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 “A melhor maneira que a gente tem de fazer possível amanhã 

alguma coisa que não é possível de ser feita hoje 

é fazendo hoje aquilo que hoje pode ser feito. 
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dificilmente eu faço amanhã aquilo que hoje não pude fazer”. 
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ABSTRACT 

Tree mortality is a key process in the global carbon cycle generally linked to 
climatic feedbacks and accelerated by human-induced disturbances in the 
Amazon. Remote sensing can complement ground observations of tree mortality 
to support Amazon-wide detection. However, different from temperate forests, 
tree mortality detection over tropical forests is challenging because of the high 
heterogeneity in forest structure and biodiversity. It requires the development of 
new methods with multiple data sources to address challenges such as the 
detection of vegetation-specific mortality at the landscape scale; the 
quantification of individual tree mortality related to logging at the local scale; and 
the characterization of gap dynamics as a proxy for tree mortality, potentially 
related to natural and anthropogenic activities, and up-scaling estimates from 
local to regional scales. Here, the objective was to develop and validate novel 
approaches for the detection and monitoring of tropical forest mortality, using 
Moderate Resolution Imaging Spectroradiometer (MODIS), Very High Resolution 
(VHR) and airborne Light Detection And Ranging (LiDAR) data acquired over the 
Amazon region. For the vegetation-specific approach at the landscape scale, 
MODIS data processed by the Multi-Angle Implementation of Atmospheric 
Correction (MAIAC) algorithm was used to map the bamboo die-off in the 
southwest Amazon and to test whether it enhanced fire occurrence. At the 
individual tree level, multi-temporal VHR data from the WorldView-2 and GeoEye-
1 satellites were used to evaluate the detection of canopy tree loss from selective 
logging at the Jamari National Forest. Finally, to explore the use of gaps as a 
proxy for tree mortality, five multi-temporal LiDAR datasets, and 610 single-date 
flight lines were considered to provide a systematic assessment of gaps and tree 
mortality, and explore their relationships with environmental and climate drivers. 
Results at the landscape scale, using MODIS (MAIAC) data, showed automatic 
detection of historical bamboo die-off (accuracy of 79%) and mapping of 15.5 
million ha of bamboo-dominated forests. The ‘bamboo-fire hypothesis’ was not 
supported, because the bamboo die-off areas did not show higher fire probability 
than the other areas. However, the fire occurrence was mostly associated with 
ignition sources from land use, suggesting a bamboo-human-fire association. At 
the local scale, individual tree losses from logging were successfully detected 
using VHR satellite imagery and a random forest (RF) model with 64% accuracy. 
In addition, large-gap openings associated with the tallest trees were more 
successfully detected by VHR data. At the local scale, LiDAR-gaps delineated 
using the relative height method, represented at least 50% of the tree mortality. 
The mortality of shorter trees at the canopy level (<25 m) was more successfully 
detected than the mortality of taller emergent trees (>25 m). Higher gap fractions 
(proxy for mortality) were associated with increased water deficit, soil fertility, and 
the occurrence of degraded and flooded forests. The Amazon-wide tree mortality 
map showed higher tree mortality rates in the west and southeast regions than in 
the central-east and north regions. This pattern was consistent with field-based 
observations. Overall, the findings highlighted the feasibility and importance of 
using passive and active optical remote sensing for detecting different processes 
of tropical forest mortality over a broad scale in the Amazon region. 

Keywords: Forest mortality. Amazon. MODIS. Very High Resolution. LiDAR.  
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QUANTIFICANDO E MONITORANDO A MORTALIDADE DE FLORESTAS 
TROPICAIS COM SENSORIAMENTO REMOTO ÓPTICO PASSIVO E ATIVO 

 

RESUMO 

A mortalidade das árvores é um processo essencial no ciclo global do carbono, 
geralmente relacionado com feedbacks climáticos e acelerado por distúrbios 
antrópicos na Amazônia. O sensoriamento remoto pode complementar as 
observações de campo, a fim de apoiar a detecção de mortalidade na Amazônia. 
No entanto, diferentemente de florestas temperadas, a detecção da mortalidade 
de árvores em florestas tropicais é um desafio devido à alta heterogeneidade da 
estrutura florestal e biodiversidade. Isso requer o desenvolvimento de novos 
métodos com diferentes fontes de dados remotos para enfrentar desafios como 
a detecção de mortalidade de vegetações específicas na escala da paisagem; a 
quantificação de mortalidade de árvores individuais em escala local; e a 
caracterização da dinâmica das clareiras como um indicador da mortalidade de 
árvores, causada por atividades naturais e antropogênicas, calculada a partir do 
reescalonamento de dados locais para regionais. O objetivo da tese foi 
desenvolver novas abordagens para a detecção e monitoramento da mortalidade 
das florestas tropicais usando dados MODIS (MAIAC), de alta resolução espacial 
(VHR) e de LiDAR aerotransportado, adquiridos na Amazônia. Para a 
abordagem de vegetação específica em escala de paisagem, os dados MODIS 
(MAIAC) foram usados para detectar a morte de bambus no sudoeste da 
Amazônia e testar se ela aumenta a ocorrência de incêndios. No nível de árvores 
individuais, dados VHR multi-temporais dos satélites WorldView-2 e GeoEye-1 
foram usados na detecção da perda de árvores no dossel proveniente de corte 
seletivo na Floresta Nacional do Jamari. Finalmente, para explorar o uso de 
clareiras como um indicador de mortalidade, cinco conjuntos de dados LiDAR 
multi-temporais e 610 linhas de voo mono-temporais foram utilizados para avaliar 
sistematicamente as clareiras e mortalidade de árvores e suas relações com 
fatores ambientais e climáticos. Na abordagem de vegetação específica, os 
resultados mostraram a detecção automática de mortalidade de bambus 
(precisão de 79%) e o mapeamento de 15,5 milhões de ha de florestas 
dominadas por bambu. A hipótese do fogo não foi corroborada, pois as áreas de 
bambu morto não apresentaram maior probabilidade de incêndio do que as 
outras áreas. No entanto, a ocorrência de incêndio foi associada a fontes de 
ignição de uso da terra, sugerindo uma associação bambu-homem-fogo. No 
nível de árvores individuais, os resultados mostraram que as perdas de árvores 
foram detectadas com sucesso usando imagens VHR e um modelo Random 
Forest (RF) com 64% de precisão. Além disso, grandes clareiras associadas às 
árvores mais altas foram detectadas com maior sucesso pelos dados VHR. 
Finalmente, no estudo das relações entre clareiras e mortalidade em toda a 
Amazônia, os resultados indicaram que as clareiras detectadas pelo LiDAR, 
usando o método da altura relativa, representaram pelo menos 50% da 
mortalidade das árvores. A mortalidade de árvores mais baixas no nível do 
dossel (<25 m) foi detectada com maior sucesso do que a mortalidade de árvores 
emergentes mais altas (> 25 m). A ocorrência de maiores frações de clareira 
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(indicador de mortalidade) foi associada ao aumento do déficit hídrico, a 
fertilidade do solo e a presença de florestas degradadas e inundadas. O mapa 
de mortalidade para Amazônia mostrou maiores taxas de mortalidade nas 
regiões oeste e sudeste do que nas regiões centro-leste e norte. Esse padrão foi 
consistente com as observações de campo. No geral, os resultados destacaram 
a viabilidade e importância do uso de sensoriamento remoto óptico passivo e 
ativo para detectar diferentes processos de mortalidade das florestas tropicais 
em ampla escala na Amazônia. 

Palavras-chave: Mortalidade florestal. Amazônia. MODIS. VHR. LiDAR. 
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1 INTRODUCTION 

1.1 Overview 

Tree mortality is a key process of forest dynamics. Studies suggest that mortality 

is a predictor of aboveground biomass (AGB) (JOHNSON et al., 2016) and 

diversity (PHILLIPS et al., 2004). This process is also linked to biosphere-

atmosphere feedbacks (FEARNSIDE, 1995; ANDEREGG et al., 2016). Although 

it is a natural process, it can be accelerated by human activities such as 

deforestation and forest degradation, and resultant habitat fragmentation 

(LAURANCE et al., 1998; LAURANCE et al., 2001; LAURANCE; WILLIAMSON, 

2001). Changes in the pattern and scale of forest disturbance, either associated 

with the increasing occurrence of extreme drought events or water deficit (COX 

et al., 2008), in conjunction with a higher atmospheric CO2 concentration, can be 

accelerating both mortality and recruiting (PHILLIPS et al., 2004; LAURANCE et 

al., 2009; BRIENEN et al., 2015). Such changes can modify the canopy structure 

and floristic composition, favoring the dominance of lianas in certain types of 

forests (FOSTER et al., 2008). 

Although several studies have been conducted to understand the mechanisms of 

tree mortality, this knowledge is still insufficient, constraining our ability to 

accurately quantify global carbon budget and related environmental and climate 

change effects (ALLEN et al., 2010). This fact was highlighted in a recent study 

by Bugmann et al. (2019), who simulated forest dynamics from stand- to global-

level using 15 ecosystem models with different formulations of tree mortality. 

These models showed markedly different results under the current climate 

scenario (10-40% deviations) and, especially, under simulated scenarios of 

climate change (20-170% deviations). Therefore, to properly assess 

environmental and climate change effects, we must reduce these uncertainties 

on tree mortality estimates. 

Measurements of tree mortality from field inventory plots constitute the best 

available data source to understand and quantify the process. An excellent 

example is the RAINFOR network (MALHI et al., 2002). Using ground data, some 

studies indicated that tree mortality has been enhanced by water stress and 

drought in the Amazon forests (PHILLIPS et al., 2009). Patterns of higher 
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mortality have been observed at the western and southeastern Amazon when 

compared to the central-east and northern Amazonian regions. These patterns 

can be partially associated with soil properties (QUESADA et al., 2010). For 

instance, in the west Amazon, the soils are relatively new and shallower, having 

higher fertility than the soils from the central-east and north regions. These 

differences contribute to the faster forest dynamics, increased recruitment and 

mortality rates, and lesser specific wood density observed in the west Amazon 

(BAKER et al., 2004; JOHNSON et al., 2016). In addition, at the west, the trees 

tend to die and to be more frequently uprooted than at the east (CHAO et al., 

2009). Higher wood density may be linked to greater uprooting resistance to wind 

or other disturbances.  

Field data can be complemented by remote sensing imagery to improve the 

spatial characterization of the tree mortality patterns in the Amazon, allowing the 

extrapolation, or up-scaling, from the local field-plot information into the regional-

scale maps (HUANG et al., 2019). The technique has been successfully applied 

for detecting tree mortality at temperate forests, where the droughts, diseases 

and insects’ outbreaks cause widespread mortality (LIU et al., 2007; HICKE; 

LOGAN, 2009; DENNISON et al., 2010; MEDDENS et al., 2013). Over these 

forests, the detection is relatively simple due to the strong changes observed in 

the landscape (i.e., leaf/canopy color changes from green to red). The landscape 

changes occur massively because the temperate forests are very often 

composed of only a few canopy-dominant tree species. In contrast, tropical 

forests show larger species diversity than temperate forests, which creates 

difficulties for mortality detection. Thus, the remote sensing approaches used in 

temperate forests are not directly transferable to tropical forests.  

For observing tropical forest mortality at the landscape level, medium-to-coarse 

spatial resolution satellite data have been used. The detected mortality events 

are generally associated with large-scale wind disturbances (RIFAI et al., 2016; 

NEGRÓN-JUÁREZ et al., 2018); wildfire (ANDERSON et al., 2015; 

SHIMABUKURO et al., 2019); flood (RESENDE et al., 2019); liana-infestation 

(FOSTER et al., 2008; MARVIN et al., 2016; TYMEN et al., 2016); and bamboo 

die-off (CARVALHO et al., 2013). For observing individual trees at the local scale, 

a few papers have investigated the detection of mortality from treefalls associated 



3 

 

with natural processes or logging (CLARK et al., 2004a; THOMAS et al., 2013; 

BOEHM et al., 2013; KELLNER; HUBBELL et al., 2017; LEITOLD et al., 2018). 

Some authors have also proposed the use of canopy gap information as a proxy 

for mortality (HUNTER et al., 2015).  

At the landscape level of observation, data from the Thematic Mapper 

(TM)/Landsat-5 (30-m pixel size), Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard Terra and Aqua platforms (250-to-1000-m 

pixel size) and Advanced Land Observing Satellite (ALOS)/Phased Array type L-

band Synthetic Aperture Radar (PALSAR) (7-to-44-m pixel size) have been 

considered in the data analysis. For the local-scale individual tree and canopy 

gap approaches, the remote sensing data used in these studies consisted of 

small-footprint airborne Light Detection And Ranging (LiDAR) with 1-m or even 

sub-meter spatial resolution Canopy Height Models (CHM), and Very High 

Resolution (VHR; 0.5-m spatial resolution) optical passive imagery, e.g. 

WorldView-2.  

Independent of the data source selected for analysis, novel remote sensing 

approaches are necessary to detect and monitor tropical forest mortality over the 

Amazon forests. This knowledge is important to better understand the spatial 

distribution of tree mortality and to make inferences of the underlying causing 

factors. While the development of Amazon-wide applicable approaches is 

generally expected, strategies that consider specific vegetation types, such as 

the bamboo forests from southwestern Amazon, are also desirable. Inserted in 

this context, the present study has the objectives defined below. 

 

1.2 Objectives 

This study aimed to develop and validate novel approaches for detecting and 

monitoring the mortality of tropical forests using passive and active optical remote 

sensing. Given the great complexity of tropical forests in terms of structure and 

diversity, a unique approach to detect and monitor tropical forest mortality should 

not be feasible. Therefore, specific approaches focused on mortality processes 

at different levels of observations should be developed. They ranged from the 
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landscape scale of canopy observations to the local scale of individual trees and 

canopy gaps, exploring different passive and active optical remote sensors.  

The scientific questions that motivated this study were: 

(i) Can bamboo die-off be automatically detected, and does it enhance fire 

occurrence at the southwest Amazon? (Chapter 4); 

(ii) Does multi-temporal VHR satellite imagery allow for generic semi-automatic 

detection of individual tree losses? (Chapter 5); 

(iii) How canopy gaps derived from airborne LiDAR data relate to tree mortality 

and how gap dynamics are controlled by environment-climate? (Chapter 6); 

(iv) Can the information of canopy gap dynamics be used to derive spatialized 

tree mortality estimates over the Amazon? (Chapter 6). 

Given these questions, the specific objectives were: 

• Develop a method based on a time series of MODIS satellite data, 

processed by the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) algorithm, to detect bamboo die-off; compare the die-off with active 

fire events; and determine whether die-off enhances fire occurrence at the 

southwest Amazon (Chapter 4); 

• Develop a generic semi-automatic method to detect canopy individual tree 

losses based on multi-temporal VHR imagery (Chapter 5); 

• Assess how gaps derived from airborne LiDAR data relate to tree mortality 

and environmental-climate factors, using these relationships to predict tree 

mortality over the entire Amazon region (Chapter 6). 

 

1.3 Outline 

This paper-format doctoral dissertation is organized as follows: 

Chapter 1 introduces the importance of tropical forest mortality on the global 

and regional carbon cycle and biodiversity, briefly describing how it 

has been measured in the field or by remote sensing instruments. 
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Chapter 2 provides a literature review of tropical forest mortality concepts, 

agents, mechanisms and spatial patterns, describing the few 

remote sensing studies that addressed the detection of tropical 

forest mortality. 

Chapter 3 describes the general methodology used in data analyses. 

Chapter 4 assesses the detection of large-scale bamboo die-off in bamboo-

dominated forests and its relationship with fire occurrence at the 

southwest Amazon. The detection was based on time series 

analysis of MODIS (MAIAC) surface reflectance data, from which 

the monitoring of temporal changes in the bamboo phenology was 

a key aspect of the investigation. The bamboo causes damage to 

other trees, constrains the forest biomass, enhances the overall 

forest tree mortality, and potentially favors fire occurrence. 

Therefore, its mapping can contribute to a better understanding of 

tree mortality associated with bamboo and fire dynamics within the 

southwest Amazon region. *1 

Chapter 5 assesses the potential of multi-temporal VHR passive optical 

imagery (WorldView-2 and GeoEye-1) to detect individual tree loss 

at the Jamari National Forest, Rondônia state, Brazil. The idea was 

to develop a generic semi-automatic method to detect canopy tree 

mortality that could work with any tree that went through treefall. 

The experiment was based on selective logging rather than natural 

tree mortality due to the unique availability of tree-by-tree data at 

managed natural forests. Multi-temporal high spatial resolution data 

from airborne LiDAR served as a reference for comparison with the 

tree loss detected by the VHR passive optical imagery. *2 

                                                      

 

*1 This chapter is an adapted version of the paper: DALAGNOL, R. et al. Life cycle of bamboo in 
the southwestern Amazon and its relation to fire events. Biogeosciences, v. 15, n. 20, p. 6087–
6104, 18 out. 2018. 
*2 This chapter is an adapted version of the paper: DALAGNOL, R. et al. Quantifying Canopy Tree 
Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite 
Imagery and Airborne LiDAR. Remote Sensing, v. 11, n. 7, p. 817, 4 abr. 2019. 
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Chapter 6 investigates the use of canopy gap measurements derived from 

airborne LiDAR data to represent tree mortality. The goal here was 

to determine to what extent gaps could be used to infer about tree 

mortality and, by considering environmental-climate drivers’ 

relationship with gaps, to predict tree mortality for the Amazon 

forests. The first part of this study was conducted over five sites 

across the Brazilian Amazon with available multi-temporal airborne 

LiDAR datasets, which were analyzed to measure how much of 

canopy tree mortality can be detected by gaps. The second part 

consisted of a systematic assessment of gap dynamics across the 

Brazilian Amazon using 610 non-overlapping LiDAR flight lines, 

investigating its relationship with environmental-climate drivers. The 

third part developed a modelling approach, combining the gap-

mortality and environmental-climate/gap relationships to predict 

tree mortality across the Amazon biome. The estimates were 

compared with field observations. LiDAR-derived regional spatial 

patterns of tree mortality were established. *3 

Chapter 7 presents a general discussion from the combined analyses of the 

chapters, exploring the perspectives for the next remote sensing 

studies of tropical forest mortality. 

Chapter 8 summarizes the overall findings of the study. 

 

In practice, the passage from Chapters 4 to 5 represents the transition from a 

vegetation-specific mortality approach (bamboo die-off) using coarse spatial 

resolution data into a more generic approach to detect individual tree loss using 

VHR data. On the other hand, the passage from Chapters 5 to 6 represents the 

transition in data source from passive to active optical remote sensing with the 

LiDAR being used to produce an Amazon-wide tree mortality map. 

  
                                                      

 

*3 This chapter correspond to the paper in preparation: DALAGNOL, R. et al. Modelling amazon 
tree mortality from LiDAR-based gap dynamics and environmental-climate drivers. To be 
submitted. 
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2 LITERATURE REVIEW 

2.1 Tree mortality: concepts and measurements 

Tree mortality is a key component of the carbon cycle and a predictor of 

vegetation biomass and biodiversity (JOHNSON et al., 2016; PHILLIPS et al., 

2004). In the past decades, mortality rates have been increasing worldwide over 

distinct woodlands and forest regions, in association with severe droughts 

(HUANG et al., 2019). Thus, these mortality events have occurred at deep- or 

shallow-rooted vegetation and different climate envelopes. Increased tree 

mortality with drought has been reported also for the Amazon forests, which is 

likely linked to increasing climatic variability and feedbacks with growth 

(BRIENEN et al., 2015). Improving the knowledge of forest dynamics, especially 

tree mortality, is therefore important for the parametrization of climate and carbon 

models, which currently cannot replicate adequately the patterns observed in the 

field (BIRCHER et al., 2015). An accurate understanding of tree mortality 

patterns, including detection and causality, would help to parameterize and test 

forest carbon cycle models (KELLNER et al., 2009). 

The mortality is a natural component of the forest dynamics caused by plant 

physiology, age/senescence, environmental factors, stress, and even random 

factors (KEANE et al., 2001). Amongst the potential causes of mortality, recent 

studies found that mortality has been enhanced by water stress in the Amazon 

forests (PHILLIPS et al., 2009). Two main hypotheses explain how a plant dies 

with water stress: hydraulic failure and carbon starvation (MCDOWELL et al., 

2008). In addition to water stress, the effect of biotic attack (i.e. insects) should 

also contribute to exacerbating mortality (MCDOWELL et al., 2008). Other 

processes in the Amazon, either causing direct mortality or enhancing mortality 

rates after drought events, consist of wildfire (BARLOW et al., 2012; BRANDO et 

al., 2014; SILVA et al., 2018); fragmentation (LAURANCE et al., 1998; 

LAURANCE et al., 2001; LAURANCE; WILLIAMSON, 2001); wind disturbances 

(RIFAI et al., 2016; NEGRÓN-JUÁREZ et al., 2018); logging (ASNER et al., 2004; 

FELDPAUSCH et al., 2005); plant infestation/dominance; and competition such 

as that from liana (FOSTER et al., 2008; MARVIN et al., 2016; TYMEN et al., 

2016) or bamboo (CARVALHO et al., 2013). 
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Measurements of tree mortality are primarily performed by repeated censuses of 

inventory plots, which are combined into networks for large-scale analysis of 

forest dynamics. For instance, the RAINFOR network, described by Malhi et al. 

(2002), is an excellent source of tree mortality information to date for the Amazon 

forests. However, although plot data allow a precise retrieval of tree mortality 

rates locally, they do not provide tools for monitoring tree mortality at larger 

scales. In this case, remote sensing data and related methods, in combination 

with field data, should be the optimal choice for global-scale forest stress and 

mortality detection and attribution (ALLEN et al., 2010). 

One major challenge for the remote detection of Amazonian tree mortality is the 

great heterogeneity of tropical forests. In temperate forests, an insect or disease 

may attack massively all individuals from one species at a landscape causing 

widespread mortality. For instance, this is the case of the Phytophthora ramorum 

pathogen, which affects forests from California and Oregon in the United States 

(U.S.) (LIU et al., 2007). Another example is the mountain bark beetles that attack 

pines in the U.S. (HICKE; LOGAN, 2009; DENNISON et al., 2010; MEDDENS et 

al., 2013). The attack generally causes great leaf phenology changes, e.g. 

modifications in leaf color from green to red, which can be tracked by the spectral 

signal measured by the satellites. Different from temperate forests, which do not 

show a large diversity of canopy-dominant species on each landscape, tropical 

forests usually have hundreds of species per hectare (PHILLIPS et al., 2004). 

Therefore, remote sensing detection of mortality caused, for example, by biotic 

agents or droughts, is not as efficient as in temperate forests, because of the 

heterogeneity in species composition and their responses to factors causing 

mortality. 

Remote sensing can detect other large-scale disturbances that cause mortality in 

tropical forests using passive multispectral optical sensors or active instruments 

such as LiDAR. One example of passive detection is the wind disturbance 

captured by Landsat data (RIFAI et al., 2016; NEGRÓN-JUÁREZ et al., 2018). 

Satellite instruments, such as the TM/Landsat-5 and the MODIS/Terra, have 

been used also to detect tree mortality associated to plant species infestation or 

dominance by liana (FOSTER et al., 2008; MARVIN et al., 2016; TYMEN et al., 

2016) and bamboo (CARVALHO et al., 2013). There are also small-scale 
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disturbances generating individual tree mortality that can be visually detected 

using multi-temporal VHR imagery (CLARK et al. 2004b). For passive optical 

multispectral data, more elaborated procedures than visual image inspection 

include the use of statistical Bayesian frameworks applied over a time series of 

VHR imagery (KELLNER; HUBBELL, 2017). Tree mortality detection from active 

LiDAR has included the use of multi-temporal data (LEITOLD et al., 2018) and/or 

the analysis of canopy gaps derived from single-date airborne acquisition 

(HUNTER et al., 2015). 

 

2.2 Mortality agents, mechanisms and spatio-temporal patterns  

2.2.1 Patterns of tree mortality based on field inventory data 

Tree mortality in Amazon forests has been associated with different factors 

related to the stand properties, species traits and environment (BAKER et al., 

2004; CHAO et al., 2009; ANDEREGG et al., 2016; RIBEIRO, al., 2016; 

JOHNSON et al., 2016); tree size (RIBEIRO et al., 2016; THOMAS et al., 2013); 

hydraulic features (ANDEREGG et al., 2016); and topography/soil (DE TOLEDO 

et al., 2011; MARRA et al., 2014). The increased density of individuals may also 

be related to higher mortality because of the greater competition for resources 

(VAN GUNST et al., 2016). 

In regular (non-drought) years, tree mortality in Amazon forests is around 2%yr-1 

and represents committed emissions of 1.3 ± 0.07 Pg C yr−1 (JOHNSON et al., 

2016). There is a spatial pattern of a higher rate of mortality in western and 

southeastern Amazon (2.62 and 3.19% yr-1, respectively) than in central-eastern 

and northern Amazon (1.38 and 1.66% yr-1, respectively) (Figure 2.1) (JOHNSON 

et al., 2016). However, in severe drought years, several studies reported higher 

tree mortality or carbon emissions in Amazon associated with El-Niño and heating 

of the northern Atlantic Ocean. Examples are the tree mortality increases from 2 

to 3% yr-1 in 1982/1983 over the tropical forests of Panama (CONDIT et al., 1995), 

and 1.1 to 1.9% yr-1 in 1997/1998 over tropical forests of Central Amazon 

(WILLIAMSON et al., 2000). Furthermore, committed emissions of -1.60 Pg C yr-

1 (-2.63; -0.83), in areas affected by the 2005 drought (PHILLIPS et al., 2009), 

and -2.2 Pg C yr-1 (-3.4; -1.2), in areas affected by the 2010 drought (LEWIS et 
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al., 2011), have been reported. El-Niño also affected the Amazon region in 

2015/2016 with potential increases in mortality (JIMÉNEZ-MUÑOZ et al., 2016). 

Meanwhile, the differences in forest dynamics between the Amazon regions may 

be owed to soil properties. In the west Amazon, the soils are relatively new and 

shallower, having high fertility compared to the soils from the central-east and 

northern Amazon (QUESADA et al., 2011). These differences contribute to the 

faster forest dynamics, increased recruitment and mortality, and lesser specific 

wood density in the west Amazon, when compared to the opposite pattern 

observed in the central-east and north regions (BAKER et al., 2004; JOHNSON 

et al., 2016). 

Figure 2.1 - Tree mortality based on RAINFOR inventory data: (A) kriging-interpolation 
map of annual tree mortality (% yr-1); and (B) tree mortality rates by region. 

 

Source: Adapted from Johnson et al. (2016). 

Field observations showed that the west Amazon had an overall lower (0.57 g 

cm-3) specific wood density than the central-east region (0.66 g cm-3) (Figure 

2.2B) (BAKER et al., 2004). Associated with the wood density, there was also a 

difference in the mode of death between the regions (Figure 2.2A). Western 

Amazon showed more broken dead trees, while central-east showed more 

standing dead trees (CHAO et al., 2009). The study of Ribeiro et al. (2016) found 

out that factors such as soil depth and uprooting resistance could also influence 

the mode of death. For example, large trees had higher resistance to uprooting 

and mechanical breakage than small trees. 
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Figure 2.2 - (A) Proportion of modes of death (standing dead, uprooted and broken) in 
northwestern and northeastern Amazon; (B) Wood density in Amazon 
regions. 

 

Source: (A) Chao et al. (2009); (B) Baker et al. (2004). 

 

2.2.2 Main mechanisms of tree mortality 

Water stress, and specifically water deficit, has been pointed out as a key driver 

of mortality in Amazon forests (PHILLIPS et al., 2009). According to McDowell et 

al. (2008), the two most accepted hypotheses for drought-related mortality are 

the carbon starvation and hydraulic failure. The hypothesis of carbon starvation 

predicts mortality when the duration of the drought is greater than the duration of 

the plant's carbohydrate reserves. Meanwhile, hydraulic failure occurs when the 

intensity of the drought exceeds the plant threshold for desiccation before the 

occurrence of carbon starvation. This process occurs when the plant tries to 

supply the high evaporative demand of the atmosphere. However, when the soil 

has limited access to water, air bubbles enter the xylem vessels causing 

cavitation and preventing the conductivity of the water inside the plant. In addition, 

both hypotheses can be amplified by biotic agents such as insects or diseases. 

For example, during water stress, the plant may stop producing resins that protect 

it from insects, or emit volatile gases such as ethanol, which attracts insects. An 

insect can also inoculate fungi in the plants' veins, preventing the passage of 

water. 

Alternatively, flooding has also been reported as causing increased tree mortality 

over the Amazon forests (NELSON, 1994). It increases up to five-fold the regular 

mortality rates over non-flooded areas (MOSER et al., 2019). This is especially 

important considering the construction of mega-dams on the upper rivers of the 
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Amazon basin. They artificially alter the hydrological and discharge regimes 

(MOSER et al., 2019). Even though species at floodplains are usually adapted to 

the stress from floods, increases in average flood duration or water level have the 

potential for catastrophic mortality (GLOOR et al., 2015).  

