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ABSTRACT
This article provides observational evidence for the direct relation between current sheets,
multifractality and fully developed turbulence in the solar wind. In order to study the role of
current sheets in extreme-value statistics in the solar wind, the use of magnetic volatility is
proposed. The statistical fits of extreme events are based on the peaks-over-threshold (POT)
modelling of Cluster 1 magnetic field data. The results reveal that current sheets are the
main factor responsible for the behaviour of the tail of the magnetic volatility distributions.
In the presence of current sheets, the distributions display a positive shape parameter, which
means that the distribution is unbounded in the right tail. Thus the appearance of larger
current sheets is to be expected and magnetic reconnection events are more likely to occur.
The volatility analysis confirms that current sheets are responsible for the −5/3 Kolmogorov
power spectra and the increase in multifractality and non-Gaussianity in solar wind statistics.
In the absence of current sheets, the power spectra display a −3/2 Iroshnikov–Kraichnan law.
The implications of these findings for the understanding of intermittent turbulence in the solar
wind are discussed.
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1 IN T RO D U C T I O N

The goal of the field of space weather is to monitor and predict
events related to solar activity and the interplanetary medium and
their impact on Earth (Hanslmeier 2007; Riley 2012). Those events
include solar flares, coronal mass ejections and the solar wind and
are responsible for phenomena such as magnetic storms and sub-
storms (e.g. Gonzalez et al. 1994), which can lead to interference in
transportation, energy, telecommunications and navigation systems
(Hathaway 2015).

The solar wind is particularly important in space weather studies,
due to its continuous interaction with the Earth’s magnetosphere.
It is known that the solar wind is permeated by coherent structures
such as magnetic flux ropes and current sheets (Chian et al. 2016).
The latter constitute the main factor responsible for multifractality
and departure from Gaussianity in the statistics of magnetic field
time series (Chian & Miranda 2009), as well as intermittent
turbulence (Bruno & Carbone 2013). Such phenomena are closely
related to the occurrence of extreme events, which are events with
high amplitude in comparison with the distribution’s mean. For
instance, the non-linear interactions of the magnetic field in the solar
wind at small scales lead to the creation of intense current sheets,
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which can be associated with magnetic reconnections (Boozer
2014; Osman et al. 2014; Greco et al. 2018). Such reconnections
accelerate particles, causing high energy release in the space plasma
(e.g. Gosling 2012). The statistical analysis of extreme events has
been widely employed in studies of natural phenomena such as
wind velocity (Fawcett & Walshaw 2006), droughts and floods
(Engeland, Hisdal & Frigessi 2004), earthquakes (Ogata 1988)
and diseases (Thomas et al. 2016). Extreme-event theory has
also been used in space weather science, where it was applied
to solar flares (Tsiftsi & De la Luz 2018), geomagnetic storms
(Tsubouchi & Omura 2007), solar wind–magnetosphere coupling
(Moloney & Davidsen 2010) and sunspot numbers (Acero et al.
2017, 2018). Extreme-value theory (Coles 2001) comprises a set of
advanced techniques and statistical tools to model the distribution
functions of time series displaying extreme events. The present work
presents the application of extreme-value theory to the solar wind,
focusing on the role of current sheets in determining the distribution
shapes.

The relation of current sheets to the statistics of extreme events
and turbulence in space plasmas can be better appreciated by an
analysis of intermittency. We consider two models of intermittent
turbulence, the Kolmogorov (K41) and the Iroshnikov–Kraichnan
(IK). Originally, the K41 theory by Kolmogorov (1941) predicted
universality and scale-invariance in a given frequency range in
a turbulent spectrum, the inertial range. Inside this range, the
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turbulence loses geometrical information about the boundary con-
ditions related to the largest scales (integral scale), resulting in a
statistical self-similarity between scales. This universality suggested
by Kolmogorov was strongly criticized by Landau, for whom small-
scale fluctuations could be affected by perturbations in the integral
scale (Frisch 1995); furthermore, strong velocity gradients should
be confined to very limited regions of the flow, reflecting the
presence of intermittency and multifractality. In 1962, Kolmogorov
added intermittency and multifractality to his theory (Kolmogorov
1962), refining his global-scale invariance hypothesis to a local-
scale invariance.

The first model to describe turbulent processes in the presence of
magnetic fields was presented by Iroshnikov (1964) and Kraichnan
(1965). In it, an external isotropic magnetic field is considered and
perturbations propagate as waves along field lines with the Alfvén
speed (Alfvén 1942), where two waves can travel in the same or
opposite directions. In the case of counter-propagation, instabilities
and non-linear interactions can take place (Parker 1979), so that in
the IK model turbulence is guided by the collision of Alfvén waves.
Thus, while the energy cascade in the Kolmogorov model occurs due
to vortex–vortex interactions, in the IK model the energy transfer
is given by collisions of Alfvén wave packets. Despite the presence
of a background magnetic field, the IK model is isotropic, which
has led to some criticism (Matthaeus et al. 1996; Montgomery &
Matthaeus 1995; Sridhar & Goldreich 1994). Alternative models
have included anisotropy for the magnetic field (e.g. Goldreich &
Sridhar 1997).

Both the K41 and IK power-spectrum laws are observed in solar
wind data (Salem et al. 2009), but most works point to a Kolmogorov
(−5/3) scaling law for energy spectra (Chian & Miranda 2009;
Chian & Munoz 2011), while the IK scaling (−3/2) is seldom found
(Li et al. 2011). This is probably due to the fact that current sheets
are very frequent in the solar wind. There is evidence that current
sheets are the coherent structures responsible for the K41 scaling
law and in their absence the solar wind displays an IK scaling law
(Li et al. 2011).

