather than rate-

based.

Previous studies of neural networks with STDP showed that such networks can evolve and

create various coupling structures. For instance, the weights can exhibit stable localized spatial

structures, that can be interpreted as receptive fields [21]. These structures can be either unidi-

rectionally of bidirectionally coupled, depending on the plasticity rule or external input prop-

erties. The STDP mechanism plays an important role in temporal coding of information by

spikes [14, 21]. On the one hand, a synchronized firing in neural ensembles with STDP can be

stabilized through potentiation of synaptic coupling by stimulation-induced transient syn-

chronization of neurons [22–25]. On the other hand, a desynchronized state can lead to a

depression of synaptic weights [22, 23]. Thus, neural networks with plasticity are prone to a

co-existence of different stable dynamical and structural states, which may be realized by

choosing appropriate initial conditions or stimulation procedures.

Human brain networks demonstrate different degrees of modularity, sometimes with hier-

archical features [26–30]. Recently, a hierarchical clustering was observed in phenomenologi-

cal models of adaptive networks of phase oscillators [31–33]. As a result of an adaptation, the

network evolved into groups of strongly-connected clusters, while the coupling between the

groups was depressed. The stability analysis of such clusters reveals [33, 34] that the preferred

stable cluster configuration corresponds to significantly different sizes of the clusters. The

dynamics within each cluster are frequency-synchronized, while the frequencies between clus-

ters differ. Thus, self-organized emergence of clusters leads to the emergence of different col-

lective frequencies in the system. The multi-stability of such clusters was also observed in

ensembles of Morris-Lecar bursting neurons with STDP in [35].

In this paper we report on the phenomenon of clustering with respect to connectivity and

frequencies in a network of adaptively coupled Hodgkin-Huxley (HH) neurons. The spike tim-

ing-dependent adaptation is considered to be symmetric as experimentally found for hippo-

campal synapses [36] and can also be derived from asymmetric STDP for an “effective time

window” [37]. Then the observed clusters are bidirectionally coupled [35]. Splitting of a neural

population to a few clusters synchronized at different frequencies could lead to a slow waxing

and waning of the amplitude of the mean field, where the clusters transiently gather together

and move apart as the time evolves [35]. The frequency of such a modulation of the mean neu-

ral activity could be much smaller than the firing rate of individual neurons and depends on

the differences between the clusters’ frequencies. The emergence of synchronized clusters

could explain the origin of the low-frequency modulation of the spectral power of macroscopic

brain signals like local field potentials (LFP) or electroencephalographic (EEG) signals in

higher frequency bands, which also correlates with slow oscillations of the blood oxygen level-

dependent (BOLD) signal measured by fMRI [38–41]. Several other modeling studies have
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also reported on clustering in the neural populations with plasticity [35, 42, 43]. These clusters

have been observed for different models that ranged from simple phase oscillators to the mod-

els of spiking and bursting neurons and demonstrate stability with respect to heterogeneity of

the interacting neurons and random perturbations [35, 42, 43]. In this paper we provide a sim-

ple phenomenological model and explain a mechanism governed by synaptic plasticity of the

stabilization of such clusters in a neural population.

The structure of the paper is as follows. In the first section we present the model. The next

section shows numerically observed multi-clusters. The detailed mechanisms of the stability of

frequency clusters is explained afterwards using the simplest case of two clusters. Then we pro-

pose a phenomenological model, which describes the dynamics of two clusters taking into

account the adaptation of the weights. The model is shown to reflect not only qualitative, but

also some basic quantitative properties of the two-cluster formation. We also determine the set

of plasticity functions (update rules), which lead to the clustering.

Materials and methods

Model

The network of N HH neurons is described by the following system [24, 25, 44, 45]

C _Vi ¼ Ii � gNam3
i hiðVi � ENaÞ � gkn4

i ðVi � EKÞ � gLðVi � ELÞ �
ðVi � ErÞ

N

XN

j¼1

kijsj;

_mi ¼ amðViÞð1 � miÞ � bmðViÞmi;

_hi ¼ ahðViÞð1 � hiÞ � bhðViÞhi;

_ni ¼ anðViÞð1 � niÞ � bnðViÞni;

_si ¼
5ð1 � siÞ

1þ eð
� Viþ3

8
Þ
� si:

ð1Þ

Here Vi is the potential of the i-th neuron with the corresponding equilibrium potentials ENa =