Blowdowns are one of the most common types of wind disturbances in the 

Amazon (ESPÍRITO-SANTO et al., 2010). The phenomenon is generated by 

strong winds that descend with high speeds toward the forest. They physically 

uproot and kill the trees, creating large clearings. The cleared areas or gaps 

generally cover more than 25 ha (RIFAI et al., 2016) and the most frequent scale 

of disturbance is around 100 ha. The largest documented blowdown to date has 

reached 3,370 ha of disturbance in Central Amazon forests (NELSON et al., 

1994). However, the studies point out that events of this magnitude are very rare 

and, thus, the estimated biomass losses by the blowdowns (0.01 Pg C year-1) are 

very low compared to the small-scale disturbances (ESPÍRITO-SANTO et al., 

2010; ESPÍRITO-SANTO et al., 2014). Overall, these wind disturbances in the 

Amazon occur more in the west than in the eastern regions, with a threshold of 

approximately 58o west longitude (Figure 2.3A) (NELSON et al., 1994; 

ESPÍRITO-SANTO et al., 2014). Coincidently, the western Amazon region shows 

trees with predominantly low wood density (BAKER et al., 2004). This fact leads 

to a higher frequency of broken or uprooted dead trees, compared to the most 

common mode of death in the eastern region, which includes standing dead trees 

(CHAO et al., 2009). 

Figure 2.3 - (A) The western Amazon region is more affected by blowdowns than the 
eastern region. The circles denote blowdown groupings. (B) Forests 
dominated by bamboo (hatched areas) in the southwestern Amazon. 

 

Source: Adapted from (A) Espírito-Santo et al. (2014), and (B) Carvalho et al. (2013). 
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Plant infestation or dominance by liana and bamboo can greatly improve tree 

mortality rates and constraint carbon sequestration (FOSTER et al., 2008; 

CASTRO et al., 2013). Liana plants can enhance tree mortality up to double the 

landscape mortality rate for trees with >75% liana canopy cover (INGWELL et al., 

2010). There are no reliable large-scale assessments of liana cover for the 

Amazon forests, but rough estimates are in the order of 100,000 km² (NELSON 

et al., 1994). 

The bamboo-dominated forests occupy an area of 161,500 km² in the 

southwestern Amazon (about 3% of the entire Amazon) (Figure 2.3B) 

(CARVALHO et al., 2013). These forests have a high density of bamboo of the 

genus Guadua (2,309 ± 1,149 ind ha-1) with an average diameter of 4.4 ± 0.6 cm 

(CASTRO et al., 2013). The bamboo competes for resources with the rest of the 

species, while causes physical damage and tree strangulation (GRISCOM, 

2003). Studies report that annual mortality in these areas is 3.6 ± 2.5% yr-1 

(CASTRO et al., 2013; Medeiros et al., 2013). This rate is much higher than the 

Amazon average rate, which is 1.96% yr-1, or the average in the western region, 

which is 2.62% yr-1 (JOHNSON et al., 2016). These individuals have a monocarp 

characteristic with a life cycle measured by remote sensing of approximately 27-

28 years (CARVALHO et al., 2013). When they reach the end of their lives, they 

flourish and die synchronously in large areas. With the death of these bamboos, 

there is an accumulation of dry biomass in the forest, which can increase the 

probability of fire occurrence. This led researchers to the ‘bamboo-fire 

hypothesis’, pointing out that fire may explain the bamboo dominance in this 

region (KEELEY; BOND, 1999). In addition, as there is a mosaic of different ages 

of bamboo throughout the region, it is expected that the forest dynamics in this 

region will be highly variable (MEDEIROS et al., 2013).  

Landscape changes resulting from anthropic action, such as fragmentation, also 

have an impact on the dynamics of the remaining forests and cause increases in 

tree mortality rates (LAURANCE et al., 1998; LAURANCE et al., 2001; 

LAURANCE; WILLIAMSON, 2001). Data collected in permanent inventory plots 

of the Dynamics of Forest Fragments Project (BDFFP) indicated that, on average, 

an annual mortality of 3-4% occurs in the first 60 m of the fragment's edge, about 

2% of 60-100 m and 1-1.5% in the interior (LAURANCE et al., 1998). Therefore, 



14 

 

mortality rates about three times higher occurred at the edges than inside the 

fragment. Mechanisms behind the increased mortality with fragmentation include 

factors such as microclimate changes, wind turbulence (LAURANCE et al., 1998), 

number of edges (LAURANCE et al., 2011), and the type of land cover neighbor 

to the fragment (MESQUITA, et al., 1999). The more edges a fragment has, the 

higher its mortality rate, density of individuals and species richness (LAURANCE 

et al., 2011). Since 90% of the fragments of the Amazon are smaller than 4 km² 

(BROADBENT et al., 2008), greater impacts are expected due to the number of 

edges. Regarding the neighboring land cover, if it is a pasture, the fragment is 

more exposed to higher temperatures and humidity deficit. Consequently, there 

is a higher probability of burning, as fire is a traditional method of management in 

the Amazon (MESQUITA et al., 1999).  

Wildfires are also an important driver of mortality in the Amazon forests. Even 

though their natural occurrence is relatively rare, e.g. fires ignited by lightning 

from thunderstorms, these disturbances associated with anthropogenic activities 

affect huge areas in the Amazon similarly to fragmentation (COCHRANE, 2003). 

Moreover, the likelihood of a forest getting on fire is increased by degradation 

processes such as logging or fragmentation (ARAGÃO et al., 2014), or by severe 

droughts such as the 2010 and 2015/2016 El Niño events (SILVA JÚNIOR et al., 

2019). Mortality rates in fire-affected forests rise up to 36% after 3 years of fire 

occurrence (an average of 12% yr-1) (BARLOW et al., 2012). Even after three 

decades following fire occurrence, the burned forests still exhibit 25% less 

biomass than the unburned forests (SILVA et al., 2018). 

 

2.2.3 Canopy gaps and mortality 

By classical definition, the gap is a ‘hole’ in the forest canopy that extends down 

to ≤ 2 m above ground (BROKAW, 1982). Other thresholds of height have been 

experimented in the literature, for example, 20 m. They can be used to 

characterize treefalls and possible trees with branch-fall or crown failure (ASNER 

et al., 2013). Treefall gaps are generated by disturbance events that may end in 

the death and fall of single or multiple trees. Therefore, strong relationships 

between gap areas and coarse wood debris (CWD) (R² = 0.53), and gap areas 

and the number of dead trees (R² = 0.56), were observed in tropical forests in 
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eastern Amazon by ground sampling (ESPÍRITO-SANTO et al., 2013). However, 

since CWD is also produced by branch-fall, and this is not precisely represented 

by gap sizes, the gap distribution alone cannot explain all the production of 

necromass in Amazon (ESPÍRITO-SANTO et al., 2013). Nevertheless, gap 

analysis is an alternative approach to measure tree mortality, that is, instead of 

tracking each tree’s fate over time, gaps can be measured to report on the 

aggregated effect of mortality. 

Treefall gaps are important sources of heterogeneity in the composition and 

dynamics of tropical forests (BROKAW, 1985). After the aperture of a gap in the 

canopy, there is an increase in light transmittance and small changes in nutrient 

concentrations that can promote alteration in canopy biophysical proprieties, e.g. 

leaf area index – LAI, canopy functions, e.g. photosynthesis, shifts in species 

composition, acceleration of biomass decomposition, etc. (CHAMBERS et al., 

2013). However, this will depend on the gap sizes, where large gaps (> 150 m²) 

have more light infiltration than small gaps (< 150 m²) (BROKAW, 1985). In 

smaller gaps, shade-tolerant species might be able to grow due to the lack of 

competition by light-demanding species. Meanwhile, larger gaps promote the 

development of existing or new individuals of shrubs, lianas and large herbs 

(DENSLOW et al., 1998).  

Gap size distribution is generally characterized by the prevalence of more 

frequent small than large-sized gaps, presenting a negative exponential or 

lognormal shape of the distribution (YAMAMOTO, 2000). The gap sizes vary 

among developmental stages of a forest, where the mean gap size is smaller in 

early development stages than in old-growth forests (YAMAMOTO, 2000). In the 

study of wind disturbance in Central Amazon, the gaps observed in the field had 

6 to 8 dead trees and areas from 250 to 900 m², while the mean gap size was 

360 m² (NEGRÓN-JUÁREZ et al., 2011).  

Measurement of gaps is a challenge for both field and remote sensing 

observations. While ground gap measurements are obtained directly by tape or 

indirectly estimated by canopy openness from hemispherical photography 

(DANSON et al., 2007), the CHM extracted from the LiDAR point cloud allows for 

the precise detection of gaps considering a height cutoff parameter (LOBO; 

DALLING, 2014). A study by Gaulton and Malthus (2010) attempted to validate 
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gap measurements from airborne LiDAR data with gaps measured on the ground. 

They concluded that it was very difficult to achieve a reliable relationship. This is 

likely because the high-precision of LiDAR-gap delineation potentially surpasses 

that of ground measurements, which tend to under-sample gaps. Nevertheless, 

airborne LiDAR data constitute the best tool available to map gap distribution at 

large scales. 

The most common gap measurements include gap fraction (area occupied by 

gaps), gap size, and gap size-frequency distribution (SFD). To assess the gap 

SFD, the gap size distribution is assessed by fitting a discrete power-law 

probability (Zeta distribution) and obtaining the λ-scale parameter that 

characterizes the distribution (ESPÍRITO-SANTO et al., 2014). The meaning of λ 

refers to the gap dynamics. Larger λ (>2.0) represents a forest dominated by 

smaller gaps, while smaller λ (< 2.0) indicates forests dominated by larger gaps 

associated with the mortality of emergent trees (ASNER et al., 2013). However, 

since each study from the literature employs a different method to delineate gaps, 

it is not possible to compare the λ between the sites. 

 

2.3 Remote sensing studies for mortality detection and monitoring 

The remote sensing studies were divided into three categories that represent 

different scales of observation of mortality and best-suited data for analyses: (1) 

canopy observed at the landscape scale, (2) individual trees observed at the local 

scale, and (3) canopy gaps observed at the local scale. 

 

2.3.1 Canopy observed at the landscape scale 

Amongst all mortality agents studied with remote sensing in the Amazon, 

blowdowns were the most reported (NELSON et al., 1994; CHAMBERS et al., 

2009; ESPÍRITO-SANTO et al., 2010; CHAMBERS et al., 2013; MARRA et al., 

2014; RIFAI et al., 2016). The studies have used optical passive data from 

Landsat satellites and spectral mixture modelling to map the area affected by the 

blowdowns, either based on a single-date analysis (NELSON et al., 1994; 

CHAMBERS et al., 2009; ESPÍRITO-SANTO et al., 2010), or a time series 

inspection (CHAMBERS et al., 2013; MARRA et al., 2014; RIFAI et al., 2016). In 
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both types of analyses, the studies extracted the non-photosynthetically active 

vegetation (NPV) fraction to infer about mortality fraction across the landscape. 

When the wind uproots trees, trunks and branches are usually exposed, an 

increase in the NPV fraction is generally observed. For the time-series analyses, 

the NPV variability over time (∆NPV) was calculated and a threshold (∆NPV ≥ 

0.16) was determined to discriminate areas with disturbance from non-

disturbance (MARRA et al., 2014; CHAMBERS et al., 2013). For instance, high 

values of ∆NPV meant more mortality. The studies also fitted models between 

∆NPV and field-measured mortality (fraction) with very strong goodness of fit (R² 

> 0.8).  

Drought-related mortality was also investigated in tropical forests by using the 

MODIS sensor and RAINFOR field data (ANDERSON et al., 2010). The 

relationship between the MODIS Enhanced Vegetation Index (EVI) and the 

Normalized Difference Water Index (NDWI) was assessed in comparison to field 

anomalies of tree mortality observed in the 2005 drought year (Figure 2.4). The 

EVI anomalies presented a positive association with the mortality anomalies 

(Figure 2.4A; R² = 0.18, p = 0.07), while the NDWI presented a negative 

relationship with it (Figure 2.4B; R² = 0.17, p = 0.08). Although relatively weak, 

the relationships were statistically significant. The EVI increase and the NDWI 

decrease with increasing mortality were associated with canopy structural 

changes that reduced the amount of shadows for the sensor. Therefore, with 

fewer shadows, the NIR signal was higher, and therefore the EVI was also higher. 

This is because EVI and NIR reflectance are highly correlated to each other 

(GALVÃO et al., 2011). 
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Figure 2.4 - Correlation of anomaly of vegetation indices with field-based forest mortality. 
(A) Enhanced Vegetation Index (EVI). (B) Normalized Difference Water 
Index (NDWI). 

 

Source: Adapted from Anderson et al. (2010). 

Mass mortality due to flooding has been mapped using ALOS/PALSAR data with 

high accuracy (87%) at the Central Amazon basin (RESENDE et al., 2019). The 

construction of a large dam close to the Uatumã River in 1987 led to abrupt 

changes in the hydrological cycle of this river, causing long-term changes to the 

forest dynamics. The authors used radar imagery to map the widespread 

standing dead trees and living trees. The SAR signal from living trees goes 

through lots of volumetric scattering in the canopy, which attenuate the returned 

signal. In contrast, the dead leafless trees and free water underneath the trunks 

produced a strong signal derived from the lack of a double-bouncing effect. 

The large-scale bamboo die-off at the southwest Amazon region (Figure 2.3B) 

can be detected by optical sensors such as TM/Landsat-5 and MODIS/Terra time 

series (NELSON, 1994; CARVALHO et al., 2013). Carvalho et al. (2013) showed 

that forests having adult bamboos at the canopy had higher reflectance in the 

near infrared (NIR) wavelength than bamboo-free areas or areas with recently 

dead bamboo. Therefore, by visual analysis of annual composites of MODIS 

data, using the NIR as part of a false-color composite, they manually delineated 

patches of bamboo that synchronously died. One limitation of this approach is the 

identification of large areas based on the analyst’s visual acuity. Further studies 

are therefore necessary to understand the bamboo life cycle and its spectral 

characteristics, as well as to establish automatic approaches for detecting die-off 

events in bamboo-dominated areas. These approaches can enable analyses of 
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ecological processes associated with these events, such as the interactions 

between bamboo and fire (KEELEY; BOND, 1999) and bamboo flowering wave 

patterns (FRANKLIN et al., 2010). 

Liana infestation on the forest canopy has also been studied using remote 

sensing in a few tropical forest sites (FOSTER et al., 2008; MARVIN et al., 2016; 

TYMEN et al., 2016). Some of these approaches were based on Landsat 

multispectral data (FOSTER et al., 2008; TYMEN et al., 2016); Hyperion or 

airborne hyperspectral data (MARVIN et al., 2016); and airborne LiDAR data 

(TYMEN et al., 2016). The infestation may be characterized by low height and 

uniform canopies having a brighter green color than the surrounding forest 

canopies (FOSTER et al., 2008). Therefore, in general, the detection of liana-

infested forests was attributed to a higher reflectance in the visible wavelength 

than the signal observed over non-infested forests (MARVIN et al., 2016). 

Although these liana-dominated forests showed distinct spectral characteristics 

and height than the surrounding non-infested forests, the studies so far did not 

point out a unique feature of the liana-forests that would allow for large-scale 

detection, similarly as the bamboo die-off.  

 

2.3.2 Individual trees observed at the local scale 

VHR satellite images allow for the identification of individual tree losses. By using 

multi-date imagery, a pioneer study assessed tree mortality in the tropical forest 

at La Selva station in Costa Rica (CLARK et al., 2004b). The study employed an 

Ikonos image (1 m spatial resolution) from 2000 and a QuickBird image (0.7 m 

spatial resolution) from 2002. The detection was performed by visually observing 

the omission of crowns from the first to the second date (Figure 2.5). When 

accounting for the number of dead trees, the satellite data produced a tree 

mortality rate of 2.8% yr-1, which was comparable with the mortality measured in 

the field (3% yr-1). The main challenges of applying this method to extensive 

analysis are the low availability of images due to the cloud cover and the impact 

of extremely different viewing-illumination geometry in both images that affect the 

amount of shadows viewed by the sensors (WULDER et al., 2008; ESPÍRITO-

SANTO et al., 2013). Robust co-registering methods and spatial-spectral analysis 

are options to work with different geometries. The tree mortality analysis using 
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VHR data may be biased, to some extent, by better observations of crown 

suppressions of the tallest trees across dates. 

Figure 2.5 - Tree mortality detection of individual trees based on Very High Resolution 
(VHR) optical imagery, between (A) 2000 (Ikonos) and (B) 2002 
(QuickBird). 

 

Source: Adapted from Clark et al. (2004b). 

Using VHR imagery, Kellner and Hubbell (2017) applied a Bayesian model to 

detect the mortality of canopy tree species Handroanthus guayacan in tropical 

forests of the Barro Colorado Island (Panama) based on synchronous flowering 

patterns. Overall, each tree was observed on each image of the VHR time series. 

The method proposed by the authors assessed the probability of death based on 

the presence or absence of flowering. For instance, if the tree flowers, it is alive. 

If the tree does not flower on several subsequent images, the probability of death 

increases. They have estimated a lower rate of tree mortality for this species than 

the rate measured in the field campaigns, but the estimates were not statistically 

different from each other. As a constraint of this approach, it will work only for tree 

species with synchronous annual flowering, requiring also a dense time series of 

VHR imagery to track overtime this phenological event. 

Airborne LiDAR also detects the mortality of individual trees (THOMAS et al., 

2013). At the La Selva reserve in Costa Rica, Thomas et al. (2013) assessed the 

annual mortality rate of large trees (height ≥ 40 m) to test whether these 

individuals were experiencing higher or lower mortality than the other canopy 

individuals. The detection was performed by multi-temporal airborne LiDAR data 

with 0.33 m of spatial resolution for the years 1997 and 2006. A total of 121 large 
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trees were identified in the field. However, by applying a 40-m height threshold 

over the LiDAR CHM data, they detected 735 large trees in the study area. 

Considering the height difference between the 2006 and 1997 models, a logistic 

relationship was applied to determine the probability of the individual's mortality 

(Figure 2.6). Results from that study showed a lower mortality rate for large trees 

(1.2% year-1) than for the rest of the canopy trees (2.7% year-1). Remote sensing 

was essential in testing this hypothesis, since the number of large trees sampled 

in the field was much smaller than that covered by the LiDAR data, reducing the 

uncertainties in the predictions of the mortality rate. 

Figure 2.6 - Mortality detection by the difference between multi-temporal LiDAR Canopy 
Height Models (CHM) from (A) 1997, and (B) 2006. The image in (C) 
represents the difference between (A) and (B). Pr means the probability 
of death of the plant. 

 

Source: Adapted from Thomas et al. (2013). 

 

2.3.3 Canopy gaps observed at the local scale 

Airborne LiDAR data have been used in Neotropical forests to quantify the spatial 

distribution, frequency and size of gaps (ASNER et al., 2013; LOBO; DALLING, 

2014; ESPÍRITO-SANTO et al., 2014; GOULAMOUSSÈNE et al., 2016). The 

relationship of gaps with environmental, edaphic, and topographic variables has 

been also evaluated (GOULAMOUSSÈNE et al., 2016). Despite the use of LiDAR 

to assess the gap-phase dynamics in some tropical forest sites, an extensive 

analysis of the spatio-temporal distribution of gaps over the Amazon has not been 

developed yet.  
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The gaps retrieved from single-date images are sometimes called ‘static’ gaps 

because they represent the integration of past disturbance and forest regrowth. 

Their delineation is strongly dependent on the height cutoff definition, which can 

generate different amounts of gaps for analysis (ASNER et al., 2013; LOBO; 

DALLING, 2014; HUNTER et al., 2015). Height cutoffs from these studies ranged 

from 1 to 20 m, but 10 m was the most widely accepted value. Rather than using 

a single gap definition, Goulamoussène et al. (2017) proposed a method to 

calibrate the height cutoff to a forest site based on the statistical analysis of its 

height distribution and mixed models. Some caveats of this approach include not 

accounting for factors such as the presence of large open areas that were not 

necessarily treefall gaps; low height vegetation; and degraded or deforested 

areas. Another proposed approach was based on a dynamic definition using a 

relative height cutoff and a local moving window (GAULTON; MALTHUS, 2010). 

Still, this approach has not yet been tested over tropical forests. 

From the SFD analyses of static gaps, Asner et al. (2013) showed that λ 

described differences in forest dynamics between the Erosional Terra Firme 

(ETF) and Depositional Floodplain (DFP) landscapes, with different vegetation 

types, geology and elevation (Figure 2.7A). When considering lower height 

thresholds to delineate a gap (nearest to the ground), the ETF showed a pattern 

of smaller gap sizes than the DFP, denoted by the superior λ exponents (Figure 

2.7B). However, when increasing the height threshold at some point between 15 

and 20 m, the ETF showed bigger gaps than the DFP, as expressed by the 

inferior λ exponents. Therefore, the λ considering different height thresholds 

inform about the variability of canopy structure on a vertical profile. 
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Figure 2.7 - (A) Gap size-frequency distributions (SFD) of two vegetation types: 
Erosional Terra Firme (ETF) and Depositional Floodplain (DFP), and 
considering 1-m and 20-m height thresholds; (B) Vertical distribution of 
power-law exponents λ for each forest type. 

 

Source: Adapted from Asner et al. (2013). 

A visual example of the gaps is shown in Figure 2.8 for Peruvian tropical forests 

based on the study by Asner et al. (2013). The forest at the left panel (Figure 

2.8A) shows a more closed canopy than the one at the right panel (Figure 2.8B). 

Although the gaps are not strictly delineated in the figures, they are mostly 

represented by the blue areas having low height values. The exact delineation of 

gaps will depend on the selected height cutoff. 

Figure 2.8 - Forest Canopy Height Models (CHM) of a Peruvian Amazon forest 
landscape, specifically at a (A) Depositional Floodplain (DFT), and an (B) 
Erosional Terra Firme (ETF). Each panel represents 50 ha. 

 

Source: Adapted from Asner et al. (2013). 
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Gap distribution can also be analyzed over time. The ‘dynamic’ gaps are the new 

gaps observed between a given interval of time, using multi-temporal data 

(MARVIN et al., 2014; HUNTER et al., 2015). There are not many studies on 

dynamic gaps because of the requirement of multi-temporal data. However, they 

should be more related to the carbon fluxes within the given period, expressing 

the dynamics of regeneration. In a study at a lowland tropical forest in 

southwestern Colombia, Marvin et al. (2014) showed that there were three times 

more static (1.6 gaps ha-1) than dynamic gaps (0.5 gaps ha-1), and that 60% of 

the dynamic gaps happened close to pre-existing gaps. Other studies also 

present evidence that new gaps are prone to occur closer to pre-existing gaps, 

following the hypothesis of ‘gap contagiousness’ (MARVIN et al., 2014; HUNTER 

et al., 2015). 

 

2.4 Perspectives for tree mortality studies using remote sensing over 

Amazonian tropical forests  

Based on the literature review, the main drivers of mortality for Amazonian 

tropical forests are associated with factors that affect forest dynamics such as 

water stress, wind (blowdown), species dominance (liana and bamboo), and 

human-related disturbance (fragmentation and logging). Remote sensing has 

been used only locally to detect tree mortality related to some of these processes. 

However, the number of studies on the topic is relatively small considering the 

importance of the Amazon. As far as we know, there are no proposed remote 

sensing approaches for large-scale monitoring of tree mortality in the Amazon 

aiming at providing spatialized inter-annual mortality estimates. Moreover, there 

is probably no ‘one’ approach that can solve this problem alone. Thus, region- or 

vegetation- specific approaches may be necessary.  

Estimates of tree mortality should play a key role in calibrating and validating 

ecosystem models for a better representation of the carbon cycle in the Amazon. 

From the previous literature review, the remote sensing perspectives for a better 

understanding of tropical forest mortality in the Amazon region depend on several 

factors. For instance, they include the need to: (1) develop quantitative 

approaches from passive optical multispectral imagery or preferentially active 

LiDAR data for detecting tree mortality over the entire ecosystem; (2) assess how 
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much do canopy gaps represent tree mortality; (3) adapt strategies of tree 

mortality detection for specific vegetation types such as bamboo-dominated 

forests, using high-temporal resolution data from MODIS or satellite 

constellations for tracking their phenological response or life cycle, and liana-

infested forests; (4) combine remote sensing, climatic and environmental data for 

a better comprehension of the factors causing tree mortality; and (5) integrate the 

resultant tree mortality map into the ecosystem models. 

The present doctoral dissertation is inserted in this context. It addresses some of 

the above-mentioned requirements to improve knowledge on tree mortality of 

Amazonian tropical forests, while it provides the necessary information for the 

development of the other topics. 
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3 GENERAL METHODOLOGY 

3.1 Study area 

The study area is the Amazon biome (Figure 3.1) (EVA; HUBER, 2005). To 

facilitate the representation of results, we divided the Amazon into four regions 

with distinct geography and substrate origin. Following Feldpausch et al. (2011), 

they are: (1) west region, covering Colombia, Ecuador, Peru and Bolivia, with 

fertile soils originated from recently weathered Andean deposits; (2) southeast 

region, including Brazil and Bolivia; (3) central-east region, covering Brazil and 

mostly comprised of old soils derived from sedimentary rocks; and (4) north 

region, encompassing Guyana, French Guiana and Venezuela. 

Figure 3.1 – Study area and examples of the developed mortality detection approaches. 
(A) The Amazon biome in South America divided into regions following 
Feldpausch et al. (2011); (B) MODIS (MAIAC) false-color composite of 
red (R), NIR (G) and SWIR (B) bands in Aug 2015. Living bamboo at the 
canopy is shown in light green color, while recently dead bamboo is shown 
in dark blue/gray color (Chapter 4); (C) VHR imagery and LiDAR CHM 
showing individual tree loss (Chapter 5); and (D, E, F) mortality and gap 
delineation over LiDAR CHM at TAP site (2012 and 2017) (Chapter 6).  

 
Source: Produced by the author. 



28 

 

Amazon is very diverse in vegetation types (Figure 3.2). The broadest division of 

vegetation types is the terra firme, wetlands, savanna, and anthropogenic types, 

which are then divided into several sub-types (SAATCHI et al., 2007). The 

predominant natural vegetation is Dense Ombrophylous Forest with 5.3 million 

km², which corresponds to 70% of the Amazon and 40% of all tropical forests in 

the world (ARAGÃO et al., 2014). Although there is no forest degradation product 

available for the Amazon biome, the non-forest distance (km) (Figure 3.3D) 

derived from the Global Forest Cover product v1.4 (HANSEN et al., 2013) shows 

forests nominally undisturbed up to 30 km farther from any deforestation, 

vegetation regrowth or water channel, i.e. potential pathways of human-influence. 

The mean distance is 2.5 km, ranging from 0.1 to 10 km (5 and 95th percentiles). 

Figure 3.2 – Vegetation types in the Amazon region. 

 

Source: Saatchi et al. (2007). 

In the majority of the region, the Köppen climate is Am and Af, presenting high 

precipitation rates in all months (avg. 100 to 300 mm month-1) (Figure 3.3A). High 

temperatures and varying start and length of the dry season are observed, which 

lasts from 1 month in the northwest to 4 months in the southeast (MOURA et al., 

2015). Average monthly water deficits, derived from the TerraClimate product 
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(ABATZOGLOU et al., 2018), range from 0 to 35 mm. They increase from the 

northwest to the southeast Amazon (Figure 3.3B). Although Amazonian soils are 

very diverse, the predominant types are Ferralsols and Acrisols in the southeast 

and north Amazon region; Ferralsols and Plinthosols in the central-east Amazon 

region; and Acrisols and Cambisols in the west Amazon region (QUESADA et al., 

2011). The western region from Figure 3.1 shows newer geological materials, in 

contrast to older materials in the other regions (QUESADA et al., 2011). Soil 

fertility, proxied by the Soil Cation Concentration (SCC) (ZUQUIM et al., 2019), 

shows higher values at the west and east than southeast, central and north 

regions (Figure 3.3C). Terrain elevation is generally lower than 200 m. The 

Amazon presents the most extensive floodplains on the planet (800,000 km²) 

(MELACK et al., 2010). Human occupation in Amazon represented around 23.6 

million people in 2007, accounting for only the Brazilian Amazon (IBGE, 2010), 

where 70% of the population lived in cities (PADOCH et al., 2008). 

Figure 3.3 – Environmental and climate variables for the Amazon forests. Average 
monthly (A) rainfall (mm) and (B) water deficit (mm) from the TerraClimate 
product (ABATZOGLOU et al., 2018); (C) Soil Cation Concentration 
(SCC) (ZUQUIM et al., 2019), a proxy for soil fertility; (D) Non-forest 
distance (km) derived from Global Forest Cover product (HANSEN et al., 
2013), a proxy for forest degradation. 

 

 

Source: Produced by the author. 
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3.2 Data and methods 

Three remote sensing strategies to detect tropical forest mortality at different 

observation levels (canopy at the landscape scale, individual trees and canopy 

gaps at the local scale) were developed and validated in this study (Figure 3.4). 