Due to the possible impacts of current sheets in space plasma
dynamics, understanding the physics underlying the creation and
evolution of such structures is an important step to describe solar
wind turbulence. Several works have sought methods to detect
discontinuities in the solar wind magnetic field caused by current
sheets. For instance, in Chian & Miranda (2009) a time series of
normalized magnetic-field differences was used, while in Greco
et al. (2009, 2018) the partial variance of increments method was
adopted. In the present work, we propose a new technique based
on the volatility (Poon 2005), a statistical tool widely employed to
detect and predict sudden changes in financial markets (Tsay 2010).
This analysis is based on so-called return time series (Tsay 2010),
which present interesting statistical properties such as stationarity
and ergodicity. The measure of the bursts of those return time
series is called volatility (Poon 2005) and displays the clustering
(or memory) effect (Tsay 2010). In other words, the volatility at a
certain time depends on the volatility at previous times. Therefore, it
is common to model and even predict the volatility of financial series
by using auto-regressive models for variance, such as, for example,
the autoregressive conditional heteroskedasticity (ARCH) model
(Engle 1982).

Financial time series present some key characteristics found in
solar wind time series, namely chaoticity (Hołyst, Żebrowska &
Urbanowicz 2001), multifractality, extreme events (Green, Hanan &
Heffernan 2014) and turbulence (Voit 2005), which encourages the
use of the same tools in the analysis of solar wind data. Loosely,

the effects of current sheets and magnetic reconnections in the solar
wind are qualitatively analogous to the effects of economic crises
in financial time series.

In Section 3 we describe our solar wind data and the pre-
processing steps necessary for statistical analysis. The methodology
is presented in Section 2, where a description of the generalized
Pareto distribution is given, as well as methods for choosing a
threshold for extreme events and for estimating the GPD parameters.
We also present Li’s method for current-sheet detection and explain
how to compute the zeta function for studying the multifractal nature
of fully developed turbulence. The results of the time series analysis
are presented in Section 4 and a discussion and conclusions are given
in Section 5.

2 ME T H O D O L O G Y

2.1 Generalized Pareto distribution (GPD)

Two of the most popular techniques to model extreme values are
block maxima and the peaks-over-threshold (POT) technique (Coles
2001). In the block maxima method, a time series is divided into a
number of sub-blocks and the maxima of each block are chosen as
the new random variables to compute the extreme event statistics,
the distribution function of which is given by (Jenkinson 1995;
Fisher & Tippett 1928)

G (z) = exp

{
−
[

1 + ξ

(
z − μ

σ

)] −1
ξ

}
, (1)

defined on {z: 1 + ξ (z − μ)/σ > 0}, where −∞ < μ < ∞ is the
location parameter, σ > 0 is the scale parameter and −∞ < ξ <

∞ is the shape parameter. Equation (1) is known as the generalized
extreme values (GEV) distribution (Coles 2001). Although simple
and robust, this type of modelling may leave out a number of extreme
events that belong to the same block, since only the maximum is
considered. Alternatively, the POT technique considers all events
above a certain threshold, thus avoiding missing important peaks in
the analysis. In this work, the POT is employed and its variables
are modelled by the generalized Pareto distribution (GPD: Coles
2001).

Let (Xi: i = 1, ..., n) be a sequence of independent and identically
distributed (iid) random variables with a distribution function F.
One can consider the events, X, from this set that are above a given
threshold u (X > u) and define a new random variable Y = X − u,
known as the threshold excess, for which the conditional probability
is given by

Pr (X > u + y|X > u) = Pr [(X > u + y) ∩ (X > u)]

Pr (X > u)

= Pr [X > u + y]

Pr (X > u)

= 1 − F (u + y)

1 − F (u)

= 1 − H (y) , y > 0, (2)

where H(y) is the distribution function of y = x − u. If F were
known, then the distribution function of the threshold excess would
be easily determined, but generally that is not the case. According
to Pickands (1975) and Balkema & de Haan (1974), if the block
maxima time series converges into a GEV distribution, then the
threshold excess time series, for u sufficiently large, must converge
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to the following distribution:

H (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −
(

1 + ξy
∼
σ

)−1/ξ

, ξ �= 0,

1 − exp
(
− y

∼
σ

)
, ξ → 0,

y
∼
σ
, ξ → −1,

(3)

defined over y > 0 and
[
1 +

(
ξy/

∼
σ
)]

> 0, where

∼
σ = σ + ξ (u − μ) , (4)

in which (σ , μ, ξ ) is the same set of parameters as in the GEV
distribution (Coles 2001).

The family of distributions defined by (3) is the generalized

Pareto distribution family. The scale parameter
∼
σ measures the

variability of the series, while the shape parameter ξ is responsible
for characterizing the tail of the distribution. It is important to
emphasize that ξ is the same for both GEV and GPD and, if ξ

> 0, then the distribution does not have an upper bound, that
is, it has infinite support given by y = ]0, ∞[. Otherwise, if
ξ < 0, the distribution has an upper bound and finite support

y =
]
0, u −

(∼
σ /ξ

)]
(Coles 2001). In the cases ξ → −1 and ξ

→ 0, the GPD reduces, respectively, to the uniform distribution

U (0,
∼
σ ) and the exponential distribution with mean equal to

∼
σ , as

in (3).