50mV, EK = −77mV, and El = −54.4mV. C = 1μF/cm2. Our choice of Er = 20mV corresponds

to the excitatory neurons. m, h, and n are gating variables, and their dynamics depend on

opening and closing rates

amðVÞ ¼
0:1V þ 4

1 � eð� 0:1V� 4Þ
;

bmðVÞ ¼ 4e
� V� 65

18ð Þ;

ahðVÞ ¼ 0:07e
� V� 65

20ð Þ;

bhðVÞ ¼
1

1þ eð� 0:2V� 3:5Þ
;

anðVÞ ¼
0:01V þ 0:55

1 � eð� 0:1V� 5:5Þ
;

bnðVÞ ¼ 0:125e
� V� 65

80ð Þ:

The parameters are gNa = 120mS/cm2, gK = 36mS/cm2, and gl = 0.3mS/cm2. The constant

current Ii is set to 9μA/cm2 so that the individual neurons are identical and oscillatory.

The synaptic input current from j-th neuron is scaled by the synaptic strength κij, which

changes due to plasticity. The adaptation of κij occurs discontinuously whenever one of the

neurons i or j spikes. More specifically, the discontinuous change is given by the following
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plasticity function

kij !

0; if kij þ dWðDtijÞ < 0

kij þ dWðDtijÞ; if 0 � kij þ dWðDtijÞ � kmax

kmax; if kij þ dWðDtijÞ > kmax

8
>>><

>>>:

ð2Þ

where Δtij = ti − tj is the spike time difference between the postsynaptic and presynaptic neu-

rons; δ> 0 is a small parameter determining the size of the single update; κmax > 0 is the maxi-

mal coupling; and the plasticity function [14–16, 21] is

WðDtijÞ ¼ cpe
�
jDtij j
tp � cde

�
jDtij j
td ð3Þ

with positive parameters cp, τp, cd, and τd. We also assume no autapses and set κii = 0.

Example of the considered plasticity function W used in our simulations is shown in Fig 1.

This is a symmetric function, which corresponds to a potentiation of the coupling weights of

the neurons with highly correlated firing. As we will discuss at the end of the results section,

there is a family of plasticity functions of similar form that allow for the frequency clustering.

Fig 1. Plasticity function W(Δtij) for τp = 2, τd = 5, cp = 2, cd = 1.6.

https://doi.org/10.1371/journal.pone.0225094.g001
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Results

Numerical observation of synchrony and frequency clustering

In order to investigate the dynamics of network (1), we initialize the neurons and the coupling

randomly and integrate the system numerically. For the parameter values τp = 2, τd = 5, cp = 2,

cd = 1.6, and κmax = 1.5 we observe two phenomena: complete synchronization and the emer-

gence of frequency clusters hierarchical in size, see Figs 2 and 3, respectively.

Fig 2. Synchronization into one Cluster. Evolution of the coupling matrix κij(t) starting from random initial conditions and converging to a completely synchronous

state. Panel (A) shows initial coupling matrix, (B) the coupling matrix after the transient t = 2000ms. Raster plot of spiking times at the beginning of simulations (C)

and after the transient (D). The asymptotic state (B,D) is a completely synchronized spiking with all coupling weights κij potentiated to kmax. Other parameters

N = 200, τp = 2, τd = 5, cp = 2, cd = 1.6, and κmax = 1.5.

https://doi.org/10.1371/journal.pone.0225094.g002
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Fig 2(A) shows the initial coupling weights, and Fig 2(C) illustrates the spike times of the

neurons at the beginning of the simulation. One can observe that while the neurons start with

an incoherent spiking, they enhance the coherence already after a few spikes due to the interac-

tion between them as well as the plasticity. The plasticity potentiates the connections of neu-

rons that fire together. A complete synchronization is established and the coupling weights

increase to κmax after a transient (Fig 2(B) and 2(D)). In a completely synchronized state, the

individual neurons spike simultaneously, hence, the spike time differences Δtij = 0.

The emergence of frequency clusters is shown in Fig 3 for two clusters. The system in Fig 3

possesses the same parameters as in Fig 2, and the difference is just another realization of ran-

dom initial conditions. In contrast to the synchronized state, the final state shown in Fig 3(F)

consist of two groups of synchronized neurons. These cluster states also manifest themselves

as two groups of strongly coupled elements in the coupling matrix κ (Fig 3(C)). The coupling

weights between the neurons from the different groups is very small or zero.