The main methodological steps for these analyses are described in the 

paragraphs below. More detailed methodological information can be found in 

each chapter. 

Figure 3.4 – Overview of the main methodological steps used in the data analysis. 
Details are provided in each corresponding chapter. 

 

Source: Produced by the author. 

In Chapter 4, an approach was presented to automatically detect the bamboo 

die-off at landscape scale, based on time series of MODIS (MAIAC) data and 

characteristics of bamboo life cycle and phenology. This part of the study was 

conducted at the southwest Amazon (blue rectangle in Figure 3.1A), covering 

around 16 million ha, mostly over Brazil (Acre state) and Peru. The bamboo life 
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cycle length spans approximately 28 years. When it ends, the bamboo massively 

and synchronously reproduces and die, falling off the canopy and leaving huge 

amounts of dry biomass over the understory. The assumption behind the 

detection was that when bamboo dies, the canopy near infrared (NIR) spectral 

response abruptly drops because of the reduction of leaves. The dataset used 

for the bamboo mapping was a time series of the surface reflectance from MODIS 

(MAIAC) product (DALAGNOL et al., 2018b) corrected for viewing-illumination 

geometry by the Bidirectional Reflectance Distribution Function (BRDF) at 1-km 

scale, ranging from 2001 to 2017, considering the composite from August of each 

year. To detect the abrupt NIR changes, a simulated bilinear model was 

developed consisting of a NIR signal increase from 1 to 28 years of bamboo life 

and an abrupt decrease in year 29 (death). Then, the observed signal from each 

pixel was compared to the bilinear model, assessing the point of maximum 

correlation between the two. The year with the maximum significant correlation 

would consist of the die-off year. For validation, a time series of TM/Landsat-5 

imagery (30 m) was used for visual analysis of the bamboo die-off at high-

resolution. Considering a false-color composite of bands 1 (red), 2 (NIR) and 6 

(SWIR), in RGB channels, respectively, the recent die-off was characterized by 

a change from light green to dark blue/gray colors (Figure 3.1B). Therefore, 

samples of die-off from each year (2001-2017) were collected and compared to 

the die-off map. After detection and validation, active fire data from MODIS were 

acquired and used to test whether fire occurred more frequently after bamboo 

die-off (‘bamboo-fire hypothesis’). 

In Chapter 5, a semi-automatic generic method was developed for individual tree 

loss detection. The method was based on multi-temporal VHR (≤ 1 x 1 m) passive 

optical imagery and RF model. The study area consisted of 76.6 km² of forests 

inside the Jamari National Forest in the Brazilian Amazon (red asterisk in Figure 

3.1B), where part of this forest has been managed by selective logging. This 

experiment was based on detecting tree loss from selective logging rather than 

natural tree mortality due to the unique availability of a tree-by-tree geolocation 

dataset of logged trees. The dataset used in this part of the study consisted of 

WorldView-2 and GeoEye-1 imagery acquired pre- (2014) and post-logging 

(2017); airborne LiDAR data acquired pre- (2015) and post-logging (2017); and 
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tree-by-tree field data with the geolocation of each logged tree (n = 172 trees). 

To detect tree loss, I first assessed the LiDAR height change for geolocations of 

logged and non-logged trees (example in Figure 3.1B) and produced a tree loss 

map based on LiDAR. This map was used to sample locations of tree loss and 

non-tree loss, extracting spectral data from the VHR dataset. The spectral data 

were used to train the Random Forest model. The model was then applied to map 

the landscape tree loss, beyond the LiDAR coverage. The results were assessed 

face to the expected loss inside and outside the management units considering 

the year of management. 

In Chapter 6, I explored the use of canopy gaps as a proxy for tree mortality at 

the local scale. I assessed gap dynamics relationship with environmental and 

climate variables and modelled/spatialized tree mortality for the entire Amazon 

biome. For this purpose, airborne multi-temporal LiDAR datasets acquired over 

five sites located in an AGB gradient (red triangles at Figure 3.1A), and mono-

temporal LiDAR data acquired at 610 sites distributed across the Brazilian 

Amazon (black dashed lines in Figure 3.1A) were considered in the analysis. 

First, the gap-mortality relationship was investigated over the five sites using 

multi-temporal data. An example of mortality and gap delineation is shown in 

Figure 3.1D-F. Mortality was extracted considering the height difference between 

two acquisitions, while gaps were delineated considering only the most recent 

LiDAR acquisition. Gap delineation by the relative height and fixed height cutoff 

methods were compared. Second, a systematic assessment of gap dynamics 

was conducted across the Brazilian Amazon considering the 610 flight lines. The 

data were used to calculate the gap fraction on each site (n = 610) and to analyze 

the spatial patterns from its relationship with environmental and climate drivers. 

Finally, the tree mortality was predicted for the whole Amazon biome by 

combining the models for the environmental-climate/gap relationship and gap-

mortality model. The map was validated against field-based tree mortality data (n 

= 88 locations) from the RAINFOR network (MALHI et al. 2002). The spatial 

patterns of tree mortality were compared with previous results from the literature 

and Amazonian regions. 

In Chapter 7, the main findings of chapters 4, 5, and 6 were discussed in terms 

of an integrated view of mortality detection given different spatial scales, mortality 
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processes, and applied data. We discussed also the potential for new 

developments on the detection of tropical forest mortality using remote sensing 

data. 
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4 LIFE CYCLE OF BAMBOO IN THE SOUTHWESTERN AMAZON AND ITS 

RELATION TO FIRE EVENTS 4 

 

Abstract: Bamboo-dominated forests comprise 1 % of the world’s forests and 3 
% of the Amazon forests. The Guadua spp. bamboos that dominate the 
southwest Amazon are semelparous, thus flowering and fruiting occur once in a 
lifetime before death. These events occur in massive spatially organized patches 
every 28 years and produce huge quantities of necromass. The bamboo-fire 
hypothesis argues that increased dry fuel after die-off enhances fire probability, 
creating opportunities that favor bamboo growth. In this study, our aim is to map 
the bamboo-dominated forests and test the bamboo-fire hypothesis using 
satellite imagery. Specifically, we developed and validated a method to map the 
bamboo die-off and its spatial distribution using satellite-derived reflectance time 
series from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 
explored the bamboo-fire hypothesis by evaluating the relationship between 
bamboo die-off and fires detected by the MODIS thermal anomalies product in 
the southwest Amazon. Our findings show that the near-infrared (NIR) is the most 
sensitive spectral interval to characterize bamboo growth and cohort age. 
Automatic detection of historical bamboo die-off achieved an accuracy above 79 
%. We mapped and estimated 15.5 million ha of bamboo-dominated forests in 
the region. The bamboo-fire hypothesis was not supported, because only a small 
fraction of bamboo areas burned during the analyzed timescale, and, in general, 
bamboo did not show higher fire probability after the die-off. Nonetheless, fire 
occurrence was 45 % higher in dead than live bamboo in drought years, 
associated with ignition sources from land use, suggesting a bamboo-human-fire 
association. Although our findings show that the observed fire was not sufficient 
to drive bamboo dominance, the increased fire occurrence in dead bamboo in 
drought years may contribute to the maintenance of bamboo and potential 
expansion into adjacent bamboo-free forests. Fire can even bring deadly 
consequences to these adjacent forests under climate change effects. 

 

  

                                                      

 

4 DALAGNOL, R. et al. Life cycle of bamboo in the southwestern Amazon and its relation to fire 

events. Biogeosciences, v. 15, n. 20, p. 6087–6104, 18 out. 2018. 
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4.1 Introduction 

Bamboo-dominated forests represent 1 % of global forests. They occur in tropical, 

subtropical and mild temperate zones and are found mainly in Asia (24 million 

ha), South America (10 million ha) and Africa (2.8 million ha) (LOBOVIKOV et al., 

2007). Their spatial distribution is likely underestimated in South America as a 

recent study showed that these forests cover at least 16.15 million ha of 

Amazonian forests over Brazil, Peru and Bolivia (CARVALHO et al., 2013).  

Bamboo is a major forest product that plays an important economic and cultural 

role in the Amazon. It has been used for over a millennium by indigenous people 

for shelter, food, fuel, hunting, fishing, and musical instruments (LOBOVIKOV et 

al., 2007; ROCKWELL et al., 2014). The first studies on the distribution of these 

forests in the Amazon region postulated that they occurred as a consequence of 

human disturbance or were deliberately planted (SOMBROEK, 1966; BALÉE, 

1989). However, recent phytolith analysis revealed that bamboo dominated these 

forests before human occupation in South America (OLIVIER et al., 2009; 

WATLING et al., 2017). 

In the southwest Amazon, the predominant forest type is non-flooded open-

canopy rain forest on terra firme, often dominated by Guadua bamboos and 

mostly (93 %) preserved (IBGE, 2006; TRANCOSO et al., 2010). In bamboo-

dominated areas, two species of semi-scandent woody bamboos predominate: 

Guadua weberbaueri Pilger and Guadua sarcocarpa Londoño and Peterson. Like 

many other woody bamboo species, these Guadua bamboos are semelparous, 

producing flowers and fruits once in a lifetime before dying (JANZEN, 1976; 

GRISCOM; ASHTON, 2003). Flowering, fruiting and death can be massive and 

highly synchronized in space and time. Their diameter at breast height (DBH) 

ranges from 4 to 24 cm (CASTRO et al., 2013). Height can reach up to 30 m but 

usually varies from 10 to 20 m (LONDOÑO; PETERSON, 1991). The juvenile 

bamboos usually reach the sunlit portion of canopy by 10 years of age, when they 

accelerate in growth (SMITH; NELSON, 2011). They do not form continuous pure 

stands, being mixed among the trees, yet achieve remarkable high densities 

(2,309 ± 1,149 ind ha-1) and have significant ecological impacts (Castro et al., 

2013). Thus, these forests support up to 40 % less tree species diversity than 

nearby bamboo-free forests and from 30 to 50 % less carbon stored as a 
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consequence of the lower woody tree density (SILVEIRA, 2001; ROCKWELL et 

al., 2014). Bamboo-dominated forests also have elevated tree mortality rates (3.6 

± 2.5 % yr-1) (CASTRO et al., 2013; MEDEIROS et al., 2013) when compared 

even to the typically fast-turnover forests in western Amazon (2.62 % yr-1) 

(JOHNSON et al., 2016). A total of 74 different bamboo populations, that is, 

patches having individuals of the same internal age, have been so far identified 

in the southwest Amazon, with a mean patch area of 330 km2, and up to 2,570 

km2 for the largest patch (CARVALHO et al., 2013). The mean lifetime of these 

bamboos was estimated as 28 years (CARVALHO et al., 2013). However, it can 

vary from 28-32 years within patches, depending on species composition and/or 

local environmental factors. 

The locally synchronized death of semi-scandent bamboos produces large 

amounts of necromass in large patches over a short time. Decomposition of dead 

leaves and branches is rapid, but a layer of culms can remain intact on the forest 

floor for up to three years (SILVEIRA, 2001). When neighboring populations 

(patches) of bamboo go through reproductive events one after another in 

successive years, this is known in the literature as a flowering wave. This process 

generates mosaics of patches with different ages within the landscape. The 

current hypotheses to explain this phenomenon include climatic variations; 

severe environmental pressures such as floods and fire (FRANKLIN et al., 2010; 

SMITH; NELSON, 2011); and incipient allochronic speciation - stochastically 

forming small and rare temporally offset daughter patches at the margin of an 

expanding parent population.  

Two main hypotheses, which are not competing but complementary, have been 

proposed to explain the dominance of semi-scandent bamboos in Amazon 

forests. Firstly, they cause elevated physical damage to trees by loading and 

crushing, while also suppressing recruitment of late succession tree species 

(GRISCOM; ASHTON, 2003). Secondly, they increase fire probability via their 

mast seeding behavior followed by the synchronized death of the adult cohort, 

which produces large fuel loads. The fire would then eliminate canopy trees, form 

gaps and inhibit tree recruitment, while creating an optimal environment for the 

bamboo seedling cohort. This latter hypothesis is called the bamboo-fire 

hypothesis (KEELEY; BOND, 1999). This hypothesis is attractive as it explains 
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how bamboos can regain dominance of the forest after relinquishing space to 

trees when the adults die. Analysis of charcoal in soils of three Amazon bamboo-

dominated forests sites showed a long history of fire occurrence (MCMICHAEL 

et al., 2013). Smith and Nelson (2011) showed that fire disturbance favored the 

expansion of bamboos in the Amazon. Another study indicated that pre-

Columbian people used fire and bamboo die-off patches to facilitate forest 

clearing and construct geoglyphs, which, nowadays, can be found under the 

closed-canopy forest (MCMICHAEL et al., 2014). Although these studies do not 

support fire as the main driver of bamboo distribution (bamboo-fire hypothesis), 

they show associations between the bamboo die-off and increased fire 

occurrence, and potential human interactions on these processes. 

Bamboo-dominated terra firme forests in the southwest Amazon can be detected 

by the optical bands of orbital sensors at the adult stage, while the borders of 

each internally synchronized population can be detected after die-off events 

(NELSON, 1994). Carvalho et al. (2013) showed that the NIR spectral band of 

the Thematic Mapper (TM)/Landsat-5 allowed the best discrimination between 

bamboo-free forest, forest with adult bamboo and forest with recently dead 

bamboo. Forests with adult bamboos showed higher reflectance in the NIR than 

bamboo-free or with recently dead bamboo. Forests in which the newly sprouted 

cohort of seedlings is confined to the understory were not visually distinguishable 

from bamboo-free forest. The juvenile bamboo stays hidden in the understory up 

to 10 years of age, which is the moment they start reaching the canopy (SMITH; 

NELSON, 2011; CARVALHO et al., 2013). When analyzing Enhanced Vegetation 

Index (EVI) data from the Moderate Resolution Imaging Spectroradiometer 

(MODIS), processed by the Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm (LYAPUSTIN et al., 2012), Wagner et al. (2017) 

detected some patches of adult bamboo during a climate driver study of Amazon 

forest greening. The bamboo patches presented two peaks of MODIS EVI per 

year (dry and wet seasons) compared to one peak observed in the wet season 

over bamboo-free forest. 

Because the previous investigations used visual interpretation of satellite data 

and performed manual delineation of the bamboo areas (CARVALHO et al., 

2013), they were limited to the identification of large areas and constrained by 
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the analyst’s visual acuity. Further studies are therefore necessary to understand 

the bamboo life cycle, its spectral characteristics, as well as, to establish 

automatic approaches for detecting die-off events in bamboo-dominated areas. 

These approaches can enable analyses of ecological processes associated with 

these events, such as the interactions between bamboo and fire (KEELEY; 

BOND, 1999), bamboo flowering wave patterns (FRANKLIN et al., 2010) and the 

distribution of ‘bamboo-specialist’ bird species (KRATTER, 1997). 

In this study, our aim is to map the bamboo-dominated forests and test the 

bamboo-fire hypothesis. Specifically, we (i) described the tree cover and MODIS 

NIR reflectance variation in areas with and without bamboo; (ii) assessed a 

method to map the die-off, spatial distribution and age structure of bamboo-

dominated areas; and (iii) investigated the relationship of bamboo with fire 

occurrence in the southwest Amazon. We also aimed to provide near-term, 

spatially resolved predictions of future bamboo behavior to allow our method to 

be further tested, validated, and improved over the coming years.  

 

4.2 Material and Methods 

An overview of the analyses conducted in the study was presented in Figure 4.1 

and then described in detail in the subsequent sections.  
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Figure 4.1 – Methodology used in the data analysis. 

 

Source: Produced by the author. 

4.2.1 Study area 

The study area is located in the southwest Amazon between the longitudes 74º 

W and 67º W and latitudes 13º S and 6º S, covering parts of Brazil, Peru and 

Bolivia (Fig. 4.2). The predominant forest type is non-flooding open-canopy rain 

forest on terra firme, often dominated by bamboos of Guadua genera and mostly 

(93 %) preserved from human disturbances (IBGE, 2006; TRANCOSO et al., 

2010). 
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Figure 4.2 - Bamboo-dominated forests in southwestern Amazon. The image at 
background is a false-color composite from MODIS (MAIAC) images of 
bands 1 (Red), 2 (NIR) and 6 (shortwave infrared), in RGB, respectively, 
in August 2015. The black lines indicate the perimeter of the bamboo-
dominated areas delineated in a previous study (CARVALHO et al., 
2013). 

 

Source: Produced by the author. 

The most important soil types are chromic alisol, red-yellow argisoil, haplic 

cambisol, ferrocarbic podsol, haplic gleysol, red-yellow latosol, chromic luvisol, 

and haplic plinthosol (DOS SANTOS et al., 2011). In bamboo-dominated areas, 

the soils have a tendency to be more fertile, richer in exchangeable cations, more 

easily eroded, more poorly drained, and more clay-rich than the soils where 

bamboo is excluded (CARVALHO et al., 2013). Naturally high erosion leads to a 

gently rolling hilly landscape (MCMICHAEL et al., 2014) with muddy streams and 

rivers. Based on a 19-year time-series of the Tropical Rainfall Measuring Mission 

(TRMM) satellite, annual rainfall ranges from 1800 mm to 3400 mm, with zero to 

five dry months (i.e., less than 100 mm mo-1). The average temperature is 27 ºC. 

Minimum rainfall and temperature occur in July (DALAGNOL et al., 2017). 
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4.2.2 Satellite data and products 

4.2.2.1 MODIS (MAIAC) surface reflectance data 

A time series of MODIS (MAIAC) data was pre-processed in order to map the 

bamboo ages and die-off - further described in the die-off detection section. Daily 

surface reflectance data were obtained from the MODIS product MCD19A1-C6, 

acquired from Terra and Aqua satellites, from 2000 to 2017 (LYAPUSTIN; 

WANG, 2018), corrected for atmospheric effects by the MAIAC algorithm 

(LYAPUSTIN et al., 2012). The data were obtained from the NASA Center for 

Climate Simulation (NCCS) repository (available at: 

ftp://dataportal.nccs.nasa.gov/DataRelease/). We used MAIAC surface 

reflectance and BRDF products at spatial resolution of 1 km, daily temporal 

resolution, in eight spectral bands: Red, 620-670 nm (B1); NIR-1, 841-876 nm 

(B2); Blue-1, 459-479 nm (B3); Green, 545-565 nm (B4); NIR-2, 1230-1250 nm 

(B5); Shortwave infrared-1 (SWIR-1), 1628-1652 nm (B6); SWIR-2, 2105-2155 

nm (B7); and Blue-2, 405-420 nm (B8). 

In order to minimize the differences in sun-sensor geometry between the MODIS 

scenes, which could affect our time series analysis, the daily surface reflectance 

was normalized to a fixed nadir-view and a 45º solar zenith angle using a 

Bidirectional Reflectance Distribution Function (BRDF) and the Ross-Thick Li-

Sparse (RTLS) model (LUCHT; LEWIS, 2000). Parameters of the RTLS model 

and BRDF kernel weights are part of the MAIAC product suite with temporal 

resolution of 8 days - a period when daily observations of different view angles 

were integrated and used for BRDF parameters retrieval. Hence, the normalized 

surface reflectance, called Bidirectional Reflectance Factor (BRFn), was 

calculated using the Eq. 4.1 and RTLS volumetric (fvol) and geometric (fgeo) 

parameters, and BRDF isotropic (kiso), volumetric (kvol) and geometric-optical 

(kgeo) kernel weights (LYAPUSTIN et al., 2012). 

���� =  ��� ∗ �	
� −  0.04578 ∗  ���� −  1.10003 ∗  ����
�	
� +  ���� ∗  ���� + ���� ∗ ����

 (4.1) 

The BRFn data were aggregated into 16-day composite intervals by calculating 

the median on a per-pixel basis. The composites were then merged and 
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converted to geographic projection (datum WGS-84). All these procedures were 

implemented in R language (R CORE TEAM, 2016). 

Annual composites of MODIS NIR surface reflectance data were selected for the 

die-off detection. The images were selected between July and September to 

minimize cloud coverage. Furthermore, during these months, the bamboo 

patches at the adult stage present a well-defined phenological response (peak in 

MODIS EVI), which is not present in primary forests without bamboo dominance 

(WAGNER et al., 2017). When useful data were not available in the time series 

due to cloud cover or low-quality pixel retrievals, an imputation method was 

applied to fill the gaps using the whole time series. As the bamboo-dominated 

forests present a seasonal spectral response, the imputation was conducted by 

the Seasonal and Trend decomposition using Loess (STL) method (CLEVELAND 

et al., 1990). This method decomposes the signal into trend, seasonal and 

irregular components, interpolates the missing values, and then reverts the time 

series. It is effective when dealing with missing values in seasonal signals when 

compared to other imputation methods (STEFFEN, 2015). 

 

4.2.2.2 TM/Landsat-5 surface reflectance product 

A time series of Thematic Mapper (TM)/Landsat-5 data was obtained from 1985 

to 2000 (one image per year), in order to visually detect bamboo die-off events 

and create a validation dataset for die-off predictions using MODIS (MAIAC) 

between 2018 to 2028 - further described in the die-off prediction section. We 

selected atmospherically corrected surface reflectance images (Landsat 

collection 1 Level-1) (available at: https://earthexplorer.usgs.gov/) from the 

quarter July-August-September to increase the chances of obtaining cloud-free 

data and reduce spectral variations associated with vegetation seasonality. The 

path-row (World Reference System 2) of the time series were: 006-065, 003-066, 

002-067, 003-067, 005-067, and 003-068. The acquisition dates for each path-

row are shown in the Table A.1. 
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4.2.2.3 Tree cover product 

In order to mask areas that were not covered by intact forests (deforested, 

degraded, and secondary forests, pastures and swidden fields) and to analyze 

the tree cover variability of the bamboo-dominated forests, we used the global 

forest cover loss 2000-2016 dataset (Available at: https://earthenginepartners. 

appspot.com/science-2013-global-forest/download_v1.4.html). The dataset is 

based on Landsat time series data at 30 m spatial resolution (HANSEN et al., 

2013), and consists of tree cover percentage, gain, and loss during 2000-2016, 

and a mask indicating permanent water bodies. It was re-sampled to 1 km spatial 

resolution using the average interpolation in order to match the resolution of the 

MODIS (MAIAC) data. A mask of intact forests was created using the tree cover 

data to select pixels: (i) without permanent water bodies, (ii) without gain or loss 

of tree cover during the 2000-2016 period; and (iii) above a threshold of 95 % 

tree cover to detect and filter out non-forested pixels. Furthermore, in order to 

filter the active fire data for the bamboo-fire analysis, yearly non-forest fraction 

masks were created considering the cumulative forest loss of each year from 

2000-2016. 

The tree cover product was analyzed considering the pre-existent bamboo-

dominated forest map from Carvalho et al. (2013) in order to explore the variability 

of tree cover in forests with and without bamboo, which might help mapping the 

bamboo-dominated forests. We expect that bamboo-dominated forests present 

lower tree cover values than bamboo-free forests due to its fast dynamics and 

higher mortality (CASTRO et al., 2013; MEDEIROS et al., 2013). The map from 

Carvalho et al. (2013) was obtained by visual interpretation of live-adult bamboo 

using two Landsat mosaics 10 years apart from each other (1990 and 2000), 

supported by the known locations and dates of five bamboo dominated areas. 

Considering only the pixels inside the bamboo-dominated forests map, we 

calculated the 1st, 50th and 99th percentiles of the tree cover product and 

generated a map showing the areas below the 1st, between the 1st and 99th, 

and above the 99th percentiles of tree cover. The map was qualitatively analyzed 

exploring the areas covered by each of the percentile classes. 

The tree-cover percentile map was also used to assess the variability of NIR 

reflectance in forests with and without bamboo in order to test if their NIR signals 
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were different and contributed to the bamboo-dominated forests mapping. We 

tested only the NIR because of the expected great separability between areas 

with and without bamboo resultant from the higher NIR signal in bamboo-

dominated areas (CARVALHO et al., 2013). We analyzed the MODIS NIR-1 

reflectance considering all pixels over time in each tree cover classes: below 1st, 

between 1st and 99th, and above the 99th percentile. The NIR value distributions 

were tested for normality using a two-sided Kolmogorov-Smirnov test at a 1 % 

significance level. For normal distribution, the average and standard deviation 

were computed. For skewed distribution, a more appropriate method was applied 

to estimate the average, standard deviation and skewness parameter (xi) 

(FERNANDEZ; STEEL, 1998). 

 

4.2.2.4 MODIS active fire detections product 

To test the bamboo-fire hypothesis, a fire occurrence dataset was obtained from 

MODIS/Aqua satellite active fire data at 1 km spatial resolution from the Brazilian 

Institute of Space Research (INPE) Burn Database (Available at: 

http://www.inpe.br/queimadas/bdqueimadas/) for the period of 2002-2017 over 

the study area. This dataset corresponds to geolocations of active burning areas 

in the moment of satellite overpass. 

 

4.2.3 Bamboo life cycle spectral characteristics 

4.2.3.1 Die-off detection and validation 

To automatically detect the bamboo die-off from 2001 to 2017, we compared 

each pixel's MODIS (MAIAC) NIR reflectance time series to a bilinear model using 

Pearson's correlation and an iterative shift approach. The model consisted in a 

linear increase in reflectance from 1 to 28 % between 1 and 28 years of bamboo 

age followed by an abrupt decrease to 0 % when the die-off occur. The model 

conception was based on Carvalho et al. (2013), who showed that forests with 

adult bamboo had higher NIR reflectance than forests with juvenile and recently 

dead bamboo, or without bamboo. They also showed that bamboo presented a 

life cycle of approximately 28 years. Thus, since not much was known about the 

spectral behavior of bamboo growth with age, we chose a bilinear model to 
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characterize the bamboo signal change over time because it was the simplest 

way to represent the change between life stages. We also assumed the signal 

coming from the trees as constant over time. Therefore, inter-annual reflectance 

variations were attributed to structural changes in the canopy related to bamboos. 

The Pearson’s correlation coefficient (r) between the NIR reflectance time series 

and the bilinear model for a given pixel was iteratively tested by shifting the 

position of the NIR time series inside the bilinear model vector. The position 

showing the highest r corresponded to the estimated age of that pixel from which 

the die-off year was retrieved. Only pixels with very significant correlations (p < 

0.001) were selected. The model was tested with both MODIS (MAIAC) NIR 

bands: NIR-1 band 2 (841-876 nm) and NIR-2 band 5 (1230-1250 nm). Both 

bands are sensitive to canopy structure scattering, but NIR-2 is also partially 

sensitive to leaf/canopy water scattering (GAO, 1996), so that could lead to a 

different detection between bands. 

For validation purposes, we compared the detected die-off events with recently 

dead bamboo areas visually identified in MODIS false color composites (bands 

1, 2 and 6 in RGB). In this color composite (Figure 4.2), adult bamboo patches 

show bright green color due to the comparatively higher NIR reflectance, while 

dead bamboo patches present dark blue/gray color. The visual inspection of 

bamboo die-off using MODIS and Landsat data was consistent with five bamboo 

mass flowering events observed in the field (CARVALHO et al., 2013). In each of 

the dead bamboo patches visually detected, the geographic location and die-off 

year were registered for a sample of 5 random pixels. A total of 78 dead bamboo 

patches were identified in the 2001-2017 period. Thus, the validation dataset was 

composed of 390 pixels with corresponding year of bamboo death - the spatial 

and temporal distribution of the samples were shown in Figure S4.1 and A.2. For 

these pixels, the die-off year detected by our model was retrieved and compared 

to the validation dataset. To assess the detection, we calculated the accuracy (%) 

on detecting the exact die-off year, Pearson’s correlation and p-value, and the 

root mean square error (RMSE) between the automatically detected and visually 

interpreted die-off year. 
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4.2.3.2 Spatial distribution detection 

To map the spatial distribution of bamboo-dominated forests for the whole area, 

we first mapped the live bamboo and then combined it with the die-off detection 

map (2001-2017). We used two assumptions to map the live bamboo. Over the 

18 years’ period, a live bamboo-dominated pixel should present: (i) mean NIR 

reflectance equal to or greater than the median signal of bamboo-free forests; 

and (ii) an increasing NIR reflectance over time. The median bamboo-free forest 

signal was derived using the tree cover mask and a threshold that excluded all 

the potential bamboo-dominated pixels. The threshold was defined as the tree 

cover percentage above the 99th percentile from bamboo-dominated forests as 

delineated by Carvalho et al. (2013). We tested whether the mean NIR 

reflectance of each pixel was statistically lower than the forest median signal 

using the Student’s t-test, and excluded those pixels. Furthermore, we obtained 

a linear regression model between the reflectance of each pixel in the time series 

and a linear increasing vector to identify reflectance increase over time in the 

bamboo areas. We selected only pixels that showed a very significant (p < 0.001) 

and positive regression slope, indicating the reflectance increase in the NIR. To 

assess the overall consistency of the map, we compared it with the available 

bamboo-dominated forests distribution map from Carvalho et al. (2013). 