2.1.1 Threshold selection

The choice of threshold for the GPD must be made in such a way as
to balance bias and variance. It should not be too low, as this could
select non-extreme values, which would result in bias. Conversely,
it should not be too high, as selecting very few extreme values
increases the variance of the estimator. In classical extreme events
theory, there are two techniques for threshold choice. The first one,
introduced by Davison & Smith (1990), consists of a graphical
method based on the linearity of mean threshold excesses, also
called the mean excess (Coles 2001). Although useful, it may be
difficult to interpret the mean residual life plot, thus hampering
the choice of an adequate threshold. Therefore, a complementary
method is also used, based on the stability of parameters. If the u0

threshold excesses follow a GPD with parameters ξ and σ , then
the excesses of a threshold u > u0 will also follow a GPD with
the same shape parameter ξ (Coles 2001). However, due to (4), the
scale parameter is given by

σu = σu0 + ξ (u − u0) . (5)

Therefore, for ξ �= 0 the scale parameter varies with u. However,
reparametrizing the scale parameter as σ ∗ = σ u − ξu and consid-
ering equation (5), we obtain

σ ∗ = σu0 − ξu0, (6)

which is constant. In this case, σ ∗(u) is called the reparametrized
scale parameter. As a consequence, the estimates for σ ∗ and ξ must
be approximately constant for a correct GPD modelling. As with
the mean residual life, an adequate value for the threshold must be
the least value inside a range of thresholds for which σ ∗ and ξ are
approximately constant.

Figure 1. Power spectral density for 2008 March 9 time series. The
approximately linear region of the PSD between dashed lines is the inertial
range. The time-scale τ for the volatility calculation was chosen from the
midpoint of the inertial range.

2.1.2 Parameter estimation

There are currently several techniques available for parameter
estimation for the GPD (Hosking & Wallis 1987; Coles 2001;
Luceño 2006; Zhang 2007, 2010; Park & Kim 2016). In the
present work, we adopt maximum-likelihood estimation (MLE:
Coles 2001), since it is the most popular, flexible and general
method.

Let (Yi: i = 1, ..., n) be independent random variables, given
by a u threshold excess (Yi = Xi − u) and following a GPD. The
log-likelihood function is defined as

l (σ, ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

−n log σ −
(

1 + 1
ξ

) n∑
i=1

log
(
1 + ξyi

σ

)
, ξ �= 0,

−n log σ − 1
σ

n∑
i=1

yi, ξ → 0,

(7)

when (1 + ξyi/σ ) > 0 for i = 1, ..., n and l(σ , ξ ) = −∞ otherwise.
In this case, the maximum-likelihood estimators (σ̂ , ξ̂ ) of (σ , ξ )
are defined as the values that maximize the corresponding log-
likelihood function l(σ , ξ ) (Coles 2001).

2.1.3 Return-level estimation

Given a GPD with parameters ξ and σ modelling a random variable
X exceeding a threshold u, from equations (2) and (3) we have
(Coles 2001)

Pr (X > xm) = 1

m
=

{
ςu

[
1 + ξ (xm−u)

σ

]−1/ξ
, ξ �= 0,

ςu exp
[−(xm−u)

σ

]
, ξ → 0,

(8)

or, in terms of xm,

xm =
{

u + σ
ξ

[
(mςu)ξ − 1

]
, ξ �= 0,

u + σ ln (mςu) , ξ → 0,
(9)

where ςu = Pr(X > u) and xm is the m-quantile, which expresses
the magnitude of an event that occurs with a probability 1/m, i.e.
that on average occurs every m time units. Such an xm is called the
return level and m is the return period.

Usually, one plots xm as a function of the logarithm of m.
According to equation (9), the plot should be approximately linear
for ξ = 0, concave for ξ > 0 and convex for ξ < 0.
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Figure 2. Time series of the magnitude of the magnetic field in the solar wind and the respective volatilities in the presence of current sheets (magenta/gray)
for (a, b) 2008 March 9, (c, d) 2009 February 24 and (e, f) 2009 March 8.

Figure 3. Time series of the magnitude of the magnetic field in the solar wind and the respective volatilities in the absence of current sheets for (a, b) 2003
February 1, (c, d) 2004 April 21 and (e, f) 2016 January 25.

2.2 Current-sheet detection

Current sheets are coherent structures located in approximately two-
dimensional regions associated with a rotation of the magnetic field
vectors. Li’s method (Li 2008) is a robust and accurate way to detect
such regions.

Consider a magnetic field time series, B(t). According to Li
(2008), for a given time lag τ , the probability density of finding the

rotation angle between vectors B (t + τ ) and B (t) in the interval [θ ,
θ + �θ ] is

f (θ, τ ) �θ = Nτ
(
θ < θ ′ < θ + �θ

)
Nτ (0 < θ ′ < π)

, (10)

where Nτ (θ < θ
′
< θ + �θ ) is the number of pairs of vectors

B (t + τ ) and B (t) for which the rotation angles are between θ and
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Figure 4. Time series of the magnitude of the magnetic field in the solar wind and the respective volatilities corresponding to Fig. 2, after removing the current
sheets.

θ + �θ and Nτ (0 < θ
′
< π ) is the total number of measurements.

In this case, the distribution function given by

F (θ, τ ) =
∫ π

θ

dθ ′f
(
θ ′, τ

) = Nτ
(
θ < θ ′ < π

)
Nτ (0 < θ ′ < π)

(11)

is simply the frequency of occurrence of rotation angles greater than
θ (Li 2008). If there are current sheets in the time series of B (t),
then F(θ , τ ) must obey a linear scaling law with τ when θ is larger
than a given critical angle θ c (Li 2008), that is

F (θ, Nτ ) ∼ NF (θ, τ ) when θ > θc. (12)

In this case, for each window of length 2τ 1 centred at time T, we
check the number of angles between B (t + τ ) and B (t) that are
larger than θ .2 If this quantity is larger than a certain threshold (L),3

then a current sheet is found in T.