We observe that the largest cluster is formed rather quickly as time evolves, whereas the for-

mation of the small cluster takes much more time. This is illustrated in Fig 4, where the time

courses of the mean coupling within each of the two clusters are shown. The average coupling

within the big cluster reaches its maximum fast (at t� 1000, solid curve in Fig 4), whereas the

Fig 3. Frequency clusters. Evolution of the coupling matrix κij(t) starting from random initial conditions and converging to frequency clusters hierarchical in size.

Panel (A) shows initial coupling matrix, (B) the coupling matrix after the transient t = 5600ms, and (C) t = 20000ms. (B-F) Corresponding raster plots of spike times.

The asymptotic state (C,F) is a hierarchical cluster state with the coupling weights κij potentiated to kmax within each cluster and small or zero otherwise. Other

parameters as in Fig 2. The oscillators are ordered accordingly to their mean frequency.

https://doi.org/10.1371/journal.pone.0225094.g003
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smaller cluster in Fig 3(C) and 3(F) is formed through the merging of transient clusters and

finally establishes at t� 17000 (dashed curve in Fig 4).

For the states with more clusters, each new formed cluster is significantly smaller than the

previous one, see Fig 5, where three clusters are shown. The spiking period of the cluster

appears to be proportional to its size: the bigger the cluster the larger is the period. Simulation

of the cases with even more clusters becomes computationally expensive due to large

transients.

Clustering with independent random input. To investigate the robustness of our find-

ings, we added an α-train as additional independent random input to the membrane potential

Vi of every neuron:

Iinputi ðtÞ ¼ IðVr � ViðtÞÞ
X

ti;k<t

aðt � ti;kÞe
� aðt� ti;kÞÞ

ð4Þ

Fig 4. Cluster formation. Formation of individual clusters over time (corresponds to the dynamical scenario in Fig 3). The dashed and solid curves depict the time

course of the mean coupling within the small and big clusters, respectively.

https://doi.org/10.1371/journal.pone.0225094.g004
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The Eq (4) models a postsynaptic potential (PSP) that is received by the neuron at

certain random times τi,k. The inter-spike interval is Gaussian distributed

ti;kþ1 � ti;k ¼ Dti;k � N ð14ms; 4msÞ. α is set to 24/hΔτi,ki.
The numerical simulations Fig 6 show that the clustering is still observed under the influ-

ence of random input Iinputi ðtÞ of intensity I. More specifically, for sufficiently weak perturba-

tions with I< 0.01, all three clusters survive (Fig 6(A)). With increasing the amplitude I, the

clusters start to decouple. The smaller clusters are affected first (Fig 6(B)–6(D)), they start

desynchronizing at I = 0.01. The biggest cluster keeps shrinking in size while I is increased and

finally for I = 0.07 the whole network decouples (Fig 6(E)).

Fig 5. Three-cluster state. Example of a three-cluster state for N = 500, τp = 2, τd = 5, cp = 2, cd = 1.6, and κmax = 1.5 with a random initial distribution of κij in [0,

0.75].

https://doi.org/10.1371/journal.pone.0225094.g005

Fig 6. Influence of independent random input on clusters. Coupling matrices for t = 10000ms and different amplitudes of independent random input I (see Eq (4)).

(A) I = 0.005, (B) I = 0.01, (C) I = 0.02, (D) I = 0.05 and (E) I = 0.07. All other parameters as in Fig 5.

https://doi.org/10.1371/journal.pone.0225094.g006
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Two clusters in more detail

In this section we numerically show that depending on the relative size of the two clusters,

such two-cluster states can be either dynamically stable or transient leading to complete syn-

chronization. In order to investigate the cluster stability, we initialize the system in a two clus-

ter state with the number of neurons Ns in the small cluster and Nb = N − Ns in the big cluster.

The total number of neurons is set to N = 50. The inter-cluster couplings are set to zero initially

while the intra-cluster couplings equals κmax. All neurons in the same cluster are initialized

with the same initial conditions, so the clusters are fully synchronized at t = 0.