 

4.2.3.3 Bamboo cohort age and spectral variability 

We used the die-off map to retrieve spectral data corresponding to each bamboo 

age in order to assess the spectral variability during the bamboo life cycle, that 

is, when the signal changes and why, and to corroborate the assumptions made 

in the bilinear model. Data from all MODIS bands were extracted using the 

estimated die-off year with very significant correlation (p < 0.001) as a starting 

point. Bamboo cohort age was then calculated backwards and forwards in time 

during the 2000-2017 period. Reflectance percentiles (1st, 50th and 99th) per 

age were calculated to obtain the entitled empirical bamboo-age reflectance 

profiles. 

The spectral variability with cohort age was also analyzed in relation to the 

bamboo-free signal in order to assess the separability of forests with and without 
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bamboo. Pearson’s correlation between the median bamboo-free signal, as 

obtained in a previous section, and bamboo-dominated forest pixel’s signal were 

calculated and assessed as a function of cohort age. The assessment was 

conducted using the NIR-1 and NIR-2 bands. 

 

4.2.3.4 Die-off prediction 

To assess the age structure of bamboo patches during the whole life cycle, we 

explored the prediction of die-off events for the bamboo that did not die-off during 

2001-2017. This was conducted using the NIR-1 and NIR-2 empirical bamboo-

age empirical reflectance profiles as a reference instead of the bilinear model. 

Since the NIR time series would not present the abrupt change associated with 

the die-off, the empirical reflectance profiles should reflect the spectral changes 

over time with bamboo growth. The prediction followed the same procedures of 

the detection on assessing the point of maximum correlation between the NIR 

reflectance time series, but, now, comparing to the empirical bamboo-age 

reflectance profiles and predicting the die-off for a whole life cycle during 2001-

2028. 

Since the validation for 2018-2028 predictions could not be conducted using 

MODIS (Terra and Aqua) data because its time series do not span that time 

period, we used yearly TM/Landsat-5 color composites (bands 2, 4 and 1 in RGB) 

during the 1985-2000 period to visually detect the bamboo die-off events that 

occurred in the last bamboo life cycle and validate the predictions. We assumed 

that the die-off events that happened in this period would happen again in the 

next life cycle of the bamboo, from 2018 to 2028. Therefore, we added 29 years 

to the visually detected die-off year in order to match the next life cycle. The 

sampling procedure for the validation dataset was similar to the detection, where 

5 pixels were randomly collected for each recently dead bamboo patch visually 

identified in a given year. A total of 35 dead bamboo patches were identified and 

175 pixels were collected with the corresponding years of death. The assessment 

was conducted by calculating the same metrics as in the die-off detection section. 

Additionally, in order to assess if the prediction error was randomly distributed, 

the residuals from predicted minus observed die-off year, where observed is the 
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die-off from the Landsat validation dataset, was tested for normality using a two-

sided Kolmogorov-Smirnov test at a 1 % significance level. 

Since not much was known about the size of bamboo patches, we analyzed the 

patch size distribution from the prediction map considering grouped pixels with 

the same die-off year as patches. These grouped pixels with same die-off year 

were segmented into patches and the patch size distribution was assessed by 

quantifying the number, minimum, maximum, mean and median size of bamboo 

patches. In order to filter out noise in the predictions (i.e. loose pixels), the 

minimum patch size was set to 10 km2. 

 

4.2.4 Relationship between bamboo die-off events and MODIS active fire 

detections 

Active fire detections from MODIS/Aqua during 2002-2017 were filtered using 

yearly non-forest fraction masks. This ensured that active fires occurring over 

deforested and degraded forests, pastures or swidden areas were removed, and 

only pixels over forested areas remained in each year. To visualize where the fire 

occurred, the active fires were plotted over the bamboo spatial distribution map. 

The number of fires occurring over live bamboo and dead bamboo (died-off 

during 2001-2017) was calculated. 

To test whether there was a higher fire occurrence over recently dead bamboo 

than live bamboo, the active fire detections were analyzed as a function of dead 

(28, 0 and 1 years) and live bamboo (2 to 27 years) classes. For this purpose, 

each active fire detection was labeled accordingly to the bamboo age of the pixel 

where it occurred from the prediction map and then merged into the two classes. 

We controlled for three factors that could affect fire probability: area of bamboo 

mortality, climate, and proximity to ignition sources. Since the total area of a 

specific age class could interfere with fire frequency, that is, more area would 

mean higher probability of fire occurrence, we normalized the fire frequency by 

the area (ha) of its respective age class within the buffer with most fire 

occurrences, in the year of fire occurrence. Severe droughts affected the Amazon 

in 2005, 2010 and 2015/2016, and especially the southwest in 2005 (ARAGÃO 

et al., 2007; PHILLIPS et al., 2009; LEWIS et al., 2011; ARAGÃO et al., 2018). 
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As drought years can enhance fire occurrence in the Amazon (BRANDO et al., 

2014; ARAGÃO et al., 2018), we analyzed separately the fire frequency in regular 

and drought years. To assess the influence of ignition sources on the fire 

occurrence, we filtered active fire detections using buffers of 1, 2 and 3 km around 

the non-forested areas using the yearly non-forest fraction mask and assessed 

the number of active fire detections considering each buffer.  

The area-normalized fire frequency over dead and live bamboo was compared 

using a two-way Analysis of Variance (ANOVA) to test whether there were more 

fire in dead than live bamboo. We tested the effects of bamboo life stage (live or 

dead), year of fire occurrence and their interactions over active fire detections. 

 

4.3 Results 

4.3.1 Tree cover analysis 

Bamboo-dominated forest, as mapped by Carvalho et al. (2013), spanned a very 

narrow range of values in the Landsat-derived percent of tree cover product. The 

1st and 99th percentiles of tree cover in the bamboo areas were 96.95 % and 

99.88 %, respectively, while the median was 99.18 % (Figure 4.3). Forests 

identified as bamboo-free by Carvalho et al. (2013) had tree cover above the 99th 

percentile at the northeast of the study area, but below the 1st percentile at the 

southwest of the study area. At the northwest, bamboo-free forests presented 

tree cover similar to that of bamboo-dominated, i.e., between the 1st and 99th 

percentile. 
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Figure 4.3 - Spatial distribution of stable tree cover percentage percentiles (filtered for 
tree cover gain and loss, and for water bodies), indicating pixels below, 
above and within the 1st to 99th percentile range of tree cover found in 
bamboo-dominated forest (hatched), as delineated by Carvalho et al. 
(2013). 

 

Source: Produced by the author. 

The MODIS NIR-1 reflectance values over the 2000-2017 period in bamboo-free 

forests that had tree cover above the 99th percentile of bamboo-dominated areas 

(Figure 4.4B) did not significantly differ from normal distribution (p = 0.33). The 

bamboo-free forests showed the lowest standard deviation (mean = 27.3 % 

reflectance; SD = 0.9 %) when compared to the bamboo-dominated forests 

(Figure 4.4C). Bamboo-free forests that had tree cover below the 1st percentile 

of bamboo-dominated areas (Figure 4.4A) presented a left-skewed distribution 

with similar reflectance to the 99th percentile but with higher SD (mean = 27.2 %, 

SD = 2.6 %, and xi = 1.2). Bamboo-dominated forests (Figure 4.4C, pixels inside 

the hatched polygon in Figure 4.3) presented a right-skewed distribution with 

higher NIR-1 reflectance (mean = 28.7 %, SD = 2.1 % and xi = 1.9) than the 

bamboo-free forests.  
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Figure 4.4 - Relative frequency of MODIS NIR-1 reflectance (band 2) from pixels with 
tree cover percentage (A) below, (B) above and (C) within the 1st to 99th 
percentile range of tree cover found in bamboo-dominated forest (hatched 
in Figure 4.3), as delineated by Carvalho et al. (2013). 

 

Source: Produced by the author. 

 

4.3.2 Bamboo life cycle spectral characteristics 

4.3.2.1 Die-off detection 

When we applied our automatic die-off approach over the canopy-scattering 

(NIR-1; band 2) and canopy-water (NIR-2; band 5) sensitive MODIS NIR bands, 

differences in detected bamboo areas were observed (81480 km2 for NIR-1 and 

86628 km2 for NIR-2). Despite these differences, the resultant die-off year maps 
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were consistent to each other (Figs. 4.5A and 4.5B) with 81 % of the detected 

die-off events located inside the bamboo-dominated area reported by Carvalho 

et al. (2013). The die-off patches that were detected over a 18-year period inside 

the previous bamboo-dominated forest map represented 40.7 % and 42.7 % of 

the total bamboo area using MODIS NIR-1 and NIR-2, respectively. In Figure 

4.5A and 4.5B, 83.6 % of the dead bamboo pixels mapped using the two NIR 

bands showed the same year of death between the maps. When comparing the 

areas detected solely by one of the two bands, NIR-1 detected more pixels toward 

the end of the time period, i.e. die-off areas from 2017 in the north-east between 

8-9º S and 69-70º W. NIR-2 detected additional pixels in the beginning of the time 

period, i.e. die-off areas from 2001 in the central region between 9-10º S and 70-

71º W. Interestingly, some small patches between 8-9º S and 73-74º W presented 

a unidirectional wave of mortality from north to south with a delay of one year 

between adjacent patches. 

The correlation coefficients found in all the mapped pixels with significant 

relationship with our bilinear model (p < 0.001) were strong (r > 0.7). More than 

50 % presented even stronger correlations (r > 0.8), and 15 % of pixels presented 

very strong correlation (r > 0.9). When the automatic die-off estimates were 

validated with the visually inspected die-off from 2001-2017, the accuracy from 

NIR-2 was slightly higher (82.6 %) than that from NIR-1 (79.3 %) (Figs. 4.5C and 

4.5D). Both bands showed similarly strong Pearson’s correlation (r > 0.99, p < 

0.01), whilst NIR-1 showed slightly lower RMSE (0.48 years) than that from NIR-

2 (0.54 years). From the 390 pixels in the validation dataset, 334 and 362 pixels 

were detected as bamboo die-off by the bilinear model (p < 0.001) using the NIR-

1 and NIR-2, respectively. The missing 56 (14.4 %) and 28 (7.2 %) pixels were 

considered as omission errors for NIR-1 and NIR-2. When we combined the two 

maps into a single die-off detection map (Figure A.3), a total of 374 pixels from 

the validation dataset were successfully detected, resulting in only 16 (4.1 %) 

missing pixels not detected as bamboo die-off, while accuracy and RMSE were 

80 % and 0.51 yr, respectively. 
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Figure 4.5 - MODIS bamboo die-off detection map from 2001 to 2017 using the bilinear 
model of expected near-infrared (NIR) reflectance variations as a function 
of bamboo cohort age, for (A) NIR-1 and (B) NIR-2. Validation between 
detected die-off and visual interpreted die-off on MODIS false-color 
composites (2000-2017) for (C) NIR-1 and (D) NIR-2. The dashed line 
represents the 1:1 line. Size of circles is related to the number of pixels 
that hit the same observed/estimate die-off year. 

 

Source: Produced by the author. 

 

4.3.2.2 Spatial distribution of bamboo-dominated forests 

The bamboo-dominated forests were mapped by combining the die-off detection 

during 2001-2017 (Figure A.3) with the live bamboo detection (Figure 4.6). The 

die-off detection was based on both MODIS NIR-1 and NIR-2, which presented 

high accuracies, mapping slightly different bamboo patches in Figure 4.5. The 

live bamboo detection was based only on NIR-1, which did not saturate with 

bamboo growth over time in Figure 4.7. A total of 155,159 km2 of bamboo-

dominated forest was detected in the area. Of these, 112,570 km2 or 72.5 % were 

located inside the bamboo forest mapped by Carvalho et al. (2013). A total of 
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68.8 % of the bamboo forest area from Carvalho et al. (2013) was covered by the 

detection. A few large patches were found outside of the previously mapped 

bamboo spatial distribution, such as in 11.5º S; 70º W, and 13º S; 71º W. 

Figure 4.6 - Bamboo-dominated forest map and MODIS active fire detections during 
2002-2017 (yellow crosses). Blue pixels are bamboo die-off patches 
detected during 2001-2017 using the bilinear model. Light green pixels 
are bamboo that did not die-off, but showed increasing NIR signal during 
2001-2017, and presented greater NIR mean than forest. Dark green 
pixels are bamboo-free forests. White pixels are other land cover classes. 
The hatched polygon is the bamboo-dominated forests delineated by 
Carvalho et al. (2013). 

 

Source: Produced by the author. 

 

4.3.2.3 Bamboo cohort age and spectral variability 

The reflectance of the MODIS NIR-2 and the two SWIR bands slowly increased 

with bamboo development up to about 12 years of age, and then increased very 

steeply from 12-14 years (Figure 4.7). NIR-1 did not show the same reflectance 

increase up to 12 years as NIR-2, but also showed the steep increase in 



56 

 

reflectance between 12-14 years. A pronounced but temporary dip in Red and 

Blue-2 reflectance occurred concurrently with this brief and rapid NIR and SWIR 

increase. Green reflectance increased up to about 17 years then leveled off. The 

response of two SWIR bands and the NIR-2 band all leveled off after 15 years. 

The NIR-1, however, showed increasing reflectance over the cohort remaining 

life span, until the age of synchronous die-off. The bamboo die-off was marked 

by a sharp decrease in MODIS NIR-1 and NIR-2 reflectance between 28 and 29 

years of age (Figure 4.7). A reflectance change with bamboo death was not well 

defined in the SWIR-1 and SWIR-2 bands. The reflectance of all bands presented 

high dispersion with coefficients of variation ranging from 5.9 to 20.3 %. 

Figure 4.7 - Empirical bamboo-age reflectance profiles at ages 0-28 years from MODIS 
bands 1 to 8 (A)-(H). Black lines represent the median, while the shaded 
gray areas represent the 1st and 99th percentile. 

 

Source: Produced by the author. 

The mean Pearson’s correlation between the median bamboo-free forest and 

bamboo-dominated forests NIR-1 reflectance decreased from 0.41 to -0.02 in the 

transition from juvenile (1-14 years) to adult bamboo stage (15-28 years) (Figure 

4.8, black boxes). The correlation in the partially water-sensitive NIR-2 did not 

follow the same pattern (Figure 4.8, orange boxes). In NIR-2, the correlation was 
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similar in juvenile (r = 0.19) and adult bamboo stages (r = 0.2). The correlation’s 

standard deviation was 0.14 and 0.2 for juvenile and adult stages in both bands. 

Figure 4.8 - Pearson’s correlation coefficients between the median reflectance of 
bamboo-free forest with the pixel spectral response of bamboo-dominated 
forests. The results are plotted as function of the bamboo cohort age for 
MODIS NIR-1 (in black) and NIR-2 (in orange). 

 

Source: Produced by the author. 

 

4.3.2.4 Die-off prediction 

Based on the NIR-1 and NIR-2 reflectance from 0-28 years of age, we predicted 

the die-off year from 2000 to 2028 for the whole bamboo spatial distribution 

(Figure 4.9A and Figure A.4A, respectively). The estimated die-off years using 

the empirical reflectance profiles during 2001-2017 were 85 % similar to the 

detection using the initial bilinear model (Figure 4.5). The empirical reflectance 

profiles achieved an accuracy of 75.45 % (RMSE = 1.11 years) and 69.23 % 

(RMSE = 1.08 years) for NIR-1 and NIR-2, respectively, on predicting the exact 

die-off year during 2001-2017, when compared to the visual inspection of MODIS 

color composites. Die-off prediction during 2018-2028 using the empirical 

reflectance profiles (Figure 4.7) with NIR-1 and NIR-2 were inspected for 

consistency using the visual interpretation of TM/Landsat-5 time series (Figure 

4.9C and Figure A.4C, respectively). NIR-1 and NIR-2 presented low accuracy 
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(20.5 and 3 %, respectively) to predict the exact die-off year with high RMSE 

(2.92 and 4.25 years, respectively) and significant weak to moderate correlations 

(r = 0.41 and p < 0.01; 0.23 and p < 0.02, respectively). 

Figure 4.9 - MODIS bamboo die-off prediction map from 2000 to 2028 using the 
empirical reflectance profiles of the near-infrared 1 (NIR-1) reflectance as 
a function of bamboo cohort age (A). Validation between predicted die-off 
(2017-2028) and visual interpreted die-off from previous life cycle in 
Landsat false-color composites (1985-2000) (C) and residuals distribution 
(B). The dashed line represents the 1:1 line in (C) and age residual = 0 in 
(B). Size of circles is related to the number of pixels that hit the same 
observed/estimate die-off year. 

 

Source: Produced by the author. 
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The residuals distributions of both NIR-1 and NIR-2 prediction models (Figure 

4.9B and Figure A.4B, respectively) were not significantly different from normal 

(p > 0.1). The NIR-1 model had a mean age error closer to zero (-0.7 years) than 

that observed from NIR-2 (-1 years). This indicates an average underestimate of 

the true die-off year when using MODIS NIR-1 and NIR-2, respectively. The 

standard deviation of the residuals was smaller for NIR-1 (5 years) than for NIR-

2 (9 years).  

Because the MODIS NIR-1 prediction model (Figure 4.9) showed higher 

precision and less bias than the model based on NIR-2 (Figure A.4), we extracted 

the predicted die-off years from the NIR-1 model to estimate the total area of 

bamboo die-off per year (Figure 4.10) and bamboo population (patch) size 

distribution (Table 4.1). Total die-off per year was different from a uniform 

temporal distribution (p < 0.01). For an uniform distribution, the yearly die-off 

areas would be close to the average of 5350 km2. Within the period 2000-2017, 

the years 2006, 2007, 2011, 2015 and 2016 showed higher than average die-off 

area (Figure 4.10). The largest die-off area was observed in 2016 (14099 km2). 

For the 2018-2028 predicted period, the year of 2022 is expected to show the 

largest bamboo die-off area (16276 km2).  

Figure 4.10 - Distribution of predicted bamboo die-off area per year between 2000 and 
2028 from MODIS NIR-1.  

 

Source: Produced by the author. 
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The detection for 2001-2008, a period that matches the time interval analyzed 

visually by Carvalho et al. (2013), showed 372 die-off patches with mean size of 

80 km2 and maximum size of 2234 km2 (Table 4.1). Carvalho et al. (2013) found 

74 patches with mean size of 330 km2 and maximum size of 2570 km2 during the 

same period. The detection for 2001-2017 showed 802 patches with mean size 

of 85 km2 and maximum size of 6162 km2 (Table 4.1). Some patch structures had 

long and linear perimeters, while others had rectangular shapes (for example 

near 69º 45’ W, 8º 48’ S, and 71º 13’ W, 9º 47’ S) or rounded borders (for example 

near 70º 45’ W, 9º 39’ S). We also detected a unidirectional flowering wave from 

north to south in the patch between 8-9º S and 73-74º W, which was also reported 

by Carvalho et al. (2013). 

Table 4.1 - Bamboo patch sizes obtained from die-off prediction using MODIS NIR-1 
filtered by a minimum patch area of 10 km2, and comparison of results 
with those from Carvalho et al. (2013). 

Study  Period n Mean 

(km2) 

SD 

(km2) 

Min 

(km2) 

Max 

(km2) 

Median 

(km2) 

Carvalho et al. 

(2013) 

2001-2008 74 330 - - 2570 - 

This study 2001-2008 372 79.56 242.89 10 2234 21 

This study 2001-2017 802 84.57 310.39 10 6162 20 

This study 2018-2028 778 33.84 72.38 10 1154 17 

This study 2000-2028 1603 59.05 226.66 10 6162 18 

Source: Produced by the author. 

 

4.3.3 Relationship between bamboo die-off events and MODIS active fire 

detections 

Active fire detections were not found in all bamboo patches that died (Figure 4.6). 

We found a total of 2371 MODIS active fire detections inside bamboo-dominated 

forests between 2002 and 2017, from which 1424 detections (60 %) occurred in 

bamboo patches that died-off and 947 detections (40 %) occurred in live bamboo 

patches. Active fires were detected mostly near non-forested areas (Figure 4.6 in 

gray). When we excluded the detections up to 1, 2 and 3 km around these areas, 
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the total detections decreased to 1330 (56 %), 18 (0.76 %) and 3 (0.12 %), 

respectively. 

Overall, there was a similar number of active fire detections per hectare in dead 

and live bamboo (0.18 fires ha-1) (Figure 4.11). The ANOVA did not show 

statistically significant differences in the area-normalized mean active fire 

detections for the interaction between bamboo stage (dead or live) and year of 

fire occurrence factors (p = 0.67). Individually, bamboo stage also did not show 

statistical significance on area-normalized mean active fire detections (p = 0.986). 

On the other hand, year of fire did show statistical significance on area-

normalized mean active fire detections (p < 0.01). The years 2017 and 2016 

presented significant higher area-normalized mean active fire detections (0.46 

and 0.35 fires ha-1, respectively) than the other years (p < 0.01). 

Figure 4.11 - Area-normalized MODIS fire frequency during 2002-2017. Gray boxes 
represent fire in dead bamboo (28, 0 and 1 years) and white boxes 
represent fire in live bamboo (2 to 27 years). 

 

Source: Produced by the author. 

For severe drought years, the area-normalized active fire detections in 2005 (0.32 

and 0.18 fires ha-1), 2010 (0.22 and 0.12 fires ha-1), 2015 (0.35 and 0.20 fires ha-

1) and 2016 (0.57 and 0.33 fires ha-1) over dead and live bamboo, respectively, 

were not statistically different between the two bamboo life stages (p = 0.127). 
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Even though, drought years presented in average 45 % higher area-normalized 

mean active fire detections in dead (0.342 fires ha-1) than live (0.236 fires ha-1) 

bamboo. 

 

4.4 Discussion 

4.4.1 Tree cover of bamboo-dominated and nearby forests 

We found that the bamboo-dominated forests had a narrow range of tree cover 

values (96.95 to 99.89 %) and was below the tree cover values of the closed 

forests nearby (above 99.89 %). This suggests that these forests have a largely 

closed canopy but are slightly more open than closed forests without bamboo. 

Evergreen trees are the dominant life form over most of the southwest Amazon 

forests, including the ones where bamboo is very abundant. The trees generally 

comprise 50 % or more of the canopy area in a Landsat or MODIS pixel, even 

when the bamboo cohorts are at adult stage and dense (CARVALHO et al., 

2013). They also fully dominate the canopy during 30 % of the bamboo life cycle, 

while juvenile bamboo is confined to the forest understory (Smith and Nelson, 

2011). Even though, the tree cover percent of bamboo-dominated forests was 

slightly smaller than the bamboo-free areas. We believe this might be related to 

(i) an increased gap opening associated with faster forest dynamics and tree 

mortality of these areas influenced by bamboo (CASTRO et al., 2013; 

MEDEIROS et al., 2013), or (ii) artifacts of the tree cover computation method 

that uses the pixels’ reflectance from Hansen et al. (2013).  

The MODIS NIR-1 reflectance was normally distributed over bamboo-free forests 

(Figure 4.4B), while it showed a right skewed distribution over the bamboo-

dominated forests (Figure 4.4C). This result was expected considering that 

undisturbed old-growth bamboo-free forests are more or less stable over time 

while bamboo-dominated forests canopy undergo structural changes when the 

bamboo reach the height of tree crowns after 12 years of age (SMITH; NELSON, 

2011). This is supported by our results that show a continuous increase of NIR 

reflectance with bamboo age and an abrupt increase of NIR around the age of 12 

years. 
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4.4.2 Automatic detection of bamboo die-off 

The automatic detection of bamboo die-off performed very well with an accuracy 

above 79 % when estimating the exact year of bamboo death and a mean error 

of 0.5 years. When comparing the NIR-1 and NIR-2 bands, the leaf/canopy water 

sensitivity from NIR-2 might have contributed for a slightly better performance on 

bamboo die-off detection and the detection of different areas between the bands, 

which contributed for a larger coverage of the bamboo-dominated forests (Figure 

A.3). This different sensitivity to vegetation structure is specially highlighted in 

Figure 4.7 where the NIR-2 remains at its lowest during 0-2 years, explaining why 

NIR-2 band maps different areas than NIR-1. 

Our die-off map is an improvement of the current available maps from the 

literature, because the die-off detection conducted in previous works was solely 

based on the visual inspection of Landsat and MODIS color composites during 

2000-2008, thus leading toward the identification of big clusters of pixels that went 

through die-off (Table 4.1) (NELSON, 1994; CARVALHO et al., 2013). Our 

method is automatic, easy to implement, and can detect relatively small patches 

because it runs on a per pixel basis. However, we do not advise to attempting 

detection of very small patches (< 10 km2) when using MODIS data due to 

limitations of the spatial resolution of the sensor (1 km). It is important to note that 

the detected bamboo die-off areas were not confounded with recently deforested 

areas, as the tree cover product did not point out forest losses in bamboo die-off 

areas. Since the method can detect bamboo die-off without a priori knowledge of 

the bamboo spatial distribution (Figure 4.6), it could be used to better describe 

and understand the spatial organization of the bamboo stands that show 

synchronized die-off in forests around the world. 

Our validation dataset was composed of 390 pixels visually detected in 78 

bamboo patches during 2001-2017 using MODIS imagery. Therefore, we are 

confident that the sampling was representative to our study area given that we 

found 802 patches in the same time period, that is, the sample consisted in 

around 10 % patches. It is noted, however, that our visual analysis mostly 

sampled big patches that died-off, because those were the ones that we could be 

sure that were bamboo die-off. The high detection accuracy of bamboo die-off 

events also highlights the quality of the MODIS (MAIAC) data, which are suitable 
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for bamboo-dominated forests mapping. The MAIAC algorithm improves the 

accuracy of cloud detection, aerosol retrieval and atmospheric correction 

compared to the standard MODIS product processing (HILKER et al., 2014). 

Combined with the appropriate normalization for sun-sensor-target geometry 

using BRDF modelling, the MAIAC contributed to minimize inter-annual artifacts 

in the time series for an accurate detection. 

 

4.4.3 Spatial distribution of bamboo-dominated forests 

A total of 155,159 km2 (15.5 million ha) of bamboo-dominated forests were 

mapped in the southwestern Amazon by combining the automatic detection of 

die-off and live bamboo (Figure 4.6). Most of the detected areas (72.5 %) were 

located inside the 16.5 million ha of the bamboo-dominated forests mapped by 

Carvalho et al. (2013), although covering only 68.8 % of the previous detected 

areas. This difference was partially due to the increased land cover change in the 

region past-2010 - period when Carvalho et al. (2013) performed their analysis, 

and areas where our method did not detect bamboo-dominated forests. Despite 

the differences, we detected clusters of pixels that were very likely bamboo-

dominated patches outside of the previously mapped areas (11.5º S, 70º W, and 

13º S, 71º W). These areas should be further investigated in field to verify if they 

are indeed bamboo-dominated forests.  

Compared to our results with 1 km spatial resolution, the map from Carvalho et 

al. (2013) (30 m spatial resolution) underestimated the bamboo-dominated 

forests in the order of 30 %. A possible explanation is that the authors considered 

live-adult bamboo and used only two Landsat mosaic images 10 years apart from 

each other (1990 and 2000) for mapping, thus not observing part of the bamboos 

that were at juvenile stage and hidden in the understory of the canopy strata at 

that time. Another possibility is the limitation of visual interpretation and manual 

delineation of small bamboo patches. Our map was obtained on a per-pixel basis 

by assessing each pixel’s spectral trajectory (refer to Figure 4.7), thus reducing 

errors of omission by considering both live and dead bamboo for mapping, and 

by using a longer time series (18 years) for the detection.  
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The potential limitations of our map include the coarser spatial resolution (1 km) 

when compared to the previous map (30 m). In addition, we likely underestimated 

the true bamboo distribution because of the previously discussed uncertainties in 

detecting juvenile bamboos, given the current temporal coverage of the MODIS 

(MAIAC) time series. A more accurate mapping of bamboo spatial distribution 

would require that all bamboo died-off during the time series (i.e. requiring at least 

28 years of data). Currently, the only dataset that has such temporal coverage 

comes from the Landsat satellites with 47 years of data of variable spatial 

resolution up to 80 m spatial resolution (1972-2018) or 34 years of data of 30 m 

(1985-2018). The challenge in applying such detection with Landsat imagery 

relies in the dataset acquisition of yearly time series of cloud- and aerosol-free 

images for the whole area, and signal normalization between images. The area 

coverage takes at least 16 different Landsat World Reference System path/row 

scenes. 

 

4.4.4 Bamboo cohort age and reflectance variability 

When reconstructing the spectral response of the bamboo-dominated forest as a 

function of cohort age (Figure 4.7), we found that two spectral bands, the NIR-1 

and NIR-2, followed our initial assumption of overall reflectance increase with 

bamboo cohort age and of sharp decrease at the time of die-off. 