2.3 Zeta function

For a given dynamical variable φ(t), the structure function is defined
as (Frisch 1995)

Sp(τ ) = 〈δp
τ (t)〉 = 〈[φ(t + τ ) − φ(t)]p〉, (13)

where 〈...〉 represents the time or space average, p are the statistical
moments and τ is a time or space lag. Given Kolmogorov’s sim-
ilarity hypothesis and scale-invariance (δφ(τ ) ∝ τ h: Kolmogorov
1941, 1962), inside the inertial range the order p structure function
follows a power law Sp(τ ) ∝ τ ζ (p), where ζ (p) = ph is the scaling
exponent or zeta function (Frisch 1995). In this case, ζ (p) is the
slope of the log Sp(τ ) × log τ plot. The set of ζ values computed
for each statistical moment p4 produces a zeta function curve

1In this work, τ = 200 s.
2In this work, θ = 60◦.
3In this work, L = 60 per cent.
4In this work, p = 1, ..., 6.

that is related intimately to several monofractal and multifractal
models of turbulence (Frisch, Sulem & Nelkin 1978; Burlaga 1991;
She & Leveque 1994; Politano & Pouquet 1995), in which the
linearity reflects the presence of the self-similarity or monofractality
predicted by the K41 theory. Nonetheless, departures from this
linearity are commonly observed in space missions (see e.g. Chian &
Miranda 2009; Chian & Munoz 2011), indicating the presence of
intermittency or multifractality in the turbulence.

3 O RI GI NA L DATA A ND PRE-PROCESSING

The solar wind data employed in this work consist of the mag-
nitude of the magnetic field collected at 22 Hz by the Fluxgate
Magnetometer (FGM) on board Cluster-1, near to the Earth’s bow
shock. The data were obtained from the European Space Agency
(ESA) website5 during periods when the spacecraft was outside the
Earth’s magnetosphere, where direct contact with the solar wind
environment was possible. Our goal is to compare time series where
current sheets are present with time series where current sheets are
absent, so we checked all available data from 2001–2016. It is
extremely difficult to find long time intervals where current sheets
are absent in the solar wind; thus only three current sheet-free
time series were detected: 2003 February 1, 2004 April 21 and
2016 January 25, all with a duration of more than 10 and less than
16 hours. We also selected three 24-hour time series with current
sheets: 2008 March 9, 2009 February 24 and 2009 March 8.

To detect the current sheets, we verified a linear scaling of the
distribution function F(θ , τ ) (equation 11) for time-scales between
30 and 240 s and also for critical angles between 60◦ and 120◦, from
which we adopt a time-scale T = 120 s and a critical angle θ = 60◦.
Our data are pre-processed with a low-pass filter followed by a
decimation process, which reduces noise and the length of the time

5https://www.cosmos.esa.int/web/csa
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(a) (d)

(b)

(c)

(e)

(f)

(g)

(h)

(i)

Figure 5. Threshold selection diagnostic plots. Mean excess plot, reparametrized scale parameter and shape parameter estimates against the threshold for
volatility time series for (a, b, c) 2016 January 25, (d, e, f) 2008 March 9 and (g, h, i) 2008 March 9, after removing the current sheets. The dashed lines and
solid bars correspond to 95 per cent confidence limits. The shaded regions mark the intervals for which the mean residual life is approximately linear and the
shape parameter and the reparametrized scale are approximately constant.

series by a factor M = 10. We adopt MATLAB’s decimate function,
which implements a low-pass Chebyshev Type I infinite impulse
response (IIR) filter (Oppenheim & Verghese 2017) of order 8 and
cut-off frequency of 0.8/M, which guarantees that we are free of
aliasing effects.

Sometimes, current sheets are correlated with local minima in
time series of the magnitude of the magnetic field. However,
that is not always the case and a statistical analysis of extreme
events based solely on the time series of |B| may be inappropri-
ate. Hence, another method is needed to detect all current sheet

regions without losing the basic statistical properties of the original
series.

Since rotations of the magnetic field vector generate a current
density, intense current sheets are usually associated with large
rotations of B, resulting in large fluctuations or bursts in time series
of two-point differences of the form

rmag (t) = |B (t + τ )| − |B (t)| , (14)
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Figure 6. Declustered time series for the volatility of the magnitude of
the magnetic field for (a) 2008 March 9, (b) 2008 March 9 after removing
the current sheets and (c) 2016 January 25. The dashed lines indicate the
threshold and the highlighted points above the threshold represent the new
time series obtained after declustering.

where τ is a time lag. In the context of financial sciences, the bursts
are known as volatility (Poon 2005; Tsay 2010), which is usually
associated with violent changes in the financial market, such as
a financial crisis. The two-point difference series is known as the
financial return (Tsay 2010), therefore we call rmag the magnetic
return.

The volatility can be measured using the standard deviation or the
sample variance. Usually, the standard deviation is more stable than
the variance and has the same dimension as the sample mean (Poon
2005). For those reasons, we perform our volatility calculations
using the standard deviation in this work. The magnetic volatility
can be measured from the standard deviations in different periods of
the time series of rmag or, alternatively, from the standard deviations
of the log magnetic return (Tsay 2010):

�rmag (t) = log (|B (t + τ )|/|B (t)|) . (15)

In our case, the use of the log magnetic return is preferred,
since the series of logarithms is better behaved and data visu-
alization is easier with logarithms when the data present high
variability.