Fig 7(A) shows frequency difference of two uncoupled clusters as a function of the size of

the small cluster. The frequency difference demonstrates an almost linear dependence on the

cluster size and decays as the size of the smaller cluster increases. Moreover, we also observe

that clusters with sufficiently different sizes are stable while the clusters of similar sizes, in the

considered case with Ns> 8, are transient, merge into a single cluster and eventually lead to a

stable completely synchronous state, see Fig 8.

Although the threshold of how different the clusters should be in order to be stable is cer-

tainly model dependent, the synchronization of similar clusters is a general property. The

merging of two clusters can be explained qualitatively as follows. Initially uncoupled clusters

evolve each with their natural frequencies Os and Ob. If their sizes are different, then Os 6¼ Ob,

and the clusters arrive in-phase periodically with the ‘beating’ frequency ΔO = Ob −Os. As

soon as such an in-phase episode occurs, the interspike intervals Δtij between any two neurons

from different clusters become small and, hence, due to the plasticity rule W (see Eq (2) and

Fig 1) the inter-cluster coupling weights increase. Moreover, the duration of such an in-phase

episode depends on the frequency difference between the clusters. As a result, for a small fre-

quency difference ΔO, the time interval where the clusters are practically in-phase is suffi-

ciently long in order to potentiate the coupling weights to their maximum value. This unites

the two clusters into one. In contrast, for large ΔO, such an episode is short, and the inter-clus-

ter coupling remains small, which keeps the clusters oscillating at different frequencies in a sta-

ble manner.

Fig 7. Cluster frequencies and time until fusion. (A)Difference between synchronization frequencies of the two clusters for different size of the smaller cluster Ns. (B)

Time until cluster fusion for different initial size of the smaller cluster Ns.

https://doi.org/10.1371/journal.pone.0225094.g007
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Fig 8. Two cases: Fusion and stable clusters. Evolution of the coupling matrix for N = 50 and the number of neurons Ns = 8 (A)-(C) and Ns = 9 (D)-(F) in the small

cluster. In panels (A)-(C) the clusters are stable, while in (D)-(F) they are merging to one synchronous cluster. (G, H) Time courses of the spiking synchronization

frequencies of small (Ns neurons) and large (Nb neurons) clusters depicted by dashed and solid curves, respectively, for (G) Ns = 8 and Nb = 42 and (H) Ns = 9 and Nb =

41. Parameter κmax = 1.0.

https://doi.org/10.1371/journal.pone.0225094.g008
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Fig 8(A)–8(C) displays an example of two-cluster stable state with Ns = 8. Starting from the

two-cluster state, after t = 1500ms, the coupling between the clusters increases, see Fig 8(B)

due to the “in-phase episode” when the clusters are synchronous. Afterwards, however, the

inter-cluster coupling weights return to their initial configuration (Fig 8(C)), since the spike

time differences for neurons from different clusters are again far enough apart to cause the

depression of the inter-cluster synapses. Such a process is repeated every time the clusters meet

and is typical for the stable cluster states. A typical case of transient clusters is presented in Fig

8(D)–8(F) for Ns = 9. The inter-cluster coupling is again potentiated when the clusters meet,

but it does not decrease again, and the clusters merge in a single cluster of a fully coupled and

synchronized regime (Fig 8(F)). The transient time that could be elapsed until the cluster

fusion depends on the cluster size as illustrated in Fig 7(B).

Fig 8(G) and 8(H) show how the spiking frequency of the clusters change over time. During

the in-phase episode, the cluster with the higher natural spiking rate slows down significantly,

while the slower cluster (with larger number of neurons Nb) speeds up a little. For a stable clus-

ter state the cluster frequencies again deviate from each other (Fig 8(G)), whereas all neurons

fire with the same frequency when the clusters unite into one (Fig 8(H)). We found this phe-

nomenon for different numbers of neurons and different κmax. Increasing κmax increases the

initial period difference, but the behavior in general stays the same.

Fig 9 shows the dynamics of the mean synaptic activity SðtÞ ¼ 1

N

PN
i¼1

siðtÞ of the network in

the case of two stable clusters, which models the dynamics of LFP. During the in-phase epi-

sodes of the two clusters, S(t) has a higher amplitude, because both clusters spike synchro-

nously. The maximum amplitude is generated by maximum synchronization in the network.