Between 1 and 12 years of cohort age, the NIR-1 reflectance did not show a 

continuous increase (Figure 4.7), while it presented strong correlation (r = 0.41) 

with bamboo-free forest (Figure 4.8). The NIR-2 reflectance, however, showed a 

slight monotonical increase (Figure 4.7) with weak correlation (r = 0.19) to 

bamboo-free forest (Figure 4.9). Even though, the accuracy on detecting juvenile 

bamboos was poor (Figure 4.9). Thus, it is very difficult to identify the bamboo 

dominated patches in this hidden juvenile age without identifying the prior death 

event, as reported in a previous study (CARVALHO et al., 2013). 

The NIR signal suddenly increased at 12-14 years of age, which we believe had 

two possible explanations. First, there was a change in the density of leafy 

bamboo branches in the upper forest canopy, where they are visible to the 

satellite. This is supported by the field observations of Smith and Nelson (2011), 
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in which juvenile bamboo cohorts reach the upper forest canopy by 10 years of 

age and accelerate in growth due to increased access to solar radiance. They 

observed that bamboo density doubled (from 1000 to 2000 culms ha-1) and basal 

area almost tripled (from 2.1 to 5 m2 ha-1) between 10 and 12 years of age. The 

second explanation could be an artifact of our unbalanced sampling for this set 

of cohort ages. The reflectance values collected for 12-15 years of cohort age 

were only available from the extremes of our time series (2000 and 2017) due to 

the bamboo 28 years life cycle and the 18 years of MAIAC data availability. 

From 14-27 years, a smooth steady increase occurs only in the NIR-1 signal until 

the synchronous cohort death, while the NIR-2 signal seems to have saturated at 

about age 15 years maintaining a constant signal of 0.3 reflectance until it drops 

steeply at cohort death. Thus, NIR-1 should present better results for predicting 

the bamboo age of adult-live stands. Finally, the sharp decrease of NIR-1 and 

NIR-2 at 28-29 years explain why our bilinear model performed well detecting the 

time of death. At the time of death, there is a high abundance of dead/dry bamboo 

branches in the canopy, which reflect less amounts of NIR energy than leafy and 

photosynthetically active bamboo. 

The increases in red reflectance at the die-off, as well as at 1 year of age (Figure 

4.7A), can also be related to the high abundance of dry bamboo with decreased 

leaf chlorophyll content and increased non-photosynthetic content. Dry, or dead, 

vegetation is non-photosynthetically active, and, thus, the incoming red energy 

near 672 nm is not absorbed by the plant’s chlorophyll, that is, causing an 

increase in the red reflectance (DAUGHTRY, 2000). The dry culms can take up 

a few years to decompose (CARVALHO et al., 2013), which may explain the 

reason for still observing an increased red signal at 1 year of age. 

The reflectance profiles also showed a large spectral variability in bamboo-

dominated forests with age, which very likely occur due to different bamboo 

abundance and/or forest structure among the area, as well as the inter-annual 

variability in the signal. Even though, we were able to extract the annual changes 

in reflectance and predict bamboo ages with 2.92 and 4.25 years RMSE (Figure 

4.9) using NIR-1 and NIR-2, respectively. The data of each age class was merged 

from different year composites of the whole time series, thus incorporating the 

noise in inter-annual variability. Three factors contributing to such noise could be 
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the: (i) temporary formation of green leafy secondary forest, spectrally similar to 

adult bamboo, in large forest gaps left by the dead bamboo; (ii) semideciduous 

nature of the trees that are mixed in with bamboo, in the seasonally drier parts of 

the bamboo range; and (iii) death of bamboo revealed suppressed trees below 

the bamboo canopy. Nevertheless, because our detection and prediction 

methods were not based on absolute reflectance values, but on the correlation 

between the time series and a reference, such as the bilinear model or the 

empirical reflectance profile, we do not believe that the large spectral variability 

should have a major impact on the detection/prediction. 

 

4.4.5 Bamboo die-off prediction 

By applying the empirical bamboo-age reflectance profiles, we estimated the 

bamboo die-off year for all bamboo patches of the region providing a detailed 

map of the age structure of bamboo-dominated forest (Figure 4.9) and bamboo 

patch sizes description (Table 4.1). The estimated die-off events between 2000 

and 2017 were similar to the ones detected using the bilinear model because of 

the abrupt spectral changes with die-off. Regarding predictions between 2018 

and 2028, the estimate of the exact die-off year was not so accurate (at best 20 

% accuracy) because those bamboo patches were mainly at the juvenile stage 

during the MODIS (MAIAC) time series period and did not die. However, we 

believe that the predictions using the NIR-1 were at acceptable levels (RMSE = 

2.92 years) when considering that: (i) the Landsat validation points based on 

visual interpretation can have a deviation of 1 year; and (ii) we assumed that 

every bamboo cohort had the same life cycle length of 28 years, while we know 

that it can vary between 27-32 years (CARVALHO et al., 2013). The validation 

dataset for the predictions (2017-2028) corresponded to 175 pixels in 35 bamboo 

patches and represented 4.5 % of the 778 bamboo patches predicted for the 

2018-2028 time period. 

We believe that knowing where and when the bamboo dies is an important 

information for future studies of the bamboo-dominated forests ecosystems, and 

the potential applications of the bamboo die-off year or age map are various. 

Since areas with dead bamboo are difficult to maintain trails and hinder the work 

of rubber trappers (CARVALHO et al., 2013), it can be used in forest 
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management planning in order to avoid areas where die-off year occurred in the 

last 3 years and dry culms are still not decomposed, or to avoid areas with likely 

future die-off. It can also be used for public policy planning regarding food and 

human health security, for example, in bamboo forests in southeast Asia, where 

the bamboo reproductive events cause huge rodent invasion and proliferation 

that then damage nearby crop plantations (FAVA; COLOMBO, 2017). It could 

also be used to explore broader scientific questions on the ecology of bamboo-

dominated forests such as studies on maintenance/expanse of bamboo patches, 

flowering waves, cross-pollination between patches, fauna habitat dynamics, 

impacts on short and long-term carbon dynamics. 

 

4.4.6 Fire occurrence and bamboo 

We could not support the bamboo-fire hypothesis from Keeley and Bond (1999) 

because fire occurred only in a small fraction of bamboo-dominated areas during 

the 16 years of fire analysis (Figure 4.6), equivalent to 2371 km2 of burnt area or 

0.0955 % of the total bamboo area (155,159 km2) burning each year. In addition, 

the statistical tests comparing dead and live bamboo fire frequency showed that 

dead bamboo did not burn more than live bamboo (Figure 4.11). Hence, we 

believe in other explanations for bamboo maintenance in the forest, such as 

bamboo itself being responsible for its maintenance in the forest due to the 

damage it causes in the trees while increasing tree mortality (GRISCOM; 

ASHTON, 2003). 

We also did not observe an overall increased fire probability over dead than live 

bamboo in non-drought years. However, our findings suggest that forests with 

recently dead bamboo exposed to severe drought are more susceptible to fire 

occurrence, as there were 45 % higher area-normalized mean active fire 

detections in dead than live bamboo during severe drought years, such as 2005, 

2010, 2015 and 2016. When considering the total fire occurrence, we did not 

observe an overall significant increase in fire occurrence during the 2005 and 

2010 major droughts when compared to the other regular years (BRANDO et al., 

2014). We believe that this is because we filtered the active fire occurring inside 

the bamboo-dominated areas and pixels with, theoretically, zero non-forested 

areas using the tree cover products (HANSEN et al., 2013), thus excluding the 
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areas of increased fire occurrence in 2005 and 2010 that were reported in the 

literature (BRANDO et al., 2014). 

The fire occurrence beyond 2 km inside the forest was probably underestimated 

because the forest canopy can obscure fires that occur only on the understory, 

and, thus, are not detected by the MODIS/Aqua satellite (ROY et al., 2008). In 

addition, the MODIS active fire detections should be treated as a lower bound of 

fire occurrence, as it underestimates fire occurrences in the order of 5 % for small 

fires with less than 0.09 km2, or 10 % of MODIS spatial resolution, due to the 

coarse spatial resolution, high cloud cover, and when having high viewing angles 

(> 15 º) (MORISETTE et al., 2005). Nevertheless, we do not believe this might 

have an impact on rejecting the bamboo-fire hypothesis due to the minimal 

fraction of fire occurrences occurring over the large bamboo-dominated forests. 

Large areas of bamboo die-off that burned occurred close to agricultural lands 

near Sena Madureira city in the state of Acre, Brazil, during 2015, 2016 and 2017. 

The combination of increased dry fuel material from bamboos and nearby ignition 

sources from land use might have contributed to this increased fire occurrence. 

This result supports the notion that bamboo die-off enhances fire probability by 

increasing the dry fuel material in the forest. As we observed in the red 

wavelength, the reflectance increase was probably associated with greater 

amounts of dry biomass or non-photosynthetic vegetation in the die-off year and 

up to 1 year of age (Figure 4.7A). 

The fire occurrences over bamboo-dominated forests were therefore associated 

with the proximity to ignition sources, as less than 1 % of forest fire events 

occurred more than 2 km apart of non-forested areas. This was expected 

because fire depends on both fuel and ignition to occur. Thus, areas closer to 

deforested areas, roads and rivers would have higher probability to burn, as 

probably occurred in 2015, 2016 and 2017. The study of Kumar et al. (2014) 

found that 50 % of MODIS active fire detections were found within 1 km of roads 

and rivers, and 95 % of the active fires were found within 10 km of roads and 

rivers in Brazilian Amazon. Fire is known to be associated to deforestation and 

land use practices in Amazon such as slash-and-burn and land preparation, 

where people remove trees of economic interest and then set the areas on fire in 

order to clear the land and implement crop plantations or pasture (ROY et al., 
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2008). Thus, this reinforce a bamboo-human-fire association through the 

increased land use and cover change. This association is slightly different than it 

was in pre-Columbian times (MCMICHAEL et al., 2014), where geoglyph builders 

could have used the bamboo die-off patches and fire as an easier way to clear 

the forest cover to build their monuments, but it should also favor increases in fire 

occurrence on the vicinities of bamboo-dominated areas, thus leading to potential 

bamboo expansion. 

The higher fire probability in dead bamboo patches during drought events, along 

with the increasing human influence, can favor increases in bamboo abundance 

and expansion over time by assisting them in their competition with trees. A 

previous study showed that fire favored the Guadua bamboo expansion in the 

region, because the bamboo individuals have faster responses to catastrophic 

disturbance such as fires than tree species (SMITH; NELSON, 2011). Thus, when 

a fire occurs inside or close to a bamboo forest patch, it may favor the growth of 

bamboo seedlings - derived from the massive amount of seeds that have been 

launched during the reproductive phase and prior to death - and the vegetative 

expansion of the adult bamboo. 

Our findings regarding bamboo die-off year being associated to fire occurrence, 

mainly in drought years, might have implications to fire control policies, such as 

in the state of Acre in Brazil, where many bamboo-dominated areas occur near 

human settlements and that these extreme climate events are occurring within 5 

years’ interval in Amazon. By knowing where and when the die-offs are occurring, 

public policies can be made to avoid fire ignitions in such areas or prepare the 

fire brigades to attend to potential fires. 

 

4.5 Conclusions 

This study demonstrates that the NIR reflectance is more sensitive to the bamboo 

life cycle than the other spectral intervals and can be used to detect and map 

bamboo-dominated forests distribution, age structure, and death. The automatic 

bamboo die-off detection achieved an accuracy above 79 % by assessing the 

point of maximum correlation between the NIR time series and a bilinear model 

of linearly increasing NIR with a sharp decrease at the end. After merging the die-
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off map with the live bamboo map, a total of 155,159 km2 of bamboo-dominated 

forests was mapped in the region. It is noted, however, that this area was 

probably still underestimated due to the limited temporal coverage of the MODIS 

(MAIAC) time series restricted to the last two decades. The bamboo-fire 

hypothesis was not supported by our results, because only a small fraction of 

bamboo areas burned during the analysis timescale. In general, bamboo did not 

show higher fire probability after the reproductive event and die-off, meaning that 

fire should not be the driver for bamboo dominance. Nonetheless, under severe 

droughts effects, forests with recently dead bamboo are more susceptible to fire 

than forests with live bamboo, being affected by 45 % more fire occurrence. The 

fire in these areas is mostly associated with ignition sources from land use, 

suggesting a bamboo-human-fire association. The interaction of dead bamboos 

and ignitions cause increased fire occurrence that may contribute to the 

maintenance of bamboo, burn adjacent forested areas and promote tree 

mortality, and ultimately the expansion of bamboo into adjacent areas. 

Further research related to bamboo dynamics can use the bamboo die-off map 

that we produced to pinpoint the location of reproductive and die-off events in 

space and time in order to support studies of bamboo maintenance and 

colonization, wildfire dynamics, carbon assimilation in trees and bamboos, tree 

mortality, fauna/flora demography and species distribution, etc. The mapping 

approach can be applied with other remote sensing data, such as Landsat data 

with better spatial resolution and longer time series, and tested with different 

spectral bands and attributes to further improve the detection. It can also be 

applied in other areas around the world that have bamboo-dominated forests. 

Using this approach, one can evaluate the temporal dynamics of the reproductive 

events, e.g. spreading of flowering waves, and map the bamboo-dominated 

areas. 
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5 QUANTIFYING CANOPY TREE LOSS AND GAP RECOVERY IN 

TROPICAL FORESTS UNDER LOW-INTENSITY LOGGING USING VHR 

SATELLITE IMAGERY AND AIRBORNE LIDAR 5 

 

Abstract: Logging, including selective and illegal activities, is widespread, 
affecting the carbon cycle and the biodiversity of tropical forests. However, 
automated approaches using very high resolution (VHR) satellite data (≤ 1 m 
spatial resolution) to accurately track these small-scale human disturbances over 
large and remote areas are not readily available. The main constraint for 
performing this type of analysis is the lack of spatially accurate tree-scale 
validation data. In this study, we assessed the potential of VHR satellite imagery 
to detect canopy tree loss related to selective logging in closed-canopy tropical 
forests. To do this, we compared the tree loss detection capability of WorldView-
2 and GeoEye-1 satellites with airborne LiDAR, which acquired pre- and post-
logging data at the Jamari National Forest in the Brazilian Amazon. We found 
that logging drove changes in canopy height ranging from −5.6 to −42.2 m, with 
a mean reduction of −23.5 m. A simple LiDAR height difference threshold of −10 
m was enough to map 97% of the logged trees. Compared to LiDAR, tree losses 
can be detected using VHR satellite imagery and a random forest (RF) model 
with an average precision of 64%, while mapping 60% of the total tree loss. Tree 
losses associated with large gap openings or tall trees were more successfully 
detected. In general, the most important remote sensing metrics for the RF model 
were standard deviation statistics, especially those extracted from the reflectance 
of the visible bands (R, G, B), and the shadow fraction. While most small canopy 
gaps closed within ~2 years, larger gaps could still be observed over a longer 
time. Nevertheless, the use of annual imagery is advised to reach acceptable 
detectability. Our study shows that VHR satellite imagery has the potential for 
monitoring the logging in tropical forests and detecting hotspots of natural 
disturbance with a low cost at the regional scale. 

 

Keywords: remote sensing; forest management; disturbance monitoring; forest 
dynamics; multi-temporal analysis; WorldView-2; GeoEye-1; random forest; 
Amazon; Jamari National Forest 

 

                                                      

 

5 DALAGNOL, R. et al. Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests 

under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote 
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5.1 Introduction 

Logging, including illegal and selective activities, causes mostly small-scale but 

spatially widespread disturbances in tropical forests. Illegal logging accounts for 

~40% of all logging in tropical forests and up to 72% of all logging in the Brazilian 

Amazon (CONTRERAS-HERMOSILLA et al., 2007; LAWSON; MACFAUL, 

2010). Despite the large uncertainties, it has been estimated to affect ~12,000 

km² year−1 of forests in the Brazilian Amazon and is responsible for gross carbon 

losses of ~0.08 Pg C year−1 or ~33% of the Amazon’s annual carbon emissions 

between 1999 and 2002 (ASNER et al., 2005; ARAGÃO et al., 2014). Besides 

the direct implications on the carbon cycle, logging also causes ecological 

impacts, such as the increased mortality of remaining trees, increased fire risk, 

and losses of floral and faunal biodiversity (COCHRANE 2003; ASNER et al., 

2005; LAMANNA; MARTIN, 2017). Furthermore, the long-term effects of logging 

on forest dynamics and turnover remain poorly understood, but likely persist for 

decades (OSAZUWA-PETERS et al., 2015). 

Given the impacts of logging on a forest’s carbon stocks and biodiversity, there 

is a growing interest in tracking these direct human-induced forest disturbances 

(BUCHANAN et al., 2018). This is critical for better understanding the contribution 

of logging to the carbon budget and ultimately supporting actions for climate 

change mitigation (ARAGÃO et al., 2014). However, unlike forest clear-cutting, 

logging is not easily detected by remote sensing. Compared to clear-cutting, 

logging causes subtler changes to the canopy, such as opening gaps over 

logging decks and roads, but most of the canopy damage is due to the direct 

impacts of tree-falls (ASNER et al., 2005). Furthermore, the detection challenge 

increases for low-impact logging (i.e. selective or reduced impact logging). These 

activities are carefully planned to minimize environmental impacts by only 

extracting targeted individual trees of non-endangered species with high market 

value. However, Johns et al. (1996) suggest that even reduced-impact felling and 

extraction may cause high damage and mortality to non-targeted trees, such as 

killing up to five other non-targeted trees. These events cause abrupt changes to 

the canopy structure, but still pose a challenge for remote sensing detection. 

Satellite imagery from the Landsat series (30 m resolution) has been successfully 

used to map logging disturbances in Amazon forests using mono-temporal 
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(STONE; LEFEBVRE, 1998; ASNER et al., 2005) or multi-temporal (WANG et 

al., 2019) approaches. However, although Landsat satellites provide the longest 

historical time series (1984-today), the spatial resolution of their instruments is 

limited to capture all the small-scale disturbances associated with logging and 

especially low-impact logging. Alternatively, studies have shown that VHR 

satellite imagery (≤ 1 m spatial resolution) is a promising way to map small-scale 

disturbances from natural mortality and logging by the visual inspection of multi-

date imagery (READ et al., 2003, CLARK et al, 2004a, 2004b). More recently, 

Kellner; Hubbell (2017) applied an automated method to detect the mortality of 

canopy tree species Handroanthus guayacan in tropical forests based on 

synchronous flowering. However, their method only works for tree species with 

synchronous annual flowering. At this time, we still lack information about the 

effects of tree size, tree-fall gap opening, and time after the event on the 

sensitivity of the disturbance detection from the VHR satellite data. 

Automated disturbance detection using VHR satellite imagery still poses 

technical challenges, as differences in view-illumination geometries between the 

pairs of images may cause a mismatch of tree crown geo-location (GUO et al., 

2007; WULDER et al., 2008). Thus, the appearance of artifacts due to canopy 

shadowing, and related changes in the crown relative position for the sensor, 

canopy shape and apparent area, can induce misclassification of disturbance 

(WULDER et al., 2008). Therefore, the high local canopy spectral variability 

hampers the success of pixel-based change detection approaches (GUO et al., 

2007). To solve these problems, some studies suggest the application of object-

based analyses (GUO et al., 2007; WULDER et al., 2008) focusing on physically 

meaningful features rather than pixels. This is often done by segmenting images 

into individual tree crown (ITC) polygons, which minimizes the high local spectral 

variability in the canopy, and reduces problems of tree crown geo-misallocation.  

Airborne LiDAR data have also been used to investigate the impacts of selective 

logging (ASNER et al., 2010; D’OLIVEIRA et al., 2012; ANDERSEN et al., 2014) 

and natural tree mortality (LEITOLD et al., 2018) in the Amazon. These studies 

pointed out that the height difference between a pair of LiDAR data, acquired pre- 

and post-logging, was strongly related to the aboveground biomass (AGB) 

change. These approaches enabled the estimation of AGB loss due to logging 
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with fairly low (2–18%) uncertainty, and with precise observation of canopy gaps. 

Although they achieved a high precision for estimating small-scale disturbance 

impacts, airborne LiDAR data are not ideal for operational monitoring over large 

and remote areas because of the high costs associated with data acquisition. 

Nevertheless, studies suggest that the combination of airborne LiDAR and VHR 

satellite data could prove useful to quantitatively assess and validate how VHR 

satellite data can observe individual canopy tree loss (READ et al., 2003). 

In this study, we explore the potential of VHR satellite imagery as a means to 

detect canopy tree loss associated with low-intensity logging in closed-canopy 

tropical forests. Specifically, we address the following questions: (1) How does 

logging drive changes in forest canopy height? (2) Can low-intensity logging 

events be detected by VHR satellite data? (3) Which remote sensing metrics are 

the most important for tree loss detection? (4) For how long after a disturbance 

can VHR satellite data still detect it? (5) Is the satellite-based tree loss map 

consistent across disturbed and undisturbed forests? 

To answer these questions, we acquired a complete dataset of multi-date (pre- 

and post-logging) airborne LiDAR and VHR satellite data from WorldView-2 and 

GeoEye-1 satellites, and a comprehensive field dataset of tree-by-tree 

georeferenced logged trees at Jamari National Forest in the Brazilian Amazon. 

This enabled us to evaluate the potential of optical remote sensing to detect tree-

by-tree disturbances against a carefully collected airborne LiDAR and ground 

record of logging. Although the tree-by-tree dataset covers only the logged trees, 

and not all the killed trees during the felling process, it guided the assessment of 

structural changes in the canopy as sensed by LiDAR data. This fact then allowed 

the assessment of mortality using VHR data. 

 

5.2 Study Area  

The study area is located at the Jamari National Forest (09°10'S, 63°01'W), next 

to the BR-364 highway, 90 km from Porto Velho city, capital of the Rondônia 

state, Brazil (Figure 5.1). The Jamari Forest covers 2,200 km² of terra firme 

lowland rain open forests (IBGE, 2006), with tree species of high commercial 

value. From the total area, 960 km² (44%) has been allocated for private selective 
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logging concessions since 2008. The forest concessions are administered and 

managed by the Brazilian Institute of Environment and Renewable Mineral 

Resources (IBAMA) and the Brazilian Forest Service, respectively. Wood 

extraction is limited to (i) non-endangered species allowed by IBAMA; (ii) trees 

with a diameter at breast height (DBH) greater than 50 cm; and (iii) an extraction 

density of up to 25.8 m³ ha-1. The managed areas are left to recover naturally for 

25 years after extraction. 

Figure 5.1 - Study area at the Jamari National Forest, Rondônia state, Brazil. The 
background of the left image is a true color composite from the GeoEye-
1 satellite acquired on 02 July 2017 (UTM, datum WGS-84). The red and 
blue rectangles represent the areas A and B covered by the LiDAR 
datasets, which were analyzed in sections 5.3.1 and 5.3.3, respectively. 
The black lines represent the boundaries of the UPAs. The satellite image 
is courtesy of the DigitalGlobe Foundation. 

 

 

Source: Produced by the author. Image is a courtesy of Digital Globe Foundation. 
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This study focuses on an area of 76.6 km² inside the total managed area, with 

the availability of images from a pair of VHR satellites (WorldView-2 and GeoEye-

1). The area covers four annual production units (UPA): UPA-01 (logged in 

2010/2011), UPA-06 (logged in 2016), part of UPA-10 (logged in 2017), and UPA-

11 (logged in 2015). Two smaller sections of the study area were analyzed using 

LiDAR datasets (Figure 5.1): (A) 1.4 km² over UPA-06 observed pre- and post-

logging by the satellite and LiDAR instruments (analyses of sections 5.3.1 and 

5.3.2), and (B) 1.04 km² over UPA-01 evaluated by a time series of LiDAR data 

from 2011 to 2017 (analysis of section 5.3.3). The imagery also covers an active 

legal mining site of Cassiterite ore, located in the western part of the study area. 

The forests outside of UPAs and away from the mining site are nominally 

undisturbed. 

Based on a forest inventory of the UPA-06 conducted by the concessionaire in 

2015 (prior to logging), the logged trees include at least 18 different species, with 

DBH ranging from 50 to 185 cm (mean = 92 cm) and height ranging from 11 to 

28 m (mean = 20 m). The region has two well-defined seasons: a wet season 

from December to May, and a dry season from June to November, with annual 

precipitation of 2000 mm, varying from 14 mm in the driest month (July) to 318 

mm in the wettest (January), as indicated by Tropical Rainfall Measuring Mission 

(TRMM) data (product TRMM 3B43 v7 at 0.25 deg). Monthly mean temperature 

ranges from 24 ˚C in June/July to 27 ˚C in October, according to the Climatic 

Research Unit (product v4.01) (HARRIS et al., 2014). The terrain is hilly, with 

heights ranging from 90 to 158 m above the sea level as measured by the Shuttle 

Radar Topography Mission v2.1 (USGS, 2006). 

 

5.3 Material and Methods 

The overview of this study is shown in Figure 5.2. In the first section, we used 

airborne LiDAR data and logged trees’ geolocation to assess height differences 

related to logging and create a LiDAR-based tree loss map. In the second section, 

using the LiDAR map as a reference for tree loss samples, we trained an RF 

model with VHR satellite metrics to create a satellite-based tree loss map. The 

satellite map was validated using the whole LiDAR map. Then, we conducted a 

sensitivity analysis to explore the variability of results regarding the forest 
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structure and changes. In the third section, we analyzed a time series of airborne 

LiDAR data to detect tree-fall gaps and track vegetation recovery and gap closure 

over time. Finally, in the fourth and last section, we analyzed the whole satellite 

map over previously known selectively logged areas and undisturbed forests to 

detect hotspots of disturbances and discuss the detection capabilities using VHR 

satellite data. 

Figure 5.2 - Main steps of the data processing and analyses. 

 

Source: Produced by the author. 

 

5.3.1 Tree Loss Detection using LiDAR Data 

We used airborne LiDAR data and field logged tree coordinates to characterize 

canopy height changes associated with tree loss events derived from logging. 

Using this information, we created a tree loss map. We acquired airborne LiDAR 

data over 1.4 km² of forests at the UPA-06 during 2015 (pre-logging) and 2017 

(post-logging) (Table 5.1 and area A in Figure 5.1). The LiDAR point cloud (x, y, 

z coordinates) was processed into a canopy height model (CHM) following four 

steps of pre-processing: point classification, generation of a Digital Terrain Model 
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(DTM), height normalization, and extraction of CHM. First, we classified the points 

into ground or vegetation classes using the lasground, lasheight, and lasclassify 

functions from LAStools 3.1.1 (ISENBURG, 2018). Second, to ensure that 

potential acquisition effects between the two datasets did not interfere with the 

analysis, we merged their points classified as ground and created a combined 

DTM with a 1 x 1 m pixel using the TINSurfaceCreate function from FUSION/LDV 

3.6 (MCGAUGHEY, 2016). The combination of point clouds generates more 

precise DTM and CHM for both dates and allows a more precise determination 

of height difference. Third, we normalized the point’s height to height above 

ground by subtracting the combined DTM height from their values. Finally, we 

extracted the CHMs considering the highest height of vegetation on each 1 x 1 m 

pixel using the CanopyModel function from FUSION/LDV. No adjustment for 

horizontal displacement between the datasets was necessary because tree 

crowns’ positioning agreed nearly perfectly, as verified by visual inspection. Both 

LiDAR collections had very high point densities (≥ 12 points m-2 in overall, ≥ 4 

points m-2 reaching the ground), which vary across studies, depending on the 

platform used for data collection. 

Table 5.1 - Acquisition details of Airborne LiDAR and VHR satellite data used for tree 
loss analyses. PAN = Panchromatic; B = blue; G = green; Y = yellow; R = 
red; NIR = Near infrared. 

Information LiDAR Date 1 LiDAR Date 2 Satellite Date 1 Satellite Date 2 

Sensor Laser scan 
Optech 3100 

Laser scan 
Optech ALTM 

Gemini 

WorldView-2 
satellite 

GeoEye-1 
satellite 

Acquisition date 21 Sep 2015 20 Apr 2017 10 Oct 2014 02 Jul 2017 

Acquisition 
altitude 750 m 700 m 770 km 770 km 

Scan frequency 100 kHz 100 kHz - - 

Off-nadir angle 15˚ 15˚ 26˚ 20˚ 

View elevation  - - 60˚ 68˚ 

View azimuth - - 74˚ 64˚ 

Sun elevation - - 69˚ 49˚ 

Sun azimuth - - 85˚ 38˚ 

Data type, bands, 
and spatial 
resolution 

Point cloud 
(x,y,z) with 

33.6 points m-

2 

Point cloud 
(x,y,z) with 12 

points m-2 

PAN - 0.5 m; 
Spectral - 2.4 m: 
coastal, B, G, Y, 

R, Red edge, 
NIR-1, NIR-2 

PAN - 0.5 m; 
Spectral - 1.8 m: 

B, G, R, NIR 

Source: Produced by the author. 
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As already mentioned, we adopted an object-based approach instead of a pixel-

based analysis for both LiDAR and VHR analysis. To delineate the ITCs using 

the LiDAR data, we applied the voronoi-based method (FindTreesCHM and 

ForestCAS functions) from the rLiDAR R-package (SILVA et al., 2017). More 

details on ITC delineation are described in the Supplementary Material 1. The pre-

logging LiDAR CHM was used as the input because the tree crowns from logged 

trees were still intact.  