We compute the standard deviations in a moving window of
length w over the time series of �rmag, then obtain the magnetic

volatility for a time series with N samples as

volmag (j ) =
√√√√ 1

w − 1

w+j−1∑
i=j

(
�rmag(i) − μ(j )

)2
, (16)

where j = 1, ..., N − w + 1 controls the position of the moving
window in the time series and μ(j) is the mean �rmag inside the
window. The values of w and τ are chosen to be the same order of
magnitude as the length of the high-energy current sheets, which
are responsible for the extreme events in our data. Their length
is estimated from the power-spectrum density (PSD), computed
with the Welch method (Welch 1967) with a Hanning window
(Paschmann & Daly 1998). In general, the main current sheets are
located in the intermediate region of the PSD inertial range. Thus,
we look for a time-scale in the middle of the inertial range. From
Fig. 1, we choose τ = w = 50 s, since τ = 1/f.

4 R ESULTS

4.1 Choice of threshold and declustering process

Fig. 2 shows time series of the magnitude of the magnetic field
in the solar wind and the respective volatilities for 2008 March 9,
2009 February 24 and 2009 March 8. The magenta (gray) lines
indicate regions where current sheets were detected by Li’s method
(Li 2008). There is a strong correlation between regions where
current sheets were detected and the occurrence of extreme events
in the volatility. This is to be expected, since strong current sheets
are associated with sudden rotations of the magnetic field vector
and the volatility is a parameter that measures abrupt variations in
a time series. Thus, the volatility consists of an excellent filter to
amplify extreme events.

In order to identify the role of current sheets in the statistics
of extreme events in the solar wind, we selected three additional
time series in which current sheets were not detected. Although we
checked every time series from 2001–2016 in which Cluster-1 was
near to the bow shock, we could not find any 24-h time series in
which current sheets were absent. Nonetheless, we found three time
series free of current sheets (at the time-scale considered) with a
duration of approximately 15 hours, as shown in Fig. 3. Although
these time series are shorter than in Fig. 2, this was not problematic
for the statistical analysis conducted below. Furthermore, three other
time series were extracted from the data in Fig. 2 by removing all
their current sheets. They are shown in Fig. 4. It can be seen from
Figs 3 and 4 that, in the absence of current sheets, the volatility time
series do not reveal extreme values.

Before conducting an extreme-events analysis by the POT
technique, we need to establish the threshold that will define
extreme events, conduct data declustering and then check for data
independence.

The POT technique analyses all sample points that exceed a
certain threshold u and the modelling of the probability distribution
of the exceeding points can be done by the GPD. Here, we adopt the
two methods mentioned in Section 2.1.1 to choose the threshold.
The first method uses the linearity of the mean residual life (or mean
excess) as a function of u, where one chooses the threshold from an
interval in which the mean residual life displays an approximately
linear behaviour. The second method is based on the stability of the
shape parameter and the reparametrized scale, where the threshold
value is taken from an interval of u in which the shape parameter
and the reparametrized scale are approximately constant. These two
methods are illustrated in Fig. 5 for the volatility of the time series

MNRAS 490, 1879–1893 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/2/1879/5593938 by Instituto N
acional de Pesquisas Espaciais user on 28 February 2020



1886 T. F. P. Gomes et al.

(a) (b)

(c) (d)

(e)

Figure 7. Diagnostic plots for GPD model fit for the volatility time series of 2008 March 9. (a) QQ plot of empirical data quantiles in relation to fitted data
quantiles obtained from the GPD model; (b) QQ plot of random data quantiles, obtained from the GPD model in relation to empirical data quantiles. The dotted
lines represent the 95 per cent confidence interval; the dashed line represents the 1–1 line; the solid line represents the linear regression; (c) probability density
functions of empirical data (solid line) and the adjusted GPD model (dashed line); (d) return levels (solid lines) as a function of the return periods (in log
scale) with 95 per cent pointwise confidence interval (dashed lines); (e) return levels and periods indicated in the time series. The solid orange (light gray) line
represents the threshold; the solid red (dark gray) line indicates the level to be achieved once at each occurrence of two events; the dashed green line indicates
the level to be achieved once at each occurrence of 20 events; the dotted blue line indicates the level to be achieved once at each occurrence of 100 events.

with current sheets of 2008 March 9 (see Fig. 2b), the time series
without current sheets of 2016 January 25 (see Fig. 3f) and the
2008 March 9 time series after removing the current sheets (see
Fig. 4b). The shaded regions mark the intervals for which the mean
residual life is approximately linear and the shape parameter and
the reparametrized scale are approximately constant. The threshold
parameter is chosen as the smallest value in the shaded areas, thus
u = 2.5 in Figs 5(a), (b) and (c), which corresponds to the 97.53th
percentile of the volatility time series; u = 1.2 in Figs 5(d), (e)
and (f), which corresponds to the 83.36th percentile, and u = 8 in
Figs 5(g), (h) and (i), corresponding to the 98.88th percentile. We
stress that the linearity of the mean residual life and the stability
of the shape parameter are necessary but not sufficient conditions
for an adequate choice of u. For instance, in Figs 5(a), (b) and (c),
the interval u = [2.0, 2.5] exhibits an approximately linear mean
residual life and the shape parameter is approximately constant.
Nonetheless, this choice of interval provides a threshold u = 2.0
that results in the inclusion of non-extreme values, leading to bias

in the distribution. Therefore, the choice of u must take into account
both aforementioned methods, while still avoiding bias by values of
u that are too low or increased variance by values that are too high.