The low amplitude of S(t), on the other hand, corresponds to the time intervals when the clus-

ters are out of phase. In the latter case, the mean synaptic activity shows two peaks, the higher

Fig 9. Mean synaptic activity. Mean synaptic activity S(t) of the neural population in the case of stable two cluster state. Panel (A) shows the dynamics of S(t) on the

time interval of 12 s, where modulation of the amplitude (blue line) is visible, while the fast oscillations are not recognized on this timescale. The maximum amplitude

corresponds to the two clusters being synchronised, while the low amplitude corresponds to the clusters being out of phase. Panel (B) shows the zoom of a small time

interval. The modulation takes place on the timescale which is two orders of magnitude larger than the individual spikes of S(t) as well as individual neural spikes in

both clusters. Cluster frequencies ω1 = 0.065012 kHz and ω2 = 0.065416 kHz. The corresponding period of modulation is T� 2.5s.

https://doi.org/10.1371/journal.pone.0225094.g009
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peak is generated by the larger cluster and the lower by the smaller one, see Fig 9(B). For the

considered case, the synchronized oscillations of individual neurons in the clusters take place

at a time scale of several milliseconds (period *15 ms, Fig 9(B)), see also Fig 8(G) and 8(H).

The neurons are tonically spiking. The frequency difference ΔO between clusters is, however,

of the order of sub-Hz, because the corresponding cluster frequencies are close to each other

(Fig 8(G) and 8(H)). Then the modulation of S(t) is observed at a much slower timescale of a

few seconds, which is of two orders of magnitude slower than the intrinsic neural firing, see

Fig 9(A), as observed in empirical data of the brain activity [40, 41].

In the following section, a phenomenological model is introduced in order to further inves-

tigate the dynamics of two clusters.

Phenomenological model

Model derivation. In this section we introduce a reduced qualitative model for the cou-

pling and phase difference of two clusters. The model is based on the assumption that oscilla-

tors are synchronized identically within each cluster and the coupling between the clusters is

weak. As a result, the interaction between oscillatory clusters can be described in the frame-

work of two coupled phase oscillators that are interacting via their phase differences [46–49]

_φ1 ¼ o1 � F1ðφ1
� φ

2
Þ; ð5Þ

_φ2 ¼ o2 � F2ðφ2
� φ

1
Þ; ð6Þ

where ω1 and ω2 are the natural frequencies of the individual clusters, F1 and F2 are effective

interaction functions. For the phase difference φ = φ1 − φ2, this system reads

_φ ¼ o � FðφÞ ð7Þ

where ω = ω1 − ω2 is the difference of the natural frequencies, and F(φ) = F1(φ) − F2(−φ).

Since the clusters are synchronized for a sufficiently small frequency mismatch ω, the peri-

odic interaction function F(φ) must satisfy F(0) = 0 and F0(0) > 0. The latter means that there

is a stable equilibrium φ = 0 for small ω. Aiming at a qualitative insight, we further simplify the

model by assuming that F(φ) = σ sin(φ + α), where sin φ can be viewed as a first Fourier har-

monic of the interaction function and σ as an effective coupling weight. The parameter α =

sin−1(ω/σmax) is a constant phase shift assuring that the phase difference of the synchronized

cluster is zero. In fact, for small ω, this parameter is also small and it does not play important

role in the qualitative behavior of the model apart from a small shift of the synchronized state

to φ = 0.

Another component of the model is the plasticity-driven changes of the coupling σ. In

order to derive the equation for σ, we consider the STDP update in the case of a periodic

motion of the clusters. We assume that the coupling σ is proportional to an averaged coupling

between the clusters. This is a natural assumption in the case of weakly coupled systems. Let us

find out how the update of the intercluster coupling depends on the phase difference φ. For a

given phase difference φ and the frequencies o1 ¼ �o þ o=2, o2 ¼ �o � o=2 (here we intro-

duced the mean frequency �o), the spiking period of the both clusters can be approximated as

T � 2p=�o up to small terms of order ω, and the distance ΔT between the spikes of two clus-

ters

DT ¼ T
φ

1

2p
� T

φ
2

2p

h i
mod T ¼ T

φ
2p

h i
mod T �

φ mod 2p

�o
:
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Since the spike time differences ΔT and T − ΔT occur recursively, see Fig 10(B), the updates

per unit time sum to the function

d

T
ðWðT � DTÞ þWðDTÞÞ ¼

d�o

2p
GðφÞ; ð8Þ

where

GðφÞ≔W
2p � ðφ mod 2pÞ

�o

� �

þW
φ mod 2p

�o

� �

: ð9Þ

Since the update of σ is proportional to the obtained function, and taking into account the

smallness of δ, this update can be written as _s ¼ εGðφÞ, where ε is a small parameter of the

coupling adaptation that controls the scale separation between the fast dynamics of the clusters

and the slow dynamics of the coupling.