To characterize canopy height changes associated with tree loss events and to 

define a threshold to detect canopy tree loss from logging, we assessed the 

LiDAR CHM height difference between the acquisitions (ΔCHM = CHMdate2 – 

CHMdate1) considering 172 ground-mapped logged trees. Tree geolocation was 

acquired by the forest concessionaire in 2015, prior to the logging activities that 

occurred in August 2016, using a Garmin 64S handheld global positioning system 

(GPS) (~10 m precision). We assessed the distribution of most negative height 

differences in a 30 m radius around logged trees (n = 172) and around non-logged 

trees areas (n = 146). This radius was chosen to account for (1) tree coordinate 

displacement due to GPS location error and differences of geo-location between 

tree trunks and crowns, and (2) displacement between tree coordinates and the 

areas actually impacted by the tree losses. To ensure that the non-logged tree 

areas did not overlap with each other nor with areas included within logged trees’ 

radii, we randomly distributed points across the area at least 60 m away from the 

logged tree coordinates and from each other. We defined the ΔCHM threshold 

that maximally separated the distributions of height difference from logged and 

non-logged areas by fitting a logistic regression model and inspecting the results. 

Using the ΔCHM threshold, we detected tree losses associated with logging and 

generated the LiDAR-based tree loss map. To assess how far the detected tree 

loss events occurred from logged trees, we analyzed the nearest neighbor 

distances between the two datasets. We also calculated the rate of tree loss 

occurrence per area and the percentage of canopy change between 2015 and 

2017.  
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5.3.2 Tree Loss Detection using VHR Satellite Data and RF Model 

5.3.2.1 Satellite Data Acquisition and Preprocessing 

We acquired VHR satellite data of the study area during 2014 (WorldView-2) and 

2017 (GeoEye-1) (Table 5.1). The intersection of the two images covered an area 

of 76.6 km², of which 1.4 km² overlapped with the LiDAR data of UPA-06 forests 

(Figure 5.1). In order to convert the VHR data into surface reflectance, we applied 

the 6S radiative transfer model (VERMOTE et al., 1997). This was conducted 

using the OpticalCalibration function implemented in the Orfeo Toolbox (OTB) 6.4 

(GRIZONNET et al., 2017). After the correction, we selected only the blue, green, 

red, and near infrared (NIR) bands, because these bands were available for both 

GeoEye-1 and WorldView-2 satellites. To resample the pixel size of the 

multispectral data at the resolution of the panchromatic imagery (0.5 m), we 

applied the Bayes data fusion method (FASBENDER et al., 2008) implemented 

in OTB 6.4. This fusion method is a probabilistic approach that combines the 

higher spatial resolution from the panchromatic band with the spectral bands. It 

is considered one of the best methods for preserving the spectral information 

from VHR satellite images when compared to other traditional fusion methods 

(FASBENDER et al., 2008).  

In order to match the tree crowns between LiDAR and satellite datasets, we co-

registered (i.e. aligned) the VHR satellite data with the LiDAR CHM. Only a 

translation of a few pixels was necessary to match the datasets. As the pair of 

images was acquired under different sun-sensor geometry angles and by 

different sensors (Table 5.1), to ensure that the signals of VHR satellite images 

were comparable, we normalized the post-logging image based on the pre-

logging image. The normalization was done using the histogram matching 

method by the histMatch function from the RStoolbox R-package (LEUTNER et 

al., 2018). This method extracts the cumulative distribution functions from both 

images, adjusting the target histogram as a function of the source histogram. 

 

5.3.2.2 Selection and Extraction of VHR Satellite Metrics 

In addition to the reflectance of the spectral bands, we calculated two widely used 

vegetation indices to explore forest structural changes: the normalized difference 
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vegetation index (NDVI) (ROUSE et al., 1974) and the enhanced vegetation index 

(EVI) (HUETE et al., 2002). Since shade is known to be associated with tree 

mortality (ANDERSON et al., 2010), we also calculated a set of shadow metrics 

to be used in the modelling. To detect the shadow, we employed a simple 

thresholding method using the NIR band of the post-logging VHR image. We 

manually sampled shaded (n = 100) and non-shaded (n = 100) pixels to define a 

threshold separating the two classes. The threshold was determined considering 

the first percentile of NIR reflectance (NIR = 0.21) that covered the non-shaded 

pixels. Hence, all pixels with values below this threshold were classified as 

shadow. This shadow map was later used to calculate shadow metrics for RF 

modelling after performing the ITC delineation. 

Using the NIR band from the pre-logging VHR data, we delineated ITCs with the 

marker-controlled watershed segmentation (MCWS) method. The vwf and mcws 

functions from the ForestTools R-package were used (PLOWRIGHT et al., 2018) 

(more details in Supplementary Material 1). 

Based on the LiDAR-based tree loss map, we selected ITC samples representing 

tree loss and non-tree loss events (n = 200 each) to train the RF model. The tree 

loss samples were collected randomly from the LiDAR tree loss map. To collect 

non-tree loss samples, we selected samples at least 5 m away from the LiDAR 

tree loss detections to minimize potential mismatches of tree crown locations 

between LiDAR and VHR data. Then, we extracted the VHR satellite data 

(reflectance of the red, green, blue, and NIR bands; NDVI and EVI; and shadow) 

from date1 and date2 for each sample. 

Using the extracted data, we created a total of 18 metrics for RF modelling. Since 

each ITC contains hundreds of pixels, we first summarized the values inside the 

ITCs of each of the four reflectance bands and two vegetation indices by 

calculating the mean and standard deviation (SD); then, we calculated the mean 

and SD differences (date2 – date1) metrics for each attribute. For the shadow 

attribute, considering only the values from date2, we calculated six metrics to 

describe the distribution of shadows inside the tree crowns. The first metric was 

the shadow fraction, which consisted of the ratio between the area occupied by 

shadow pixels and the total ITC area. The shadow pixels inside ITC were 

segmented and the segments were analyzed to create the remaining five metrics: 
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number of segments and maximum, mean, median, and SD of segments’ size. 

To remove noise, we filtered out segments consisting of only one pixel.  

 

5.3.2.3 RF Model 

RF is a machine-learning algorithm, which consists of an ensemble of decision 

trees (BREIMAN, 2001). RF reduces the prediction variance by using a large 

number of decision trees. We trained RF models using 18 VHR satellite metrics 

as predictors to classify 400 samples as tree loss or non-tree loss events. This 

was performed using the randomForest R-package v4.6-12 (LIAW; WIENER, 

2002). Thus, to create the model, we generated 1000 decision trees; each tree 

was created using a random subset consisting of 2/3 of the samples; and for each 

node of a tree, only three from the 18 predictors were randomly chosen for that 

node classification.  

Since each decision tree has a classification response for a given sample, the 

ensemble of responses corresponds to a pseudo-probability for classifying that 

sample as tree loss or non-tree loss. In general, the majority of votes is chosen 

as the response. However, since our classification problem was binary (presence 

or absence of tree loss) and our interest was to optimize the precision (inverse of 

commission error) of the tree loss occurrence class, we used a weighted voting 

approach towards this class, minimizing commission errors, but increasing 

omission errors. Finally, we applied the model to predict the class of every ITC 

and create a satellite-based tree loss map. 

 

5.3.2.4 Validation of the Satellite-Based Tree Loss Map 

To validate the satellite map, we used the LiDAR map as a reference. We 

intersected both maps and obtained the number of true positives (TP), false 

positives (FP), and false negatives (FN). TP is defined as the number of ITCs 

correctly identified by the satellite map, judged by whether they intersected with 

the ITCs of the LiDAR map; FN is the number of ITCs not identified by the satellite 

map, but identified by the LiDAR map; and FP is the number of ITCs incorrectly 

identified by the satellite map, i.e., ITCs which do not occur in the LiDAR map. 

For the intersections, we used a small buffer of one meter around the tree loss 
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detections to minimize effects of artificial tree crown displacement between 

satellite and LiDAR datasets. To evaluate the accuracy of the model, we used 

TP, FP, and FN to calculate two accuracy metrics: precision (P) and recall (R) 

(Eq. 5.1 and 5.2). Precision is the inverse of the commission error and measures 

how much of the satellite detections coincided with the LiDAR detections. The 

recall is the inverse of omission error and measures how many ITCs of the LiDAR 

map were detected by the satellite map.  

P = TP/(TP + FP) (5.1)

R = TP/(TP + FN) (5.2)

We performed additional analyses to explore the model sensitivity to random 

sampling and tree loss probability cutoff, the spatial dependence of detections 

between satellite and LiDAR maps, variable importance for modelling, and 

sensitivity of detections to vertical structure change and tree height. To explore 

the model sensitivity to sampling, we trained 30 RF models using different 

random sampling runs. The accuracy metrics (P and R) from the models were 

aggregated into mean and 95% confidence intervals. To explore the tree loss 

probability cutoff sensitivity and select a threshold to generate a map, while 

ensuring that the model predictions had a high precision, we assessed the model 

performance as a function of the RF tree loss probability ranging from 0.5 to 0.95.  

As an independent measure of detection capability, we tested if there was 

significant spatial dependence between tree losses detected by VHR satellite 

imagery and LiDAR data. For this purpose, we extracted the nearest neighbor 

distances between the tree loss detections of the two maps, and compared the 

cumulative distribution of nearest neighbor distances with a completely random 

(Poisson) point process. We simulated 199 realizations of the random point 

process using a Monte Carlo approach and created an envelope of complete 

spatial randomness (CSR) with a 1% significance level. This was done using the 

envelope and Gcross functions from the spatstat R-package v1.47 (BADDELEY 

et al., 2015). If the observed distribution was located inside the CSR envelope, 

that would mean that VHR satellite detections occurred independently in space 

from the LiDAR detections and vice versa. 
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The sensitivity of detection success to vertical structure change and tree height 

was assessed by exploring the LiDAR CHM pre- and post-logging heights, and 

ΔCHM over correct VHR satellite detections.  

Finally, to explore the importance of the different VHR satellite variables for the 

modelling, we ranked the variables according to the mean decrease accuracy 

(MDA) metric (BREIMAN, 2001). Once each node had been determined in a 

decision tree, this metric was computed by removing a single variable from the 

pool of variables and assessing the decrease in the model accuracy. The mean 

and 95% confidence interval of MDA for each variable were computed for the 30 

models. The variables with the largest MDA were ranked highest in importance. 

To further test whether a variable was significantly important in the voting process 

of the RF, we compared the observed MDA versus a null distribution of MDA. We 

created this null distribution by running the model 30 times while shuffling the 

sample responses randomly. This was performed using the rfPermute v2.1.6 R-

package (ARCHER, 2018). We reported which variables showed MDAs 

significantly different from the null distribution considering a 5% significance level.  

 

5.3.3 Assessment of Tree-Fall Gaps Recovery Using LiDAR Data 

Following the assumption that the VHR detection of tree loss events depends on 

the observation of forest canopy gaps created by the tree-falls, and given that 

gaps recover over time through new recruitment and recovery of existing trees, 

we expect a time dependence between the tree loss detection and the time since 

disturbance. Therefore, we investigated the rate and mechanisms of gap closure 

over time using a time series of airborne LiDAR observations of a 1.04 km² forest 

section collected in 2011, 2013, 2014, 2015, and 2017 over UPA-01 (Table 5.2 

and area B in Figure 5.1), which was logged during 2010 and 2011. We 

processed the data to obtain the LiDAR CHM for each date following the same 

procedures described in section 5.3.1. 
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Table 5.2 - Acquisition details of Airborne LiDAR data used for gap recovery analysis. 
Information 2011 2013 2014 2015 2017 

Laser Scan 
Sensor 

Optech 
3100 

Optech, 
Orion 

Trimble, 
Harrier 68i 

Optech 
3100 

Optech ALTM 
Gemini 

Acquisition Date 17 Nov 
2011 

20 Sep 
2013 09 Oct 2014 21 Sep 

2015 20 Apr 2017 

Acquisition 
Altitude (m) 850 853 500 750 700 

Scan Frequency 59.8 kHz 67.5 kHz 400 kHz 100 kHz 100 kHz 

Off-Nadir Angle 11.1 ˚ 11.1 ˚ 15 ˚ 15 ˚ 15 ˚ 

Point Cloud 
Density m−2  15.43 15.48 30.39 33.63 12 

Source: Produced by the author. 

We defined canopy gaps as holes in the forest canopy extending up to 10 m in 

height above the ground and with at least 5 m² of contiguous area. Although this 

height threshold is higher than the classic Brokaw’s gap definition of 2 m height 

above ground (BROKAW, 1982), previous studies of gap dynamics with airborne 

LiDAR in tropical forests showed that gaps extending up to different heights 

above ground, e.g. 10 to 11 m, were consistent with gaps observed in the field, 

(GOULAMOUSSÈNE et al., 2017; LOBO; DALLING, 2014). Following previous 

studies (LOBO; DALLING, 2014), the minimum gap area was chosen as a small 

value (5 m²) in order to assess the gap filling variability from smaller to bigger gap 

sizes. Moreover, the optimal choice of height and minimum area varies across 

forest types. Hence, the gaps were delineated as follows: (1) all CHM pixels with 

a height below 10 m were classified as gaps; (2) the pixels defined as gaps were 

segmented into polygons; (3) polygons were filtered for a minimum area of 5 m². 

Since the logging activities in 2010 and 2011 occurred earlier than the first LiDAR 

acquisition in 2011, we were unable to exactly extract the areas affected 

exclusively by the selective logging. Thus, to prioritize the observation of logging 

disturbance rather than gaps caused by natural mortality, we only selected gaps 

occurring within a 30 m distance from the logged tree’s locations in UPA-01 (n = 

215).  

To estimate the rate of gap closure over time, we calculated each gap’s relative 

size with respect to its initial size in 2011. We extracted the average gap size 

change considering all gaps, but also by size classes of up to 25, 25–50, 50–100, 

100–500, and larger than 500 m². We defined gap closure as decreases of gap 



88 

 

size over time. This means that the vegetation inside the gap is reaching an 

average height of 10 m. In addition, we estimated the gap fraction (percentage of 

area occupied by gaps) for each year and the percentage of gaps that have fully 

closed. 

To improve our understanding of the mechanisms of gap filling, we also assessed 

the percentage of height gains and losses inside gaps and whether the gaps 

closed by horizontal and/or vertical vegetation regrowth. To separate vertical from 

horizontal growth, we followed the procedures described in Hunter et al. (2015). 

First, we estimated a maximum possible tree height growth rate per year, which 

we defined as the mean plus three standard deviations of the mean height 

change inside gaps. Then, we applied this threshold to classify pixels inside gaps 

as horizontal (height change above maximum growth) or vertical growth (height 

change below maximum growth). Horizontal growth means the ingrowth of trees 

to the sides instead of actual growth in height. For those pixels classified as 

vertical growth, we estimated an average growth rate. To estimate the maximum 

tree height growth and obtain a stable estimate, we only extracted the values 

from pixels near to the center of the gaps, that is, at least 5 m from the edges. 

Therefore, the smaller gaps were not included in this estimate. 

 

5.3.4 Landscape Analysis of Satellite-Based Tree Loss Map 

We applied the VHR satellite data and RF model to detect tree loss events for 

the whole study area. This area is much larger (area = 76.6 km²) than that 

analyzed in section 5.3.2 (1.4 km²). Thus, in order to be able to visualize the 

spatial distribution of tree loss events, we created a map using the isotropic 

kernel-smooth density estimator for aggregating the events into cells of 100 × 100 

m (DIGGLE, 1985). We identified areas of greater tree loss occurrence (hotspots) 

according to the Z-score statistic, the absolute difference between each pixel’s 

tree loss value, and tree loss mean normalized by the standard deviation and a 

5% significance level. To compare our results with an independent source of 

disturbance mapping, we acquired the global forest cover loss 2000–2017 

dataset (available at https://earthenginepartners.appspot.com/science-2013-

global-forest). This product, created by Hansen et al. (2013) using Landsat data 
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(30 m spatial resolution), has been widely used for forest disturbance monitoring 

around the world. 

We assessed and compared the number of tree loss events inside each UPA and 

the undisturbed forest areas. The undisturbed forests were those outside of 

UPAs, excluding water bodies and deforestation up to 2017, according to the 

INPE-PRODES deforestation product (INPE, 2018). We also excluded areas of 

cloud cover of the pre-logging image by manually delineating the clouds using a 

true-color composite. We estimated the canopy turnover time simply as the ratio 

of the average number of ITCs (canopy tree crowns) to the annualized number 

of tree losses per unit of area. 

To explore how much of the variability of satellite tree loss detections is explained 

by the logged trees recorded in the field dataset, we used the same kernel 

approach to estimate the density of logged trees inside the managed areas (UPA-

01, UPA-06, UPA-10, and UPA-11). We then overlaid the two maps and extracted 

the pixel-by-pixel density of tree loss events from satellite and field estimates. 

The relationship between the two variables using linear regression models was 

then assessed. 

 

5.4 Results 

5.4.1 Detecting Tree Loss Events Using LiDAR Data  

We observed LiDAR ΔCHM ranging from −5.6 to −42.2 m, with a mean of −23.5 

m, for the ITCs nearby (within 30 m of distance) the 172 logged trees in Jamari 

National Forest (Figure 5.3A). For the non-logged areas (n = 146), we noted a 

distribution of ΔCHM values ranging from −0.3 to −22 m, with a mean of −5.9 m 

(Figure 5.3B). This means that, between 2015 and 2017, the largest canopy 

changes occurred nearby logged trees’ locations. The distributions in Figures 3a 

and 3b did not show positive values because we only assessed the most negative 

height difference in the area's neighborhood. 
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Figure 5.3 - Tree loss detection using LiDAR ΔCHM in the Jamari National Forest over 
the UPA-06. Relative frequency of the most negative ΔCHM within a 30 
m radius of (A) logged trees and (B) non-logged areas. (C) LiDAR-based 
tree loss map considering ΔCHM ≤ −10 m (UTM, datum WGS-84). 

  

Source: Produced by the author. 

We obtained a ΔCHM threshold of −10 m, where 96.5% of the logged trees (n = 

166/172) were detected and only 16.4% of the non-logged random areas were 

misattributed (n = 24/146). Using this threshold, 888 tree loss events (634 trees 

km-2) were detected between 2015 and 2017 (Figure 5.3C). This corresponded 

to a canopy change of 6.15% in terms of area. While this detection rate was larger 

than the number of logged trees of 172 trees (122 trees km-2), it also included 

trees that were eventually killed during the logging activities and tree losses from 

natural mortality that occurred during the studied period. This rate was likely also 

influenced by the average overestimate of the number of trees of about 30% 

(Supplementary Material 1). Nevertheless, the detected tree loss events occurred 

predominantly nearby logged trees’ location, with an average nearest neighbor 

distance of 25.86 m, while only 10% of the tree loss events were located farther 

than 50 m from the logged trees (see also Figure 5.3C). 
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5.4.2 Detecting Tree Loss Events Using VHR Satellite Data and RF Model 

We trained RF models using VHR satellite data to detect tree loss or non-tree 

loss areas (Figure 5.4). Overall, we observed that an increase in the cut-off of 

tree loss occurrence probability (0.5 to 0.95) was associated with an increase in 

precision (33 to 80%) and a decrease in recall (95 to 23%) (Figure 5.4A). Given 

that a useful model requires high precision, we chose a tree loss probability cut-

off of 0.85, which resulted in a moderate-to-high precision of 63.9% (95% CI: 

62.6%, 65.2%), and a moderate recall of 60.1% (95% CI: 58.7%, 61.4%). Thus, 

taking the LiDAR map as a reference, on average, 64% of the satellite detections 

were correct, and more than half (60%) of the total tree losses were detected. 

Figure 5.4 - Tree loss detection using VHR satellite data and RF model in the Jamari 
National Forest over the UPA-06. (A) Detection accuracy as a function of 
the tree loss probability cut-off. (B) Satellite-based tree loss map 
considering a tree loss probability ≥ 0.85 (UTM, datum WGS-84). (C) 
Nearest neighbor distances between satellite and LiDAR tree loss 
detections, as a function of distance (m). The gray area represents a CSR 
envelope with a 1% significance level (n = 199). 

  

Source: Produced by the author. 

We generated a map using the average of the 30 RF models and a tree loss 

probability cut-off of 0.85 (Figure 5.4B). This map detected 357 tree loss events 

(255 trees km-2), of which 74.5% intersected the tree losses detected in the LiDAR 
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map, and 25.5% did not intersect it (commission errors). Part of these errors 

should represent actual tree losses captured by the VHR satellite data due to its 

extended observation period in comparison to LiDAR data (Table 5.1). We 

detected 50.8% of the tree loss events from the LiDAR map (omission error of 

49.2%). The detections corresponded to 2.55% of canopy area change between 

2014 and 2017. Even though, in this map, we only detected 51% of the total tree 

loss events, the satellite detections were predominantly located nearby LiDAR 

detections, with a mean nearest neighbor distance of 21.2 m (95% CI: 19.8 m, 

22.7 m) (Figure 5.4C). Moreover, the observed distribution of nearest neighbor 

distances between the two maps (solid line in Figure 5.4C) lied beyond the upper-

part of the 1% significance CSR envelope (p < .01), which meant that the satellite 

detections were not simply randomly distributed, but were clustered with the 

LiDAR detections (Figure 5.4C). 

The accuracy of satellite tree loss detections was sensitive to the magnitude of 

changes in the vertical structure of the canopy and size (height) of the trees 

(Figure 5.5). Tree losses with higher ΔCHMs (−45 to −25 m) were more easily 

detected (> 75% frequency) compared with tree losses with lower ΔCHMs (−25 

to −10 m) (45 to 60%) (Figure 5.5A). Tree losses from the tallest trees (≥ 45 m) 

were more successfully detected (> 80%) than for other height classes (Figure 

5.5B). However, the high accuracy for the shortest trees (10–15 m) was probably 

associated with the low average number of samples (n = 1) and does not truly 

mean a higher accuracy for this height class. Finally, tree losses that created 

deep gap openings (0 to 5 m height above ground) were the most successfully 

detected (> 80%) (Figure 5.5C).  
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Figure 5.5 - Relative frequency of correct satellite tree loss detections for intervals of (A) 
LiDAR CHM height differences (ΔCHM), (B) LiDAR CHM pre-logging, and 
(C) LiDAR CHM post-logging. Mean and error bars (95% confidence 
interval) were calculated considering the 30 model runs. Numbers inside 
bars represent the average number of crowns among the 30 model runs. 

  

Source: Produced by the author. 

Variables used in the RF modelling were ranked for importance according to their 

MDA (Figure 5.6). The SD of the red band was ranked highest (23% MDA) among 

all the variables. In general, the SD metrics were ranked higher than the mean 

metrics, and the most important variables were the SD of the three visible 

spectrum bands (Red, Green, Blue), followed by the shadow fraction, mean of 

visible bands, and SD and mean NDVI. Meanwhile, the NIR band and EVI were 

the least important of the significant variables (p < .05). Only the median, max, 

and number of shadow segments variables did not significantly contribute to the 

model (p > .05).  
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Figure 5.6 - Variables’ importance derived from the RF model using VHR satellite data 
to map tree loss events in Jamari National Forest ranked by their MDA. 
SD corresponds to the standard deviation. 

 

Source: Produced by the author. 

 

5.4.3 Tree-Fall Gap Recovery Assessment Using LiDAR Data 

We delineated 724 canopy gaps in the 1.04 km² of forests inside UPA-01 in 

Jamari National Forest using the LiDAR data of 2011. The detected gaps were 

predominantly small: 55.3% from 5 to 25 m², 16.4% from 25 to 50 m², 8.8% from 

50 to 100 m², 18.5% from 100 to 500 m², and 1% from 500 to 1300 m². From 

2011 to 2017, the total gap fraction decreased from 4.61 to 1.96%, whereas 63% 

of the initial gaps completely closed (Figure 5.7). The average rate of gap filling 

was 35.4% yr−1 considering all gap sizes and 30% yr−1 when excluding smaller 

gaps (area < 25 m²). After 1.8 years (2011–2013) and 5.4 years (2011–2017) of 

recovery, the average gap size consisted of 47% and 13% of their original size, 

respectively, excluding smaller gaps (area < 25 m²). Therefore, larger gaps were 

still visible after ~2 years of recovery, but were almost completely closed and 

invisible after ~5 years. 
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Figure 5.7 - Filing of forest canopy gaps over time (2011 to 2017) in Jamari National 
Forest (UPA-01), as a function of the initial gap size class (m²). 

 

Source: Produced by the author. 

We found that 23.3% of pixels inside gap areas experienced further height loss 

over time. These were probably caused by delayed mortality of remaining 

vegetation, natural disturbances, or the decomposition of trees that were killed 

during logging activities. The majority of pixels (76.7%), however, showed height 

gain. We estimated a maximum vertical growth rate of 3.9 m yr−1 from 2011 to 

2013 considering only the gap centers. Using this threshold to separate horizontal 

from vertical tree growth inside gaps, we estimated that horizontal ingrowth 

(height change > 3.9 m) corresponded on average to 21.2% of the height gains. 

The remaining 78.8% of height gains were due to vertical tree growth, with an 

average growth rate of 1.65 m yr−1 (SD = 0.6).  
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5.4.4 Landscape Analysis of Satellite-Based Tree Loss Map 

Using the VHR satellite data and the RF model, we mapped tree losses over a 

larger area (76.6 km²) of the Jamari National Forest than covered by LiDAR 

(Figure 5.8). We found that tree losses were widespread and only a few areas 

exhibited hotspots of losses up to 7.1 trees ha−1 (red in Figure 5.8): two at UPA-

06 and one at UPA-10. Another area outside of the UPAs, located at undisturbed 

forests near UPA-06 and UPA-10, showed an unexpected higher frequency of 

tree loss (5.15 trees ha−1).  

Figure 5.8 - Satellite-based tree loss map during 2014–2017 for a section of 76.6 km² 
inside the Jamari National Forest (UTM, datum WGS-84). The 
background corresponds to the isotropic kernel-smooth density of 
satellite-based tree losses per hectare. Black lines are the boundaries of 
the UPAs. 

 

Source: Produced by the author. 
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We observed a greater frequency of tree loss events (1.63 to 4.39 trees ha−1) 

inside UPAs compared to the frequency of field logged trees (1.28 to 2.21 logged 

trees ha−1) (Table 5.3). In addition, tree loss events occurred more frequently 

(3.08 to 4.39 trees ha−1) in the recently logged areas (UPA-06 and UPA-10) 

compared to the other UPAs, even though they had the lowest frequency of 

logged trees in the field (1.28 to 1.38 logged trees ha−1). This was clearly seen in 

Figure 5.8, where these two UPAs were the only ones with hotspots. 

Furthermore, the undisturbed forests exhibited a similar but slightly greater 

frequency of tree loss (1.8 trees ha−1) as UPA-01 (1.63 trees ha−1), but less than 

the rest of the UPAs. The most likely explanations for the lower frequency of 

detections in UPA-01 were that the forest in this area had a long time to recover 

since logging occurred in 2010/2011, and that the logging process removed the 

tallest trees at the canopy level. Meanwhile, these trees are those that open the 

largest gaps when they fall. Based on the tree losses over undisturbed forests 

during the interval between VHR images (2.72 years), and the average number 

of ITCs (85 trees ha−1), we inferred a canopy turnover time of 129 years. The 

global forest cover loss product from Landsat data (30 m resolution) did not show 

any forest loss over the study area. 

Table 5.3 - Frequency of satellite-based tree loss events and field logged trees per 
hectare for the UPAs and undisturbed forests. 

Region 
Area 

(ha) 

Satellite – 2017 

(Tree Losses ha−1) 

Field – Multiple Years 

(Logged Trees ha−1) 

UPA-01 - Logged in 2010/2011 554 1.63 2.08 

UPA-11 - Logged in 2015 495 2.15 2.21 

UPA-06 - Logged in 2016 426 3.08 1.28 

UPA-10 - Logged in 2017 47 4.39 1.38 

Undisturbed Forest 5052 1.80 - 

Source: Produced by the author. 

When we overlaid the kernel density estimates of satellite tree losses and field 

logged trees of the UPAs, we found that the field logged trees explained part of 

the satellite tree loss variability for areas that were logged less than one year (R² 

= 0.54) and two years (R² = 0.36) before image acquisition. The same was not 

verified for areas logged six years before image acquisition (Figure 5.9). The 

areas that had been logged up to two years before image acquisition also showed 

very significant regression slopes (p < .001).  
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Figure 5.9 - Relationship between satellite-based tree loss and field logged trees per 
hectare in the UPAs labeled by the time difference (years) between the 
logging and last image acquisition (2017). Each point represents a pixel 
of 100 × 100 m (1 ha) from which the estimates are extracted. Lines 
represent linear regression models between the two variables. 
Significance levels for regression slopes (β) are represented by asterisks: 
* ≤ .05, ** ≤ .01, and *** ≤ .001. 