Volatility time series often display the formation of clusters of
contiguous points that exceed the given threshold. The problem
with such clusters is that they increase the dependence among data
points, thus violating the basic assumption of data independence
for the correct application of the statistical modelling of extreme
events. Therefore, a process of declustering may be necessary to
decrease the short-term memory of the series. One declustering
method that can be used is ‘runs declustering’ (Leadbetter 1983),
which consists of choosing a run length, r, such that values that
exceed the threshold and are separated by a number of observations
smaller than r that are considered to belong to the same cluster.
Subsequently, a new sample is obtained by selecting the maximum
value of each cluster. The choice of r must be large enough to
avoid data dependence and small enough to avoid missing too many
extreme values. Fig. 6 illustrates the declustering process for the
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(a) (b)

(c) (d)

(e)

Figure 8. Diagnostic plots for GPD model fit for the volatility time series. (a)–(e) The same as in Fig. 7, but for 2016 January 25.

volatility of the three time series, (a) 2008 March 9, (b) 2008 March
9 after removing the current sheets and (c) 2016 January 25. The
new samples correspond to the highlighted points above the chosen
thresholds (dashed lines). The degree of dependence among points
in a sample can be measured with the ‘extremal index’, θ (see
Leadbetter 1983 and Coles 2001), where 0 ≤ θ ≤ 1 and θ = 1 for
fully independent time series.

Additionally, we also conducted the Ljung–Box Q-statistics test
(Ljung & Box 1978), which is based on the hypothesis⎧⎨
⎩

Ho : the data are not correlated;

Ha : the data are correlated;

for which the Q-statistics test is given by

Q = n(n + 2)
m∑

k=1

ρ̂2
k

n − k
, (17)

where n is the length of the time series, ρ̂2
k is the estimated autocorre-

lation at lag k and m is the number of lags being tested. We verified
that the Ljung–Box Q-statistics test does not exceed the critical
values for the significance level at 5 per cent. Therefore, according
to the Ljung–Box Q-statistics test, the null hypothesis of non-

correlation of the data after declustering is observed, confirming
the efficiency of the declustering technique.

4.2 GPD analysis

The selected time series are data-independent, as confirmed by
standard tests, and therefore we can proceed with application of
the generalized Pareto distribution (GPD) modelling. Figs 7, 8
and 9 show the diagnostic plots of GPD models fitted on the
declustered time series for the volatility of |B| on 2008 March 9,
2016 January 25 and 2008 March 9 (after removing the current
sheets), respectively. The QQ plots of empirical data quantiles
against GPD’s theoretical quantiles are shown in Figs 7(a), 8(a)
and 9(a), where the vertical axes represent the empirical quantiles
and the horizontal axes show the quantiles from model-simulated
data, obtained from equation (3). The QQ plots in Figs 7(a), 8(a) and
9(a) reveal an excellent fit of the time series by a GPD, as confirmed
by the histograms in Figs 7(c), 8(c) and 9(c).

The QQ plot points in Fig. 7(a) still have a satisfactory fit, even
though they are not as well aligned with the diagonal as in Figs 8(a)
and 9(a). This departure from the diagonal can be explained by the
fact that the tail of the distribution for the empirical data is heavier
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(a) (b)

(c) (d)

(e)

Figure 9. Diagnostic plots for GPD model fit for the volatility time series. (a)–(e) The same as in Fig. 7, but for 2008 March 9 after removing the current
sheets.

than the tail predicted by the theoretical GPD. The histograms
displayed in Fig. 7(c) support that explanation, as the empirical
density plot (solid black line) has a heavier tail than the fitted GPD
density (blue dashed line).

Figs 7(b), 8(b) and 9(b) display the QQ plots of the randomly
generated data quantiles from the fitted GPD against the empirical
data quantiles with 95 per cent confidence bands. The horizontal
axes in Figs 7(b), 8(b) and 9(b) represent the observational data
empirical quantiles and the vertical axes represent the quantiles of
randomly generated GPD data. The almost exact superposition of
the 1–1 lines and the linear regression lines demonstrates the quality
of the statistical fits.

The return-level plots with 95 per cent pointwise normal approx-
imation confidence intervals for the three time series are shown
in Figs 7(d), 8(d) and 9(d). The horizontal axes display the return
periods on a logarithmic scale, while the associated return levels
are found in the vertical axes. The return-level curve in Fig. 7(d)
is convex and therefore without an asymptotic limit, suggesting
that the distribution of the time series with current sheets does
not have an upper bound on the right tail. In this case, the shape
parameter is positive (ξ > 0). In contrast, the current sheet-free
time series of 2016 January 25 (Fig. 8d), as well as the time
series obtained from removing the current sheets on 2008 March 9

(Fig. 9d), exhibit concave return-level curves and therefore present
an asymptotic limit, suggesting that the distributions of time series
without current sheets have an upper bound on the right tail. Their
shape parameters are negative and the distribution is bounded in the
right tail. Furthermore, in all aforementioned cases, the sample’s
representative points do not extrapolate their respective confidence
intervals, evidencing satisfactory GPD fits.

The return-level values for each 10, 20 and 100 event occurrences
and their respective 95 per cent confidence intervals are found in
Table 1, where the results of all parameters obtained from the
statistical diagnostics of volatility time series in Figs 2–4 are
included. We see that the confidence intervals computed with
different statistical techniques are in general agreement. For best
visualization, all return-level plots are redone using the return-level
time series shown in Figs 7(e), 8(e) and 9(e), where both the return
periods and thresholds are represented by horizontal lines.