Additionally, the coupling strength σ(t) should be bounded to the interval [0, σmax] by

imposing cut-off conditions. More specifically, the derivative _s is discontinuous at the bound-

aries σ = 0 and σ = σmax, i.e. _s ¼ maxf0; εGðφÞg for σ = 0 and _s ¼ minf0; εGðφÞg for σ =

σmax. The considered cut-off corresponds to “hard” bound conditions [50]. Another possibility

would be “soft” or “multiplicative” bounds [51], when the update is proportional to the dis-

tance to the boundary. We consider here the hard bound, since it corresponds to the hard

bound of the STDP rule for HH system.

Fig 10. Update function G. (A) Update function G(φ) for τp = 2, τd = 5, cp = 2, and cd = 1.6. (B) Schematic spiking of two oscillators with spike time difference ΔT and

periods close to T.

https://doi.org/10.1371/journal.pone.0225094.g010
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The final phenomenological model reads as follows

_φ ¼ o � ssinðφþ aÞ; ð10Þ

_s ¼ ε �

GðφÞ for 0 < s < smax;

maxf0; GðφÞg for s ¼ 0;

minf0; GðφÞg for s ¼ smax:

8
><

>:
ð11Þ

with frequency mismatch ω> 0 and α = sin−1(ω/σmax).

Properties of the model. Phase space of system (10)–(11) is two dimensional with (φ,

σ) 2 S1 × [0, σmax]. The nullclines are given by G(φ) = 0 for _s ¼ 0 and σ = ω/sin(φ + α) for

_φ ¼ 0 in the internal points of the phase space. For the parameter values as in Fig 11, the φ-

nullcline corresponds to the two lines φ = φ� � 0.23 and φ = −φ�, while the σ-nullcline to a

U-shaped nonlinear curve (grey lines in Fig 11).

There is just one fixed point (φ�, σ� = ω/sin φ�) of saddle-type within the region σ 2 (0,

σmax). This point is given by the intersection of the nullclines. Fig 11 shows this fixed point and

its stable and unstable separatrixes (black lines). An additional fixed point as well as periodic

attractor emerge in system (10)–(11) due to the non-smoothness at the boundaries. More spe-

cifically, three situations are observed:

(I): One globally stable fixed point S = (0, σmax) which corresponds to the fusion of the two

clusters into one. The coupling σ = σmax and the phase difference is zero at the fixed point,

see Fig 11. All orbits are approaching this stable fixed point with time. This corresponding

phase portrait is shown in Fig 11(A).

(II): Coexistence of the stable fixed point S = (0, σmax) and a stable periodic orbit, see Fig

11(B). As in the case (I), the fixed point corresponds to the merging of two clusters. The

periodic orbit corresponds to two simultaneously existing clusters. The clusters possess dif-

ferent frequencies and, as a result, the phase difference is not bounded and rotate along the

circular direction φ. Part of the periodic orbit is located on the boundary σ = 0, i.e.

Fig 11. Phase portrait phenomenological model. Phase portraits of model (10)–(11) for (A) monostable regime of complete synchronization; (B) co-existence of

stable synchronized and clustered states; and (C) bifurcation moment of transition between the phase portraits illustrated in (A) and (B). The basins of attraction of

the synchronized regime (point S), clustered state (limit cycle indicated by thick black curve) and the saddle fixed point (φ�, σ�) are depicted by gray, blue, and white

colors, respectively. The nullclines of the system and stable and unstable manifolds of the saddle point are indicted by the thin gray and black curves, respectively.

Parameters (A) ω = 0.037 kHz, (B) ω = 0.06 kHz, (C) ω� 0.455 Hz, and the other parameters τp = 2, τd = 5, cp = 2, cd = 1.6, and ε = 0.08.

https://doi.org/10.1371/journal.pone.0225094.g011
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vanishing inter-cluster coupling. The coupling σ(t) increases between −φ� and φ� and

decreases otherwise. In fact, one can parameterise the coupling σ by the phase φ on the peri-

odic attractor. In the case when σ(φ�)< σ�, the solution returns to the boundary σ = 0,

moves along it till the orbit reaches the point (−φ�, 0), and the periodic motion repeats.