 

Source: Produced by the author. 

 

5.5 Discussion 

Using a unique dataset of multi-date airborne LiDAR and VHR satellite data (pre- 

and post-logging), and a tree-by-tree field dataset of georeferenced logged trees, 

we showed that it is possible to use VHR satellite data to detect canopy tree loss 

associated with logging. Nonetheless, we advise caution regarding the image 

acquisition frequency. It can severely affect how well tree loss can be detected 

and, thus, the suitability of using these data for disturbance monitoring. We 

discuss each of the scientific questions in the paragraphs below. 
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Besides these general insights, our findings showed that logging drove pervasive 

changes in the canopy vertical structure. The estimated height difference 

threshold (−10 m) that we used to define tree loss using LiDAR data should 

represent a general approximation of the minimal logging impacts to the forest 

structure. It could be applied in other studies for rough estimates of canopy tree 

loss. However, we recommend additional tests in other study sites for more 

precise detection. In a study of forest dynamics in Tapajós National Forest, 

located in central-east of the Brazilian Amazon, Leitold et al. (2018) found a mean 

height difference of −11.7 m corresponding to natural tree-fall events from single 

or multiple trees. While this value was similar to our height difference threshold, 

it was only half of the mean height difference that we found. This could indicate 

that even though logging conducted at Jamari Forest is considered “low-impact”, 

these human-disturbances cause more drastic changes to the forest structure 

than small-scale natural disturbances. This corroborates the findings from Johns 

et al. (1996), who observed high impacts over non-targeted trees even when 

planned logging activities have been performed. During the logging of a single 

tree, up to five neighbor trees have been smashed or severely damaged. 

Because part of this ancillary mortality and damage is caused by felling, this 

mortality will be associated with the same gap as the target tree. This may 

increase the detectability of the targeted-tree mortality. 

Our results show that tree losses associated with logging and other disturbances, 

most probably natural, can be automatically mapped using VHR satellite imagery 

and the RF model with an average precision of 64%, while capturing 60% of the 

events detected by the LiDAR dataset. Even though the accuracy is not optimal, 

the detected tree losses show a strong spatial correlation with LiDAR detections 

and logged trees coordinates. Since the model accuracy varied with the model 

probability cutoff, this parameter must be chosen carefully. It is important to note, 

however, that our imagery had distinct sun-sensor geometry properties, with a 

big difference in sun elevation angles between images (~20 degrees), which 

affected the accuracy. The effects of such differences include the obfuscation of 

smaller trees by taller trees and potential attribution as a tree loss event. In a 

scenario where both images have a similar acquisition geometry, we expect an 

improved detection accuracy. Our specific pair of images has a specific set of 
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view and illumination angles that are unlikely to be replicated when another user 

attempts to apply your approach. This points to a future paper idea that could 

investigate the contribution of all these factors to the success of gap detection. 

Nevertheless, this result, based on an automatic detection algorithm, advances 

the visual analysis and manual delineation of tree mortality of Read et al. (2003) 

and Clark et al. (2004a, 2004b), and opens up new venues for monitoring small-

scale disturbances.  

The sensitivity of our VHR satellite tree loss detection methodology increased 

with the presence of more pervasive changes to the canopy, such as bigger gap 

openings and loss of the tallest trees. Because large trees store most of the 

aboveground biomass in tropical forests (BASTIN et al., 2018), these 

disturbances are likely the most impactful to carbon loss. The accurate detection 

of these bigger events enables the identification of disturbance hotspots, where 

multiple small-scale events may be occurring locally and simultaneously. 

Furthermore, our results confirmed the possibility of detecting some of the tree-

falls that do not create gaps following Brokaw’s definition of ≤ 2 m height above 

ground (BROKAW, 1982). 

Seasonality effects on plant phenology can reduce our ability to extract 

biophysical information from remote sensing observations in the Amazon 

(MOURA et al., 2017). Without tree-by-tree phenology field data to support a 

proper analysis, we are unable to determine the exact impact of seasonality on 

our detection, but we expect that it may have a minor to moderate impact. Trees 

that are leafless in one of the two images, or have completely different colors, 

due to flowering, could indeed be erroneously attributed as a tree loss event. 

However, if these effects occur roughly at random across the forest, because of 

the high tree species diversity in tropical forests, they would not prevent the 

detection of hotspots associated with disturbance. This is because these occur 

more clustered in space and time. A way to reduce seasonal effects on detection 

is to fix the multi-year imagery analysis within a fixed period, e.g. dry season.  

The most important VHR satellite metrics for tree loss detection were the SD of 

the reflectance of the visible bands and the shadow fraction and amongst those, 

especially the red band. The fact that these SD metrics were more important than 

the mean metrics suggests that there were marked increases in spectral 
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variability in tree loss areas due to logging. This variability is associated with 

shadows cast by nearby trees, and the signal mixture from non-photosynthetically 

active responses of leaves, branches, and trunks, and possibly exposed soil. For 

the same reason, the shadow fraction turned out to be one of the most important 

variables. Other studies have also shown that shadow was related to tree 

mortality (ANDERSON et al., 2010). However, although shadow metrics were 

important in our study, their performance can vary in other study areas and across 

sensors, depending on the view-illumination geometry during image acquisition. 

In our case, we had large differences in solar elevation and azimuth between the 

two images, which could induce the creation of false new gaps (new shadow 

patches in the later image). This effect can increase the commission error. 

Findings of this study also showed that tree loss detection depends on the time 

difference between disturbance occurrence and image acquisition, ideally of less 

than two years. This is explained by the slower in-filling and longer persistence 

of bigger gaps in the forest, up to five years or more, in comparison to smaller 

gaps (< 25 m²), which close up very rapidly. In either case, the lateral ingrowth 

was an important process for gap filling, especially for the smaller gaps. These 

results are corroborated by the findings of Hunter et al. (2015), which also show 

a strong influence of gap size on closure rates; as well as similar, or slightly 

higher, gap persistence estimates in two Amazonian forests sites: Ducke (8.1 

years) and Tapajós (9.1 years). Our estimates of annual tree height gains inside 

gaps (mean = 1.65 m yr-1, max. = 3.9 m yr-1) were slightly higher than field 

observations of pioneer species commonly found in tropical forest gaps, e.g. 

Cecropia spp., mean = 1.2-1.5 m yr-1, max 2-3 m yr-1) (CLARK; CLARK, 2001). 

Nevertheless, hotspots were evident in our map in areas with time differences, 

between disturbance and image acquisition, up to one year. The implication of 

these findings for small-scale disturbances’ monitoring is that disturbances 

associated with small gaps will most probably be underestimated unless annual 

imagery is being used. 

Our satellite-based map of tree loss disturbances was spatially coherent. It 

showed a greater density of events in selective logging disturbed forests than in 

undisturbed forests. However, the rate of tree losses was up to three times 

greater than the on-the-ground determined logging rate and depended on the 
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time between disturbance and image acquisition. This is probably related to 

additional damage caused by logging onto the adjacent trees and natural 

mortality events. This agrees with findings by Johns et al. (1996). They found that 

at least half of the ancillary mortality caused by logging occurred at the felling 

site, i.e. near the targeted tree. Therefore, these rates may indeed cover the 

damage caused by logging and not only the number of felled and extracted trees. 

In addition, potential explanations for the observed hotspot of tree loss estimates 

outside the UPAs include: (i) the presence of a road that crosses that exact 

location – visible in the pre-logging image – which was likely used for timber 

transportation; (ii) preparation activities, e.g. opening of trails, for exploration of 

this area in the near future; and (iii) enhanced and/or delayed natural mortality 

associated with human-disturbances during the opening of the roads. Our 

estimate of canopy turnover time (129 years) was lower than the estimate of 

Hunter et al. (2015) for canopy trees at two central-east Amazon sites (300–370 

years). This was probably because of our relatively high rate of omission errors 

(~40%). Nevertheless, we expect that the presented mapping approach using 

VHR satellite data can also be useful for the detection of hotspots of natural 

disturbance. 

As a comparison exercise, we acquired and visualized the global forest cover 

loss product from Hansen et al. (2013) obtained from Landsat data (30 m 

resolution), and it did not show any forest loss over the study area, even over the 

managed forests. We believe that this indicates the potential advantages of using 

VHR imagery for small-scale disturbance detection and monitoring. 

A caveat regarding the current mapping approach is the requirement of LiDAR 

data to calibrate the model before extending the VHR satellite estimates into 

larger areas. However, as shown in this study, LiDAR data acquisition in small 

areas can be used for this purpose. For example, in our experiment, the LiDAR 

calibration area covered 1.4 km² (1 by 1.4 km), while the VHR satellite imagery 

covered 76.6 km² of forests. Hence, the satellite imagery area was 55 times 

bigger than the LiDAR area, and has the potential to cover much larger areas, 

such as >5,000 km², with a single-pass of either WorldView-2 or GeoEye-1 

satellites. In addition, further studies can take advantage of the recent 

technological advances associated with unmanned aerial vehicles to cover larger 
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areas at reduced costs, with caution to current constraints, e.g. space for taking 

off, landing, and piloting in dense forest environments. On the other hand, the 

current mapping approach using an RF model was primarily used as a 

benchmark to test the VHR imagery potential; other machine learning or statistical 

approaches, or, perhaps, simpler methods that bypass the calibration step, e.g. 

thresholding, are possible and should be tested for a more general application 

over different areas. In the absence of LiDAR data to be used as a reference for 

model training, other sources of publicly available training data should be 

considered. For instance, tree loss data at an individual level from forest 

inventories obtained by the Brazilian Forest Service and/or forest management 

concessionaires can be useful. 

Although the study used WorldView-2 and GeoEye-1 satellite imagery for the 

experiment, the current method is not, by any means, restricted to these spectral 

data. The SWIR wavelength was not explored in this study due to the lack of this 

band in both satellite sensors. However, it could be useful for detecting potential 

increases in non-photosynthetically active vegetation after the tree loss. The 

mapping approach could be applied to other available VHR satellite data, e.g. 

Ikonos, QuickBird, WorldView-3, WorldView-4, and Planet satellites, or, indeed, 

to satellites to be launched in the near future. Moreover, the combined use of 

multi-sensors should be required to adapt the current method for detecting 

canopy tree loss and recovery at broader scales. In this context, the advent of 

the nanosatellite constellations is an alternative to obtain low-cost data at a very 

high spatial and temporal resolution. Band positioning and bandwidth should be 

considered in instrument selection for analysis. Using satellite constellations such 

as the PlanetScope (3-m resolution), one can obtain nadir-view observations. 

While contributing to reduce view-illumination effects on the mortality detection, 

the evaluation of the other factors associated with data intercalibration and spatial 

resolution requires further studies. 

 

5.6 Conclusions 

Logging activities disturb large areas in Amazon forests every year, affecting flora 

and fauna diversity, impacting forest structure and carbon balance, and 

enhancing fire probability. To address the remote sensing challenges of detecting 
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canopy tree loss associated with logging, we explored the use of multi-date VHR 

satellite imagery (≤ 1 m resolution) and airborne LiDAR to detect these events. 

Logging caused pervasive changes in the canopy vertical structure, with a mean 

of –23.5 m, but applying a simple LiDAR height difference threshold of –10 m was 

sufficient to map almost all the logged trees. We show that canopy tree losses 

associated with logging can be detected using VHR satellite imagery and an 

automated machine-learning method with an average precision of 64%. Events 

associated with large gap openings or tall trees were most successfully detected. 

The standard deviation metrics were the most important for the mapping, 

because they indicate change in spectral variability with the tree losses. The 

detection was also dependent on the time difference between the disturbance 

occurrence and the image acquisition, thus annual imagery acquisition is highly 

recommended. Our study showed the potential of VHR satellite imagery for 

monitoring the logging in tropical forests and detecting hotspots of natural forest 

disturbance with a low cost at the regional scale. Future research can build upon 

our work and improve the accuracy of detection using pairs of images with similar 

sun-sensor geometry properties, and testing additional satellite-based metrics, 

e.g. texture, and alternative modelling approaches. 
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6 MODELLING AMAZON TREE MORTALITY FROM LIDAR-BASED GAP 

DYNAMICS AND ENVIRONMENTAL-CLIMATE DRIVERS 6 

 

Abstract: Large uncertainties in tree mortality estimates hamper our success in 
accurately quantifying climate change effects on the carbon balance. This 
concern is especially important over the Amazon, where tree mortality modelling 
is difficult due to the scarcity of ground data across different climatic domains. 
Airborne LiDAR surpasses the capacity of inventory plots in providing canopy 
gaps measurements over large areas, while potentially allowing estimates of tree 
mortality. Here, we generated a model accounting for the drivers controlling gap 
dynamics, combined with a gap-mortality relationship to quantify tree mortality 
rates across the Amazon. Specifically, we aimed to: (i) establish a relationship 
between LiDAR-derived gaps and mortality; (ii) provide a systematic assessment 
of gap dynamics and tree mortality rates based on their relationships with 
environmental-climate drivers; and (iii) scale-up tree mortality rates for the entire 
Amazon. To detect canopy gaps, we used 5 multi-temporal LiDAR datasets and 
610 single-date flight lines covering an area >2,300 km2. Two gap definitions were 
tested considering fixed and relative height cutoffs. To quantify the relationship 
between gaps and landscape- and regional-scale predictors, we employed 
generalized linear models (GLM). Finally, using the best model and the gap-
mortality relationship, we spatialized tree mortality over the entire Amazon region 
and validated the map using long-term field observations. The results showed 
that LiDAR-based canopy tree mortality measurements became stable for 
landscape-scale analysis at a minimum plot area of 5 ha. Gaps delineated by the 
relative height method represented at least 50% of the tree mortality, being 
superior to the fixed height cutoff. We found that gaps detected the mortality of 
shorter trees at canopy level (< 25 m) with increased accuracy (>80%) than that 
of taller emergent trees (> 25 m; between 17 and 56%). Gap dynamics described 
a clear spatial pattern from the northwest (lower gap fraction) to the southeast 
(higher gap fraction) of the Brazilian Amazon. At the landscape scale, none of the 
drivers tested explained gap occurrence and size distribution. However, at the 
regional scale, higher gap fractions were associated with increased water deficit, 
soil fertility, as well as degraded and flooded forests. The predicted tree mortality 
showed a well-defined spatial pattern, which was consistent with field-based 
observations. Our results showed higher mean mortality rates at the southeast 
(0.89%) and west (0.8%) Amazon regions than at the central-east (0.66%) and 
north (0.65%). These findings highlight the importance of LiDAR observations 
and gap analysis to study tree mortality at regional scales. 

 

Keywords: tree mortality, gap dynamics, LiDAR, tropical forests, Amazon. 

 
                                                      

 

6 DALAGNOL, R. et al. Modelling amazon tree mortality from LiDAR-based gap dynamics and 

environmental-climate drivers. To be submitted. 
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6.1 Introduction 

The need for a consistent and comprehensive quantification of small-scale tree 

mortality and its effect on tropical forests' carbon cycling is pressing. The Amazon 

biome is an essential component of the global climate system, holding about 40% 

of the world’s tropical forests (EVA; HUBER, 2005) and storing 150-200 Pg of 

carbon in biomass and soils (FELDPAUSCH et al., 2012). These forests 

constantly exchange carbon with the atmosphere through the natural processes 

of productivity, mortality and decomposition. However, these processes can be 

disrupted by human-induced deforestation, logging and fires (ARAGÃO et al., 

2014).  

In the Amazon, the majority of mortality and consequent carbon turnover are 

related to small-scale disturbances from treefalls (ESPÍRITO-SANTO et al., 

2014). Tree mortality has been increasing since the past decade due to climate 

variability (BRIENEN et al., 2015). However, huge uncertainties related to tree 

mortality mechanisms constrain our ability to accurately quantify tropical forest 

carbon budget and assess environmental and climate change effects 

(BUGMANN et al., 2019). This was highlighted in a recent study from Bugmann 

et al. (2019), who simulated forest dynamics from stand- to global-level using 15 

ecosystem models of tree mortality. These models showed markedly different 

results under the current climate scenario (10-40% deviations) and, especially, 

under simulated scenarios of climate change (20-170% deviations). Therefore, to 

accurately predict environmental and climate effects over forest functioning, we 

must reduce these uncertainties related to tree mortality. 

Data related to tropical forest mortality are available from long-term field plots 

with repeated measurements, such as those acquired by the Amazon Forest 

Inventory Network (RAINFOR at http://rainfor.org; MALHI et al., 2002). This 

network represents the best available source of tree mortality data for the 

Amazon forests. However, some studies have claimed that tree mortality 

estimated from such data are biased by plot positioning and plot size (typically 1 

ha), affecting the representation of large-scale mortality events at the landscape 

level of observation (FISHER et al., 2008; CHAMBERS et al., 2013). For instance, 

while the growth of tree’s diameter at breast height (DBH) has low variability 

considering typical plot areas of 1 ha (coefficient of variation, CV = 15-20%), tree 
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mortality estimates have twice that variability at the same scale (CV = 40%) 

(WAGNER et al., 2010). Therefore, a minimum plot area of 4 ha should be used 

to attain under 20% CV (WAGNER et al., 2010). Moreover, when studying 

mortality variability with Landsat satellite imagery and intermediate-scale wind 

disturbances at Central Amazon, Chambers et al. (2013) recommended a 

minimum plot size of 10 ha to correct the bias (underestimate) of mortality 

associated with the mortality spatially and temporally clustered nature. Further 

studies are necessary to confirm these results, which can benefit from high-

resolution remote sensing data. 

Remote sensing data and methods can be an alternative to observe large areas 

and complement field-plot information. For instance, multi-temporal airborne 

Light Detection And Ranging (LiDAR) data allow the estimates of canopy tree 

mortality rates based on the differences in Canopy Height Models (CHM) 

between two dates (LEITOLD et al., 2018). In addition, the analysis of gap-phase 

dynamics from LiDAR can be used as a proxy for tree mortality (HUNTER et al., 

2015). However, since not all mortality events generate gaps (ESPÍRITO-SANTO 

et al., 2013), we still lack the understanding of how much mortality variability can 

be measured by gap dynamics. Thus, the sensitivity of the LiDAR-based tree 

mortality estimates to the measurement scale needs to be better understood.  

Gaps consist of holes in the canopy caused by the loss of one or more trees, from 

either natural mortality or fire/logging. Measurements of gaps are challenging 

even using remote sensing. For instance, different gap definitions based on 

height cutoffs in neotropical forests can provide different measurements of gaps 

from single-date airborne LiDAR data (ASNER et al., 2013; LOBO; DALLING, 

2014; HUNTER et al., 2015). Alternatively, the gap delineation can be calibrated 

to a forest site based on the statistical analysis of its height distribution using 

mixed models (GOULAMOUSSÈNE et al., 2017). However, this approach does 

not account for factors such as the presence of large open areas that are not 

necessarily treefall gaps; low height vegetation; and degraded or deforested 

areas. A dynamic definition has also been proposed based on the use of a relative 

height cutoff and a local moving window (GAULTON; MALTHUS, 2010), but this 

approach has not yet been tested over tropical forests. 
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If the gap delineation does not accurately reflect tree mortality, it may cause 

erroneous interpretations of forest functioning, such as forest turnover estimates. 

Validation of LiDAR-gap measurements with ground sampling has been 

attempted in the past and proven very difficult to achieve (GAULTON; MALTHUS, 

2010). This is likely because the high precision of LiDAR-gap delineation 

potentially surpasses that of the ground measurements, which tend to under-

sample gaps (LOBO; DALLING, 2014). Nevertheless, an alternative and novel 

way to assess the gap-mortality relationship consists of using multi-temporal 

LiDAR data to sample the mortality that occurred in the corresponding time 

interval (CHMdate2 minus CHMdate1). We can then quantify how much tree mortality 

is detected by the LiDAR-delineated gaps based on the posterior date (CHMdate2). 

A few studies using single LiDAR data have analyzed the gap dynamics of 

neotropical forests and its drivers at the landscape scale (ASNER et al., 2013; 

HUNTER et al., 2015; GOULAMOUSSÈNE et al., 2017). Such studies found a 

significant relationship between topography and gap occurrence likely linked to 

wind-exposure, light and water availability, and soil fertility. Specifically, forests 

with fast dynamics showed gaps more frequently at valleys (low values of Height 

Above the Nearest Drainage - HAND) rather than plateaus (high HAND values), 

while large gaps occurred more frequently at hilly areas (high slope) (TOLEDO 

et al., 2012; HUNTER et al., 2015; GOULAMOUSSÈNE et al., 2017). On the 

other hand, a study based on plot data showed that there was no observed 

relationship between mortality and topography over forests with slower dynamics 

(CHAO et al., 2009). 

The relationship of gap variability with environmental and climate variables is still 

largely unknown at regional scales up to today because of the lack of datasets 

encompassing different bioclimatic regions. For instance, the aforementioned 

studies at the landscape scale have sampled a limited area within a specific 

environment and climate condition. Thus, the regional controls often associated 

with tree mortality in the Amazon forests have not yet been assessed. At local 

scales, prior studies were mostly based on long-term field data or medium-scale 

remote sensing data. Their findings showed that tree mortality was enhanced by 

water stress (PHILLIPS et al., 2009); increased soil fertility associated to faster 

forest dynamics (QUESADA et al., 2010); wind disturbance (RIFAI et al., 2016; 
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NEGRÓN-JUÁREZ et al., 2018); forest degradation and fragmentation 

(LAURANCE et al., 1998; BROADBENT et al., 2008); and by flooded or 

seasonally flooded forests (FERRY et al., 2010; GOULAMOUSSÈNE et al., 

2017). Although there are some known patterns of large scale forest dynamics 

across the Amazon such as the faster dynamics at west than east 

(FELDPAUSCH et al., 2011; QUESADA et al., 2012), the small-scale gap 

dynamics extracted from LiDAR data can eventually improve the representation 

of the Amazonian ecosystem in dynamic vegetation models (FROLKING et al., 

2009). 

In this study, the objectives were to improve our understanding of canopy gap-

mortality relationships and provide a systematic assessment of canopy gaps and 

tree mortality considering their relationship with environmental and climate 

drivers in the Amazon forests. Specifically, we aimed to answer the following 

research questions: (Q1) What is the minimum plot area necessary to obtain 

stable landscape-scale estimates of canopy tree mortality? (Q2) How do canopy 

gaps relate to mortality rates of tropical forests and which gap definition best 

represents this relationship? (Q3) How does canopy gap dynamics derived from 

airborne LiDAR data vary across the Brazilian Amazon forests? (Q4) What 

landscape- and/or regional-scale factors drive gap variability in the Brazilian 

Amazon? (Q5) Does tree mortality modeled from gaps and environmental-climate 

proxies reproduce spatial patterns derived from plot-based estimates across the 

Amazon? 

 

6.2 Data and Methods 

The study consisted of three parts (Figure 6.1). In the first part, to answer Q1 and 

Q2, we assessed the relationship between canopy tree mortality and gaps using 

multi-temporal airborne LiDAR data acquired over five test sites with distinct 

forest structure and biomass. In the second part (Q3 and Q4), we evaluated the 

spatial variability of canopy gaps and their drivers across the Brazilian Amazon, 

using single-date airborne LiDAR data acquired over 610 non-overlapping LiDAR 

flight lines (single dates), representing a total sampled area of ~2,300 km² of 

Brazilian Amazon forests. The third and last part (Q5) combined outputs from the 
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previous analyses to estimate Amazon-wide tree mortality, validating the results 

with long-term field inventory data. 

Figure 6.1 - Overview of the main methodological steps used to answer the research 
questions (Q1 to Q5). CHMdate1 and CHMdate2 correspond to canopy height 
models derived from LiDAR data acquired on two different dates with a 
time interval of ~5 years. 

 

Source: Produced by the author. 

 

6.2.1 Study Area 

The study area is the Amazon biome (Figure 6.2), here defined as areas 

comprehending the Amazon sensu stricto (EVA; HUBER, 2005). For the purpose 

of analysis, we followed the work of Feldpausch et al. (2011) and divided the 

Amazon into four regions according to geography and substrate origin: (1) the 
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western Amazon encompassing most of Colombia, Ecuador, Peru and Bolivia, 

with more fertile soils originated from recently weathered Andean deposits; (2) 

southeast Amazon encompassing Brazil and part of Bolivia; (3) Central-east 

Amazon covering Brazil, mostly comprising old sedimentary soils; and (4) 

northern Amazon, encompassing Guyana, French Guiana and Venezuela.  

Figure 6.2 – The Amazon biome in South America with colored regions indicating faster 
(west and southeast) and slower dynamics (central-east and north). The 
regions were adapted from Feldpausch et al. (2011). Small black lines 
represent single-date airborne LiDAR data acquisitions from the EBA 
project (n = 610 flight lines). Red triangles illustrate multi-temporal LiDAR 
data acquisition over five sites (BON, DUC, FN1, TAL and TAP). Circles 
indicate the location of field inventory plots.  

 

Source: Produced by the author. 

The natural vegetation of the Amazon broadly corresponds to forested areas 

(broadleaf moist forests and tropical seasonal forests) and other vegetation 

physiognomies, e.g. campinarana, savannah, bamboo-dominated forests, etc.; 

amongst which there are terra firme and flooded forests (IBGE, 2006). The 

Amazon shows a wide range of average monthly rainfall (100 to 300 mm) and 
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dry season length (DSL) (0 to 8 months). The predominant soil types are 

Ferralsols, Acrisols, Plinthosols, and Gleysols (QUESADA et al., 2011). 

Part of the study was conducted over the Brazilian Amazon, an area which covers 

most (~62%) of the Amazon forest and the different types of climate of the region. 

Another part of the study was focused on five sites selected for the multi-temporal 

assessment of tree mortality and canopy gap-mortality relationship (red triangles 

in Figure 6.2): Adolpho Ducke forest (DUC), Tapajós National Forest (TAP), Feliz 

Natal (FN1), Bonal (BON) and Talismã (TAL) sites. They were selected to sample 

distinct forest types, structure and biomass stocks. Repeated airborne LiDAR 

data was acquired over these sites with relatively long time intervals (5 years). 

This time interval is sufficient to measure the long-term aggregated estimate of 

mortality and to match gaps from single-date LiDAR with mortality between the 

two LiDAR dates. 

The selected sites present, in average, a gradient of aboveground biomass (AGB) 

stocks that increase from TAL (185 Mg.ha-1), FN1 (235 Mg.ha-1), BON (251 

Mg.ha-1), and DUC (327 Mg.ha-1) to TAP (364 Mg.ha-1), as illustrated in the AGB 

map reported by Avitabile et al. (2016). The DUC and TAP consist of dense rain 

forests, while the FN1 site is composed of seasonal forests. TAL and BON have 

open rain forests. Local occurrences of bamboo are also observed in the upper 

canopies of TAL. DUC and FN1 are mostly undisturbed forests. The TAP site 

underwent fire and/or selective logging in the past, while TAL and BON were 

affected by a known fire occurrence in 2010 (SATO, 2017). 

 

6.2.2 Data Acquisition and Pre-Processing 

6.2.2.1 Airborne LiDAR data 

Multi-date airborne LiDAR data were acquired by an airplane over the five sites 

(Figure 6.2) with time intervals close to 5 years between the years 2012 and 2018 

(datasets from the Sustainable Landscapes Brazil freely available at 

https://www.paisagenslidar.cnptia.embrapa.br/webgis/). Multiple LiDAR returns 

were recorded and a minimum point density of 4 points.m−2 was obtained 

(detailed data acquisition information in Table C.1). Also, a total of 610 single-

date airborne discrete-return LiDAR data strips (approx. 300 m wide by 12.5 km 
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long; ~3.75 km² or 375 ha each) were acquired during 2016 using the Trimble 

HARRIER 68i system at an airplane with average flight height of 600 m above 

ground and a scan angle of 45° (dataset from the EBA project - Improving 

Biomass Estimation Methods for the Amazon; TEJADA et al., 2019). The data 

showed a minimum point density of 4 points.m−2. Horizontal and vertical accuracy 

ranged from 0.035 m to 0.185 m and from 0.07 m to 0.33 m, respectively.  

LiDAR point clouds (x, y, z coordinates) were processed into canopy height 

models (CHM) of 1-m spatial resolution. First, we filtered outlier points from the 

cloud using the lasnoise function from LAStools 3.1.1 (ISENBURG, 2018), 

considering the default parameters of 4 m step and 5 isolated points. This method 

looks for a minimum number of isolated points on the cloud data over each 

defined step cell area. Then, we classified the points into ground or vegetation 

classes using the lasground, lasheight, and lasclassify functions from LAStools. 

Afterward, we used the ground points to generate a DTM with 1-m spatial 

resolution using the TINSurfaceCreate function from FUSION/LDV 3.6 

(MCGAUGHEY, 2016). For the multi-temporal datasets, to ensure that potential 

acquisition effects between datasets did not interfere with the analysis, we 

merged their ground points and generated a combined DTM (DALAGNOL et al., 

2019). The cloud points’ height was then normalized to height above ground by 

subtracting the DTM height from their values. Finally, we extracted the CHMs 

considering the highest height of vegetation on each 1x1 m pixel using the 

CanopyModel function from FUSION/LDV.  