Table 1 lists the GPD fit parameters for the volatility time series
of Figs 2, 3 and 4. All parameters were estimated by the maximum-
likelihood estimate. Once more, the 95 per cent confidence interval
for each parameter is estimated using three techniques: the normal
approximation, the profile likelihood and bootstrapping with 500
replicates. It is worth mentioning that, in the choice of our GPD pa-
rameters, we used criteria that prioritize goodness of fit over excess
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Figure 10. Power-spectrum density (PSD) of the time series of |B| for 2008
March 9, 2008 March 9 after removing current sheets and 2016 January 25.
The shaded regions mark the inertial range. Slopes of the power spectra
calculated by linear regression inside the inertial ranges are represented by
solid lines.

of parameters, such as provided by the negative log-likelihood,
Akaike’s information criterion (AIC) and Bayesian information
criterion (BIC) tests (Tsay 2010). The best models are those with
the lowest values of ‘negative log-likelihood’, AIC and BIC (Tsay
2010). From Table 1, it can be seen that all volatility time series with
current sheets (Fig. 2) display a positive shape parameter. Although
the confidence intervals have some negative values, the intervals are
predominantly positive.

Regarding the time series without current sheets (Fig. 3), the
shape parameter assumes negative values, as seen in Table 1, which
also shows the shape parameter for the time series with current
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Table 4. Slopes of the power spectra calculated by linear regression inside the inertial ranges with their respective coefficients of
determination R2 for all time series shown in Figs 2, 3 and 4. Extremal indexes θ before and after declustering with their respective
95% confidence intervals (in parentheses) are also shown.

Time series Inertial Extremal index Extremal index
range after declustering before declustering

Slope R2 θ 95% CI θ 95% CI

2008 March 9 (with current sheet) −1.69 ± 0.01 0.945 0.91 (0.76,1.00) 0.0016 (0.0010,0.0029)
2009 February 24 (with current sheet) −1.67 ± 0.01 0.949 0.69 (0.50,1.00) 0.0025 (0.0015,0.0047)
2009 March 8 (with current sheet) −1.73 ± 0.01 0.957 0.83 (0.72,1.00) 0.0019 (0.0011,0.0044)
2008 March 9 (removed current sheet) −1.49 ± 0.01 0.895 0.69 (0.52,1.00) 0.02 (0.01,0.08)
2009 February 24 (removed current sheet) −1.50 ± 0.01 0.936 0.87 (0.77,1.00) 0.05 (0.04,0.07)
2009 March 8 (removed current sheet) −1.52 ± 0.01 0.924 0.82 (0.64,1.00) 0.03 (0.02,0.06)
2003 February 1 (no current sheet) −1.45 ± 0.02 0.926 0.60 (0.45,1.00) 0.01 (0.008,0.03)
2004 April 21 (no current sheet) −1.48 ± 0.01 0.917 0.75 (0.62,1.00) 0.03 (0.02,0.07)
2016 January 25 (no current sheet) −1.55 ± 0.01 0.950 0.99 (0.98,1.00) 0.11 (0.10,0.13)

Figure 11. Zeta functions for the time series of magnitude of the magnetic
field for 2008 March 9 (red triangles), 2008 March 9 after removing the
current sheets (magenta/gray circles), 2008 March 9 after surrogating (blue
square) and 2004 April 21 (green diamonds). Coefficients of determination
R2 for the linear regressions calculated from the zeta curves are also shown.
The dashed line corresponds to K41 (self-similar) Kolmogorov scaling.

sheets removed (Fig. 4). Again, the shape parameter is negative,
proving that the current sheets impact the extreme-event statistics in
the solar wind directly. While time series without current sheets have
bounded distributions, the presence of these coherent structures in
the time series causes the distribution to become unbounded and
therefore highly unpredictable.

The 95 per cent confidence intervals of all return-level plots and
parameters were obtained by supposing that the distributions of the
estimates are normal, which cannot be guaranteed. For that reason,
we also computed the 95 per cent confidence intervals with two
alternative techniques that do not assume a normal distribution
of estimates: the profile-likelihood method (Royston 2007) and
the bootstrapping resampling technique with 500 replicates (Efron
1979). Tables 2 and 3 show the same results as Table 1, but using
the profile-likelihood and bootstrapping techniques, respectively.

4.3 Turbulence and multifractality

The power-spectrum density (PSD) plots of the magnitude of the
magnetic field for 2008 March 9 (with current sheets), 2008 March
9 (removed current sheets) and 2016 January 25 (without current
sheets) are shown in Fig. 10. As can be seen in Fig. 10(a), the PSD
for a time series with current sheets exhibits an inertial range that

follows a K41 scaling law (solid line with slope −5/3: Kolmogorov
1941), whereas the PSD for time series without current sheets
(Figs 10b and c) exhibits an IK scaling (solid line with slope −3/2:
Iroshnikov 1964; Kraichnan 1965). The slopes of the inertial ranges
of the power spectra for all time series shown in Figs 2, 3 and 4
are listed in Table 4, which shows that all time series with current
sheets present an excellent fit of the K41 scaling and all time series
without current sheets or with current sheets removed display an IK
law, corroborating the results of Li et al. (2011). Table 4 also shows
that the linear regression coefficients of the inertial ranges are very
close to one, confirming the linear behaviour of those regions.