(III): When maxφ G(φ) < 0 then there exists globally stable periodic solution φ = ωt + φ0, σ =

0. In such a case, the fixed point on the boundary disappears. Formally, this corresponds to

an uncoupling between the clusters. However, in the original HH system, this parameter

regime corresponds to complete uncoupling of all oscillators because of the depression of

all synapses.

In fact, the parameter boundary between the cases (I) and (II) is determined by the condi-

tion σ(φ�) = σ�, which can be interpreted geometrically as hitting the point (−φ�, 0) by the sta-

ble manifold of the saddle equilibrium point, see Fig 11(C). In this special case, the saddle

equilibrium attracts the whole set of points from the phase space that is below the stable mani-

folds, see white area in Fig 11(C). In case (II), the separation between the basins of attraction

of the fixed point and the periodic orbit are given by the saddle equilibrium and its stable man-

ifolds. A sufficient condition for the case (III) is given by cd� cp and τd� τp. Under these con-

ditions G(φ)� 0 for all φ.

Summarizing, the case (II) corresponds to the situation when clusters are stable and do not

merge into one. For this, initial conditions must belong to the basin of attraction of the peri-

odic solution (Fig 11(B), blue domain). The analysis of the phenomenological model indicates

that the cluster case always coexists with stable complete synchronization.

Comparison of the model and cluster dynamics in HH network. In order to compare

dynamics of the phenomenological model (10)–(11) and the original system (1)–(2), we ran a

series of simulations of the HH network for parameter values that allow for a stable two-cluster

solution. The phases of the clusters are calculated as φ
1;2
ðtÞ ¼ 2p

t� tk
tkþ1 � tk

þ 2pk for t 2 ½tk; tkþ1Þ,

where {t1, . . ., tn, . . .} are spiking times with tk< tk+1 [47]. Correspondingly, the phase differ-

ence is φHH(t) = φ1(t) − φ2(t). The coupling measure σHH is given by the mean inter-cluster

coupling.

Extracting the quantities σHH and φHH from the numerically computed solutions of HH sys-

tem (1)–(3) we obtain a two-dimensional projection of the solution to the plane (φHH, σHH),

see Fig 12. The discontinuities in the orbits are related to the discrete STDP updates. Addition-

ally, since the phases φ1,2(t) can be firstly accessed after the both clusters fired, some of the area

of the phase diagram (see white area in Fig 12) was not accessible. This “empty” area corre-

sponds to anti-phase initial conditions, which are very sensitive, and, after each cluster fires,

they appear immediately either in the red or blue area. Nevertheless, the behavior has the same

qualitative features as in the phenomenological model, compare Figs 11 and 12.

Criteria for the emergence of clusters. Model (10)–(11) can be used to describe plasticity

functions, which lead to multiple clusters. For this, we investigate numerically the condition σ
(φ�) = σ�. More specifically, system (10)–(11) was initialized at the point (−φ�, 0) and numeri-

cally integrated forward in time. If σ(φ�)< σ�, the two clusters are stable and do not merge.

This procedure can be repeated for different parameter values.

In order to restrict the set of plasticity parameters, we fix τp = 2 and τd = 5 and vary cp and

cd. The results of the simulation are shown in Fig 13(A). The white, black and grey parameter

areas correspond to the appearance of stable periodic solution of (10)–(11) (case (II)), globally

stable fixed point (case (I)) and the case (III), respectively.

In order to compare the parameter regions obtained for the phenomenological model (Fig

13(A)) with those for the original HH system, we ran numerical simulations of system (1)–(3)
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with N = 50 neurons and Ns = 7 neurons in the small cluster. Starting from the two-cluster

state, we monitor the dynamics of the clusters. Fig 13(B) shows the results: the white region

corresponds to the case when the clusters survive and stay apart after the simulation time 3000

ms, black—when the clusters merge into one synchronous group, and grey—when the clusters

split into uncoupled neurons. This behaviour stays qualitatively the same for different cluster

sizes. However, depending on the frequency difference between the clusters, the set of parame-

ters allowing stable cluster states may change its size.

Comparison of the results for the phenomenological system and the HH system in the

Fig 13(A) and 13(B) shows that the phenomenological model provides a reasonable

approximation.

Conclusion

Our results show that adaptive neural networks are able to generate self-consistently dynamics

with different frequency bands. In our case, each cluster corresponds to a strongly connected

Fig 12. Phase portrait Hodgkin-Huxley model. Dynamics of the phase difference between the clusters φHH and mean inter-cluster coupling σHH for the solutions of

the HH system (1)–(3) for different initial conditions. N = 50 with Ns = 7 neurons in the small cluster and Nb = 43 in the big one. Red orbits converge to the regime of

complete synchronization, and blue trajectories lead to a stable two-cluster solutions. The nullclines of the phenomenological model are shown in gray. Other

parameters: τp = 2, τd = 5, cp = 2, cd = 1.6, and κmax = 1.5.

https://doi.org/10.1371/journal.pone.0225094.g012
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component with a fixed frequency. Due to a sufficiently large difference of the cluster sizes and

frequencies, the inter-cluster interactions are depreciated, while the intra-cluster interactions

are potentiated. In this study, we describe the mechanisms behind the formation and stabiliza-

tion of these clusters. In particular, we explain why the significant difference between the

cluster sizes is important for the decoupling of the clusters. From a larger perspective, the

decoupling of the clusters in our case is analogous to the decoupling of timescales in systems

with multiple timescales.

Furthermore, we present a two-dimensional phenomenological model which allows for a

detailed study of the clustering mechanisms. Despite of the approximations made by the deri-

vation, the model coincides surprisingly well with the adaptive Hodgkin- Huxley network.

Using the phenomenological model, we find parameter regions of the plasticity function,

where stable frequency clustering can be observed.

Clustering behavior also emerges at the brain scale, where synchronized communities of

brain regions constituting large distributed functional networks can intermittently be formed

and dissolved [52, 53]. Such clustering dynamics can shape the structured spontaneous brain

activity at rest as measured by fMRI. In this study, we show that slow oscillations based on the

modulation of synchronized neural activity can already be formed at the resolution level of a

single neural population if adaptive synapses are taken into account. These modulations of the

amplitude of the mean field can be generated in a stable manner [Fig 9], see also Ref. [35]. The

mechanism relies on fluctuations of the extent of synchronization of tonically firing neurons.

This is caused by the splitting of the neural population into clusters and the corresponding

cluster dynamics. It might contribute to the emergence of slow brain rhythms of electrical

(LFP, EEG) and metabolic (BOLD) brain activity reported by [38–41].

Fig 13. Parameter (cp, cd)-plane of the plasticity function. Panel (A): system (10)–(11). White region: stable periodic solution coexisting with a stable fixed point,

case II. Black region: globally stable fixed point, case I. Grey region: globally stable periodic solution with σ = 0. Panel (B): original system (1)–(3). White: stable two-

clusters (white); black: stable synchrony and no stable clusters; grey: decoupling of all neurons. Other parameters τp = 2, τd = 5, N = 50, Ns = 7, and κmax = 1.

https://doi.org/10.1371/journal.pone.0225094.g013
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However, other mechanisms for generating slow oscillations are possible. The papers [54,

55] discussed the emergence of slow oscillatory activity (< 1Hz) that can be observed in vivo

in the cortex during slow-wave sleep, under anesthesia or in vitro in neural populations. The

suggested mechanism relies on the corresponding modulation of the firing of individual neu-

rons, and the slow oscillation at the population level was proposed to be the result of very slow

bursting of individual neurons that synchronize across the neural population. In contrast, the

present work shows that the slow oscillations of the population mean field can also emerge

when the firing of individual neurons is not affected. The neurons may tonically fire at high

frequencies. The amplitude of the population mean field then oscillates at much lower fre-

quencies due to the slow modulation caused by the cluster dynamics.

Additionally, we would like to mention that the observed frequency clustering resembles

phenomenologically the weak chimera states [56, 57] where clusters with different frequencies

are formed in symmetrically coupled oscillators without adaptation. However the properties

and mechanisms of the appearance of such clusters are different from those presented here,

which are essentially based on the slow adaptation.

To conclude, we observe self-organised emergence of clusters in neural networks with

STDP. The clustering splits the neural population into groups synchronised at different fre-

quencies, which determine the dynamics of the clusters. These cluster dynamics might play a

role in low frequency oscillations during the resting state and can be described by a two-

dimensional model.
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