Fig. 11 shows the zeta function as a function of the statistical
moments ζ (p) for the same three time series as Fig. 10. It can
be seen that ζ (p) is less linear for series with current sheets, as
confirmed by the values of the coefficient of determination R2, also
plotted in Fig. 11. The coefficient of determination measures the
goodness of fit and ranges from 0 to 1 (Wright 1921), where the
value 1.0 indicates a perfect fit, whereas 0 indicates a very poor fit. In
the case of a linear association between the variables, R2 measures
the accuracy of linear regression. We suggest that current sheets
are responsible for enhancing multifractality in the time series,
since such structures are known to be responsible for an increase in
intermittency in the solar wind, thus enhancing the heterogeneity
between time-scales.

A deeper analysis of multifractality in the presence of current
sheets can be accomplished with the surrogate iterative amplitude-
adjusted Fourier transform (IAAFT: Kantz & Schreiber 1997). The
IAAFT consists of the reshuffle of a series by randomizing the
phases of its Fourier modes. This type of surrogate breaks all
non-linearities while preserving the PSD and, consequently, the
autocorrelation function of the original series. The new series has an
approximately Gaussian PDF, indicating that the coherent structures
responsible for the intermittency are destroyed by the IAAFT.
Fig. 11 shows that the post-surrogate series presents an almost
perfectly linear ζ function, following a K41 law (i.e. monofractal).
This is evidence that the main source of multifractality in this kind
of series is the fat tails of the PDF, which is affected directly by the
current sheets.

5 C O N C L U S I O N

Several works have sought for methods to detect discontinuities in
the solar wind magnetic field caused by current sheets. For instance,
in Chian & Miranda (2009) a time series of the normalized magnetic
field differences was used, while in Greco et al. (2009, 2018) the
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partial variance of increments method was adopted. In this work,
we successfully applied, for the first time, the magnetic volatility
as a method to detect those discontinuities and to study extreme-
value statistics in the solar wind. The method is easily implemented
and resulted in time series with high peaks in current-sheet regions,
which suggests that the magnetic volatility could be explored as an
alternative way to detect those structures in future works.

Our results provide observational evidence for the direct relation
between current sheets and multifractality and fully developed
turbulence in the solar wind. Solar wind magnetic field series with
current sheets have PSDs where the inertial range follows a −5/3
K41 scaling law, whereas series without current sheets display a
−3/2 IK law. Thus, we confirm that current sheets are responsible
for fully developed Kolmogorov turbulence in the solar wind, as
previously proposed by Li et al. (2011). We conclude that the
presence of current sheets significantly enhances the multifractality
of the time series and those structures are the main factor responsible
for the increase in autocorrelation (memory) and departure from
Gaussianity in solar wind magnetic field data.

In the last years, the relation between current sheets and extreme
events in magnetic field time series in the solar wind has been
explored through intermittency or departure from Gaussianity
(Chian & Munoz 2011; Wu et al. 2013; Greco et al. 2009, 2018;
Servidio et al. 2011). Based on rigorous statistical analysis, the
present work proposes a quantitative way to show this relation.
By using extreme-value theory, we demonstrated that the magnetic
volatility series is well fitted by a generalized Pareto distribution
(GPD). We also showed that current sheets are the main structures
responsible for the sign of the shape parameter ξ , the most important
parameter in this type of modelling. In the presence of such
structures, ξ > 0, revealing that the volatility time series are
modelled by a GPD with infinite support. In the absence of current
sheets, ξ < 0, resulting in a GPD with finite support. Thus, in series
with current sheets, an upper bound for the magnetic volatility is
not to be expected, implying that wide rotations of the magnetic
field vector or a large shear angle are possible and, consequently,
magnetic reconnection events are more likely to occur (Gosling
et al. 2007).

In summary, we were able to model solar wind data using
a generalized Pareto distribution. Current sheets were identified
as the main factor responsible for the behaviour of the GPD
shape parameter, which characterizes the tail of the distribution.
In addition, we proposed the use of the magnetic volatility, a simple
and robust way to analyse extreme events, intermittent turbulence
and multifractality in solar wind data. We hope that our work will
help future works in predicting the occurrence of extreme current
sheets associated with magnetic reconnection.

AC K N OW L E D G E M E N T S

The authors thank Laura Maria Gomes de Figueiredo for valuable
participation in the edition of the figures present in this article. We
thank the Cluster FGM instrument teams for open access to their
data. The statistical analysis made use of the EXTREMES package of
the free software R. This research is supported by Brazilian agencies
CAPES, FAPESP and CNPq.

RE F EREN C ES

Acero F. J., Carrasco V. M. S., Gallego M. C., Garcı́a J. A., Vaquero J. M.,
2017, ApJ, 839, 98

Acero F. J., Gallego M. C., Garcı́a J. A., Usoskin I. G., Vaquero J. M., 2018,
ApJ, 853, 80

Alfvén H., 1942, Nature, 150, 405
Balkema A. A., de Haan L., 1974, Ann. Probability, 2, 792
Boozer A. H., 2014, Phys. Plasmas, 21, 072907
Bruno R., Carbone V., 2013, Living Reviews in Solar Physics, 10, 2
Burlaga L. F., 1991, J. Geophys. Res., 96, 5847
Chian A. C.-L., Miranda R. A., 2009, Ann. Geophys., 27, 1789
Chian A. C.-L., Munoz P. R., 2011, ApJ, 733, L34
Chian A. C.-L., Feng H. Q., Hu Q., Loew M. H., Miranda R. A., Muñoz P.
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