 

6.2.2.2 Environmental and climate data 

For the analysis of the environmental and climatic drivers of gap dynamics, we 

considered a spatialized set of variables for the whole Amazon biome. The details 

of the data acquisition and pre-processing are described below: 

• HAND is a digital surface model normalized in relation to the nearest river 

level (NOBRE et al., 2011). It shows a strong relationship with plant species 

distribution and may affect the forest gap dynamics (GOULAMOUSSÈNE et al., 

2017). The HAND product (30 x 30 m) (DONCHYTS et al., 2016) was based on 

the Shuttle Radar Topography Mission (SRTM) with 1 arc-sec, around 30 x 30 m, 
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spatial resolution (NASA, 2013). The product was developed considering a 

sparse river drainage delineation level (parameter = 1000). 

• Terrain slope (degrees; 30 x 30 m) was extracted from the SRTM data. 

• The Soil Cation Concentration (SCC) product (11 x 11 km) was derived from 

the integration of direct soil samples and species-environmental modelling. The 

product is a proxy for soil nutrients and fertility, representing the sum of 

exchangeable cations of Potassium (K), Magnesium (Mg) and Calcium (Ca) 

(ZUQUIM et al., 2019). 

• The floodplain cover map (30 x 30 m) was derived from vegetation analyses 

using the Japanese Earth Resource Satellite 1 (JERS-1) radar data acquired 

during 1995 and 1996 (HESS et al., 2015). The product presents different flooded 

or seasonally flooded vegetation classes. For simplicity, they were reclassified 

into either flooded (1) or non-flooded (0) pixels. All classes of the mask were re-

mapped as flooded, except for the ones with the values 0, 1, 44, 66, 88, 200, 255, 

which represent non-flooded classes. 

• The non-forest distance map was created by quantifying the distance (in 

km) from each pixel to any nearest non-forest area. Because of the inexistence 

of an Amazon-wide forest degradation product, this approach was used as a 

proxy for forest degradation, as forests nearby deforestation, human settlements 

and rivers should be more prone to human-disturbance. Non-forest areas were 

mapped using the 30-m global forest change dataset v1.4 (2000-2016) (HANSEN 

et al., 2013), selecting pixels with tree cover below 95%, forest gains (regrowth), 

forest losses (deforestation between 2000 and 2016), and lakes/rivers using the 

provided mask. 

• Rainfall (mm), climate water deficit (mm) and wind speed (m.s-1) were 

acquired from the high-resolution TerraClimate dataset (5 x 5 km) (1958-2015) 

(ABATZOGLOU et al., 2018). While rainfall and wind speed measurements were 

derived from data-model reanalysis procedures, the climate water deficit was 

retrieved using a one-dimensional soil/water balance model. The raw data 

corresponded to monthly values, which, for simplicity, were aggregated into 

monthly mean and standard deviation (SD) metrics. 
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• DSL (0.25 x 0.25 deg.) was estimated for each pixel as the average number 

of months with rainfall inferior to 100 mm of evapotranspiration (SOMBROEK, 

1966). The 100 mm of monthly evapotranspiration demand by evergreen forest 

is an average for the Amazon basin widely used in the literature (ARAGÃO et al., 

2007). 

All variables were resampled to 5 x 5 km to match the climate datasets. To 

resample, average values were calculated for datasets with spatial resolution 

finer than 5 km, and the nearest neighbor method was used for datasets with 

spatial resolution coarser than 5 km. 

 

6.2.2.3 Long-term field inventory data 

We used long-term field inventory data from plots located across the Amazon 

biome (Figure 6.2) from the RAINFOR network published by Brienen et al. (2015). 

Tree mortality rates (m; %.yr-1) were calculated as the coefficient of exponential 

mortality (Eq. 6.1, SWAINE et al., 1987) for each census interval and each plot; 

and then averaged by plot, weighted by the censuses interval length in years 

(JOHNSON et al., 2016).  

m = [ln(N0) − ln(Nt)] / t (6.1)

where N0 and Nt are the initial and final number of trees, and t is the censuses 

interval. 

 

6.2.3 Data Analysis 

6.2.3.1 Sensitivity of tree mortality rates to the sampled area (Q1) 

We employed a multi-temporal LiDAR analysis to explore the variability of canopy 

tree mortality and determine the minimum spatial scale that allows stable 

estimates of tree mortality at the landscape scale. For this purpose, we assessed 

the coefficient of variation (CV) of tree mortality amongst simulated sub-plots of 

increasing size. First, we detected events of canopy tree mortality using multi-

date LiDAR data on the five study sites: DUC, TAP, FN1, BON, and TAL. The 

mortality detection was based on a delta height cutoff of 10 m between the two 

acquisitions (~5 years apart). This cutoff was chosen based on two previous 
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studies that showed that a canopy height change of 10 m was strongly correlated 

with individual tree loss due to mortality and/or selective logging in tropical forests 

(LEITOLD et al. 2018; DALAGNOL et al., 2019). We sub-divided the sites into 

plot areas ranging from 0.25 to 25 ha; calculated the mortality cover for each plot 

area; and assessed the tree mortality CV. We hypothesized that the mortality CV 

would decrease with the increase in the plot area, and stabilize at some point. 

This point would correspond to the minimum plot area allowing reliable evaluation 

of canopy tree mortality at the landscape scale. 

 

6.2.3.2 Gap-mortality relationship and gap definition (Q2) 

After defining the minimum plot area necessary to obtain stable estimates of tree 

mortality at the landscape scale, we determined which gap definition would be 

more suitable to support the optimal gap-mortality relationship. We compared the 

detection of mortality between LiDAR data, acquired in two different dates 

(CHMdate2 and CHMdate1) within a 5-year time interval, with the delineation of gaps 

based only on the posterior date (CHMdate2). We compared two types of gap 

definition methods: one more traditional based on a fixed height cutoff and 

another alternative based on a relative height cutoff. For both methods, we tested 

a variety of parameters in the search of an optimal calibration amongst the sites. 

We followed the assumption that gaps are related to mortality events, allowing us 

to observe all canopy mortality within a time interval. However, as delineated 

gaps may also represent mortality that occurred previously to the first LiDAR 

acquisition, we expect to obtain an underestimate of the true delineation. 

The first gap definition was based on the classical concept of Brokaw et al. 

(1982), who has defined a gap as a ‘hole’ in the forest canopy extending through 

all levels down to an average height (H) of 2 m above the ground. Since studies 

in the literature have been using different H values to describe canopy gaps, in 

order to assess the association between gaps and mortality, we tested H cutoff 

parameters (H = 2, 5, 10 m) covering values commonly used in studies of 

Neotropical forests (ASNER et al., 2013; ESPÍRITO-SANTO et al., 2014; LOBO; 

DALLING, 2014; HUNTER et al., 2015). Therefore, all pixels with a height below 

the H cutoff were considered as a gap. The gap delineation was conducted using 

the ForestGapR R-package (SILVA et al., 2019). 
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The second gap definition was based on the canopy relative height (RH) in 

comparison to the maximum height within a neighborhood of size W (GAULTON; 

MALTHUS, 2010). The assumption behind this method was that a mortality event 

does not necessarily create a gap that extends down to the ground. It can create 

a hole in the canopy with a relative height below neighboring trees. Therefore, we 

tested this method by varying window size parameter (W = 5, 9, 15, 25, 35, 45) 

and relative heights (RH = 0.33, 0.50 and 0.66). The W parameters range was 

defined to reach up to very large tree crowns (45 m). The range of RH parameters 

was empirically chosen to represent heights below a threshold that would consist 

in a gap, i.e. less than 1/3, 1/2 or 2/3 of neighboring trees height. To better 

delineate gap centers, where this method may underestimate gaps due to 

potential large distances to neighboring trees, we also included a fixed H cutoff 

of 2 m.  

For both methods, we filtered gaps for a minimum area of 10 m², which 

corresponded to an approximation of the mean canopy area of trees greater than 

5-cm DBH in tropical forests (HUNTER et al., 2015). We filtered the gaps for a 

maximum area of 1 ha (1 ha = 10,000 m²) in order to automatically exclude open 

areas that likely did not correspond to the small-scale disturbance from treefall 

gaps. 

The performance of both methods was assessed by intersecting the gap 

delineation with the mortality detection and calculating metrics of precision (p), 

recall (r) and F1-score (F) (Eq. 6.2 to 6.4):  

Precision (p) = true positives / number of gap polygons (6.2) 

Recall (r) = true positives / number of mortality polygons 

F1-score (F) = (2 * p * r) / (p + r) 

(6.3) 

(6.4) 

True positives were defined as individual gap delineations that successfully 

intersected mortality detections, while covering at least 25% of the detected area 

of mortality. This criterion was established to ensure confidence in results 

because simply considering an intersection as success would have 

overestimated the overall performance. The performance between the five study 

sites was averaged (“sites-average”) and assessed to verify the transferability of 

the method and calibrated parameters over them. The methods were ranked 
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considering their Fsites-average. The gap detection was further analyzed as a 

function of tree height classes. 

Finally, we assessed the relationship between gap and mortality at the landscape 

scale by extracting both variables at the scale defined in section 6.2.3.1, and 

fitting a statistical model to relate the two variables. To assess model results, we 

calculated the coefficient of determination (R²), absolute Root Mean Square Error 

(RMSE) and relative RMSE (%). A 95% prediction interval was also calculated to 

describe the variability of tree mortality estimates from the gap fraction. 

 

6.2.3.3 Spatial variability of gaps across the Brazilian Amazon (Q3) 

We delineated the gaps on the single-date airborne LiDAR datasets (n = 610 flight 

lines, each covering 12,500 x 300 m) using the optimal method and parameters 

previously assessed in section 6.2.3.2. To characterize the canopy gap 

variability, we calculated the gap fraction (i.e., the area occupied by gaps in 

relation to the total area of the strip), mean gap size, mean gap shape complexity 

index (GSCI). The GSCI is calculated using Eq 6.5:  

���� = � ! !"#$%"&"#
2 ∗ (� !  #" ∗  )*  (6.5) 

We also assessed the gap size-frequency distribution (SFD) by fitting a discrete 

power-law probability (Zeta distribution) to each dataset and obtaining the λ-scale 

parameter that characterized the distribution (ESPÍRITO-SANTO et al., 2014). 

These procedures mentioned above were conducted using the ForestGapR R-

package (SILVA et al., 2019). 

 

6.2.3.4 Assessment of landscape- and regional-scale drivers of canopy 

gaps (Q4) 

To quantify the relationship between gaps and landscape- and regional-scale 

predictors, we employed generalized linear models (GLM) using the R-packages 

stats (R CORE TEAM, 2018) and lme4 (BATES et al., 2015). We defined here 

the landscape-scale drivers as those related to topography, showing great 

heterogeneity intra-site such as the Slope and HAND. The regional-scale drivers 
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were assumed here as those having greater variability across sites (inter-site), 

such as the rainfall (Mean_pr and SD_pr), wind speed (Mean_vs and SD_vs), 

climate water deficit (Mean_def and SD_def), DSL, soil cation concentration 

(SCC), floodplains cover, and Non-forest distance. 

For landscape-scale drivers, we tested whether the environmental variables 

could predict individual gap occurrence (presence or absence) and gap size 

distribution. For this purpose, we extracted environmental variables from gap 

presence and absence. For the gap absence, we randomly distributed samples 

at non-gap covered areas (same number of gap presence). We fitted a logistic 

regression to predict the probability of gap occurrence given HAND and slope as 

predictors (Eq. 6.6):  

+,�$&-� !.#,/	01 =  +2 3 !
1 − !4 = 56 + 507	0 +  8	07	0 +  9	0 (6.6) 

where � !.#,/ij is the gap probability for pixel i, β0 is the intercept term, βj is the 

slope of predictor j, uij is the random factor of site, εij is the residual error assumed 

to follow a normal distribution. 

We also fitted a linear model to assess whether HAND and slope could predict 

gap size distribution (Eq. 6.7):  

� !�$:"	0 =  56 + 507	0 +  8	07	0 + 9	0 (6.7) 

where GapSizeij is the gap size for pixel i, and the remaining terms are the same 

as Eq. 6.6. 

We have tested fitting the models considering the site (1 to 610) as a random 

factor, and testing predictors either individually or combined. 

For regional-scale drivers, we employed a Gaussian GLM (similar to Eq. 6.7) to 

quantify how much of the variability of gap fraction (dependent variable) was 

explained by the environmental and climate variables (independent variables). 

We evaluated only the gap fraction because, during our analyses, we learned 

that the gap size-frequency distribution parameter (λ) showed a very narrow 

range of values, which were dependent on the gap definition. On the other hand, 

the gap fraction showed clear spatial patterns and a much more intuitive 

interpretation. Before fitting the model, to better understand the relationship of 

predictors and gap fraction, and avoid multicollinearity, we have conducted an 
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exploratory analysis by a correlation matrix. We selected at least one proxy for 

each type of variable having stronger correlation to gap fraction, and less 

correlation (r < 0.7) amongst other variables. We conducted variable log-

transformation to those which distribution differed from normal. 

Models were compared by their explanatory power considering the R² and 

Bayesian Information Criterion (BIC) (SCHWARZ et al., 1978). We investigated 

the influence of predictors onto the model’s response by analyzing the regression 

coefficients (B), standardized beta coefficients (β), and predictors individual 

explanatory power considering their ΔR² (change in R² by adding the variable last 

on the model). Predictors’ multicollinearity within the model was assessed by the 

variance-inflation factors (VIC), which indicates the degree of 

interaction/correlation between independent variables (high values = high 

intercorrelation). 

 

6.2.3.5 Amazon-wide tree mortality prediction and validation (Q5) 

To spatialize tree mortality over the Amazon biome, we first applied the model 

built with environmental and climate drivers that best explained gap variability to 

predict Amazon-wide gap fraction. Then, we applied the gap-mortality 

relationship to translate gap fraction into tree mortality. To validate the map, we 

compared the tree mortality predictions with estimates from long-term field 

inventory data, fitting a linear model and calculating the R², absolute and relative 

RMSE. The resultant spatial patterns of tree mortality detected by LiDAR were 

compared with large-scale forest dynamics reported in the literature. The values 

of mean modelled mortality per Amazonian region (Figure 6.2) were extracted 

and compared using one-way ANOVA and post-hoc Tukey-Kramer tests. 

 

6.3 Results 

6.3.1 Multi-Temporal Analysis of Gap-Mortality Relationship 

6.3.1.1 Tree mortality estimates and plot area sensitivity 

Mortality variability (CV%) decreased with plot area and converged close to the 

5-ha area, showing mean CV values between 40% and 50% for all sites (Figures 
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6.3A, C, E, G and I). For the 5-ha plot area, the change rate stabilized to values 

close to zero (Figures 6.3B, D, F, H and J). Thus, lower mortality variability was 

observed for plot areas larger than 5 ha. From the selected sites, TAP showed 

the lowest mortality CV, reaching stable values close to 20% with increasing plot 

areas from 5 ha to 25 ha (Figure 6.3C). For the same range of plot area, the 

highest mortality CV was observed at the FN1 site (Figure 6.3E) with values 

around 50%.  

Figure 6.3 - LiDAR-based canopy tree mortality variability with plot area for five 
Amazonian sites with multi-temporal data. The mortality coefficient of 
variation (CV) and the CV change rate are shown for DUC (A) and (B); 
TAP (C) and (D); FN1 (E) and (F); BON (G) and (H); and TAL (I) and (J). 

 

Source: Produced by the author. 
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Based on the results of Figure 6.3 and using a delta height cutoff of 10 m between 

the pairs of repeated LiDAR data, we estimated tree mortality rates at the 5-ha 

plot area. The sites with least to most average annual mortality rates at 5-ha 

(Mean % yr-1 ± SD, n = number of samples) were: DUC (0.38 ± 0.19, n = 234), 

FN1 (0.56 ± 0.33, n = 199), BON (1.09 ± 0.50, n = 95), TAP (1.23 ± 0.33, n = 183) 

and TAL (1.66 ± 0.54, n = 69). 

 

6.3.1.2 Gap-mortality relationship and gap definition 

The representation of tree mortality by canopy gaps showed variable 

performance (Fsites-average from 0.01 to 0.51) amongst different combinations of 

methods and parameters (Table 6.1). The best result amongst all sites (Fsites-

average = 0.51) was obtained by the relative height method using a window size of 

5 meters and a relative height cutoff of 50th percentile (W = 5, RH = 50). 

Considering individual-site performance, this method achieved the best results 

for all sites, except for BON and TAL. Over these two sites, the relative height 

method, considering a larger window of 15 meters and a relative height cutoff of 

33rd percentile, yielded a slightly better result (increment of 0.01 in F). The best 

result amongst sites for the fixed-height method was based on a 10-m height 

cutoff, achieving a lower performance (Sites-average: F = 0.48, p = 0.47, r = 0.55) 

when compared to the best result based on relative height. 

The correspondence between detected mortality and delineated gaps for the best 

method (W = 5, RH = 50) is illustrated in Figure 6.4. In this figure, the mortality 

between 2012 and 2017 is shown in red (Figure 6.4B) and the delineated gaps 

based on the 2017 data are represented in yellow (Figure 6.4C) for the TAP site. 

The method was able to map 68% of the mortality areas (rTAP = 0.68), but with 

58% of commission errors (pTAP = 0.42) (Table 6.1). For instance, the top-right 

area showed some examples of commission errors, i.e. delineated gaps that do 

not correspond to mortality, while the bottom-middle area showed gaps that 

successfully matched mortality. 
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Table 6.1 - Performance of different gap definitions to represent tree mortality for each site and an average between sites (sites-average). Methods 
and parameters are ranked by the Sites-Average F metric. Method’s parameters include: W = window size (meters); RH = percentile 
of relative height cutoff; A = maximum gap area (ha); and H = fixed height cutoff. Performance metrics include: p = precision; r = 
recall; and F = F1-score. Values of p, r, and F range from 0 to 1, with larger values indicating better performance.  

Method and parameters 
DUC TAP FN1 BON TAL Sites-Average 

p r F p r F p r F p r F p r F p r F 

Variable: W=5, RH=50 0.48 0.51 0.49 0.42 0.68 0.52 0.49 0.71 0.58 0.35 0.69 0.46 0.37 0.74 0.5 0.42 0.66 0.51 
Variable: W=15, RH =33 0.56 0.37 0.45 0.45 0.58 0.51 0.59 0.54 0.57 0.38 0.61 0.47 0.41 0.66 0.51 0.48 0.55 0.5 
Variable: W=25, RH =33 0.51 0.43 0.47 0.42 0.65 0.51 0.53 0.57 0.55 0.35 0.67 0.46 0.39 0.66 0.49 0.44 0.6 0.5 
Variable: W=35, RH =33 0.48 0.47 0.47 0.4 0.68 0.51 0.5 0.58 0.53 0.33 0.69 0.44 0.37 0.63 0.47 0.42 0.61 0.49 
Fixed: H=10 0.59 0.34 0.43 0.53 0.44 0.48 0.43 0.75 0.54 0.37 0.62 0.46 0.41 0.62 0.5 0.47 0.55 0.48 
Variable: W=45, RH =33 0.45 0.49 0.47 0.39 0.69 0.5 0.48 0.56 0.52 0.32 0.7 0.44 0.36 0.6 0.45 0.4 0.61 0.48 
Variable: W=9, RH =33 0.65 0.29 0.4 0.5 0.48 0.49 0.66 0.46 0.54 0.42 0.52 0.46 0.41 0.59 0.48 0.53 0.47 0.47 
Variable: W=9, RH =50 0.34 0.73 0.46 0.33 0.84 0.47 0.36 0.87 0.51 0.26 0.83 0.4 0.3 0.72 0.43 0.32 0.8 0.45 
Variable: W=15, RH =50 0.27 0.81 0.41 0.29 0.81 0.43 0.3 0.89 0.44 0.22 0.81 0.35 0.26 0.55 0.35 0.27 0.78 0.4 
Variable: W=5, RH =66 0.22 0.88 0.35 0.26 0.92 0.41 0.23 0.96 0.37 0.2 0.84 0.32 0.22 0.57 0.32 0.23 0.83 0.35 
Variable: W=25, RH =50 0.23 0.85 0.36 0.26 0.65 0.37 0.24 0.85 0.38 0.18 0.68 0.29 0.23 0.43 0.3 0.23 0.69 0.34 
Variable: W=5, RH =33 0.79 0.12 0.21 0.6 0.24 0.35 0.75 0.23 0.35 0.46 0.29 0.35 0.42 0.31 0.36 0.6 0.24 0.32 
Variable: W=35, RH =50 0.2 0.87 0.33 0.25 0.55 0.34 0.21 0.81 0.34 0.17 0.54 0.26 0.21 0.34 0.26 0.21 0.62 0.3 
Variable: W=45, RH =50 0.18 0.88 0.31 0.24 0.48 0.32 0.19 0.76 0.31 0.16 0.4 0.22 0.2 0.27 0.23 0.19 0.56 0.28 
Variable: W=9, RH =66 0.13 0.97 0.23 0.2 0.66 0.31 0.13 0.96 0.23 0.12 0.57 0.2 0.14 0.33 0.2 0.15 0.7 0.23 
Fixed: H=5 0.89 0.03 0.06 0.68 0.11 0.19 0.74 0.18 0.29 0.46 0.21 0.28 0.4 0.22 0.29 0.63 0.15 0.22 
Variable: W=15, RH =66 0.09 0.98 0.17 0.16 0.35 0.22 0.08 0.86 0.15 0.1 0.14 0.12 0.12 0.13 0.12 0.11 0.49 0.15 
Variable: W=25, RH =66 0.06 0.89 0.12 0.15 0.16 0.15 0.06 0.55 0.11 0.1 0.04 0.05 0.09 0.05 0.06 0.09 0.34 0.1 
Variable: W=35, RH =66 0.05 0.7 0.1 0.15 0.09 0.11 0.06 0.27 0.09 0.11 0.02 0.04 0.09 0.03 0.04 0.09 0.22 0.08 
Variable: W=45, RH =66 0.05 0.51 0.09 0.14 0.05 0.07 0.05 0.16 0.08 0.12 0.02 0.03 0.09 0.02 0.03 0.09 0.15 0.06 
Fixed: H=2 0.98 0.01 0.01 0.69 0.01 0.02 0.67 0.01 0.01 0.56 0.01 0.02 0.35 0.01 0.02 0.65 0.01 0.01 

Source: Produced by the author. 
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Figure 6.4 - Example of detected canopy tree mortality (red) and gap delineation (yellow) 
based on relative height (W=5, RH=50) at the TAP site. The background 
is a Canopy Height Model (CHM) for 2012 in (A), and 2017 in (B) and (C). 

 
Source: Produced by the author. 

In a more detailed inspection, we observed that gaps detected the mortality of 

shorter trees (< 25 m) with greater accuracy than that of taller trees (> 25 m) 

(Figure 6.5). The mortality of trees having a height between 10 and 20 m was 

detected with very high confidence (>90% mean accuracy), showing significantly 

higher accuracy than trees taller than 20 m (p < 0.05). The mortality for 20-to-25 

m tree height was also detected with high accuracy (close to 80%). After this 

height range, the detection accuracy decreased to values varying between 17 

and 56%. The only exception here was the TAP site, which showed high mortality 

detection accuracy (76%) for the 25-30 m height range. Nevertheless, most 

events of canopy tree mortality, correctly detected across the sites, were derived 

from the 10-to-25 m height range (85%; 16,394 out of 19,324 events). 
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Figure 6.5 - Percentage of correctly detected mortality by delineated gaps (Relative 
height method, W=5, RH=50) as a function of tree height classes for the 
sites: (A) DUC, (B) TAP, (C) FN1, (D) BON, (E) TAL, and (F) sites-
average. The numbers close to the bars represent the absolute number 
of detections for that tree height class. The 95% CI (based on t-value 
score) is also indicated for the sites-average.  

 

Source: Produced by the author. 

The relationship between gap fraction and annual mortality at the 5 ha scale was 

positive with a logarithmic shape (Figure 6.6). Therefore, we fitted a linear model 

on the log-transformed variables and observed a significant and strong 

relationship (R² = 0.72, RMSE = 37.6%). The uncertainty on estimating mortality 

from gap fraction increased multiplicatively from small to higher gap fraction 

values, highlighted by the increasing prediction interval band. The residuals of 

the model were randomly distributed. The sites with the largest mean gap fraction 

(Mean Gap Fraction % ± SD, n = number of samples) estimates at 5-ha scale, in 

decreasing order, corresponded to TAL (11.18 ± 3.97, n = 69), BON (8.07 ± 4.28, 

n = 95), TAP (6.4 ± 2.25, n = 183), FN1 (3.3 ± 2.06, n = 199), and DUC (1.47 ± 

0.60, n = 234). This gap-fraction ranking was similar to the mortality ranking, 

except for TAP and BON sites, that is, BON showed higher gap fraction than TAP, 

while TAP showed higher annual mortality than BON. 



126 

 

Figure 6.6 - Relationship between gap fraction (%) and annual tree mortality (% yr-1) for 
5-ha plot areas over the five studied sites (DUC, TAP, FN1, BON, and 
TAL). 

 

Source: Produced by the author. 

 

6.3.2 Canopy-Gap Spatial Variability and Landscape and Regional- Drivers 

Across the Brazilian Amazon 

6.3.2.1 Spatial variability of gaps 

Using the best parameters for the five tested sites (relative height, RH = 0.5, W 

= 5 m), we delineated the gaps of the 610 single-date LiDAR strips and found an 

overall lower gap fraction (Figure 6.7A) over central-east (Mean ± SD: 3.57 % ± 

3.05) and north (3.68% ± 2) than at west (4.18% ± 2.13) and southeast (4.89% ± 

2.47) Amazon regions (as delimited in Figure 6.2). High gap fraction values (>5%) 

were found over the central portion of the Pará state (~52°W; 5°S) at the 

southeast region. The spatial variability of gap fraction (Figure 6.7A) was 

consistent with canopy height variability (Figure C.1). For instance, areas with 

high gap fraction showed the largest variation in canopy heights (CHMSD from 8 

to 14 m) and the lowest “minimum” height (CHMP05 < 10 m). We also found a few 
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areas with very high gap fraction (>10%) close to the center of the Amazonas 

state (~65°W; 4°S), which were located close to major rivers and floodplains. The 

λ showed a very narrow variability (λ from 1.24 to 1.29) with smaller values 

occurring at the same locations where the largest gap fractions were generally 

located at the center of Pará state (Figure 6.7B). The mean gap size (Figure 6.7C) 

followed a similar spatial pattern as the gap fraction (Figure 6.7A), with an 

average gap size across sites of 40.89 m². The GSCI (Figure 6.7D) showed a 

similar spatial pattern of gap fraction, indicating an increasing shape complexity 

with gap fraction. 

Figure 6.7 - Canopy gaps based on the relative height (W=5, RH=50) across the 
Brazilian Amazon (n = 610 flight lines): (A) gap fraction (%); (B) gap size-
frequency distribution (λ); (C) mean gap size (m²); and (D) mean gap 
shape complexity index (GSCI). 

 

Source: Produced by the author. 
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6.3.2.2 Landscape- and regional-scale drivers 

In the landscape-scale analysis, the predictors HAND and slope were not able to 

explain gap occurrence (presence or absence) or gap size (m²) variability, as 

indicated by R2 values close to zero. The same result was achieved by either 

including or not including the site index as a random factor in the models. 

For the regional-scale analysis, all tested variables were significantly correlated 

to gap fraction (p < 0.01) with absolute Pearson’s r ranging from 0.21 to 0.46 

(Table 6.2). It is important to note that both gap fraction and non-forest distance 

variables were transformed to log-scale due to non-normal distribution. For 

instance, the original distribution of Nonforest_dist ranged from 0 to 20.6 km, with 

a mean of 4 km, but was skewed towards smaller distances, where most values 

ranged between 0.11 and 10.67 km (5th and 95th percentile, respectively). 

Amongst the variables, those related to climate, either to water stress (Mean_def, 

SD_def, DSL, Mean_pr, and SD_pr) or wind disturbance (Mean_vs and SD_vs), 

showed significant and strong correlation (r > 0.7) with at least one of the other 

variables. To further reduce multicollinearity effects amongst the model 

predictors, we have chosen only one water stress variable to be used in the 

modelling: the one with a stronger correlation with gap fraction (Mean_def and 

SD_def). Therefore, the variables DSL, Mean_pr and SD_pr were excluded. 

  



129 

 

Table 6.2 - Pearson’s correlation (r) between gap fraction and predictors. All correlations 
were significant at 1% statistical level, except for cells left blank. 

Variables 
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Gap Frac. 1 0.46 -0.43 0.42 0.41 0.38 -0.38 0.36 0.27 0.24 0.21 

SCC 0.46 1 - 0.35 0.46 0.28 -0.46 0.34 -0.23 0.23 0.11 

NF_dist -0.43 - 1 -0.37 -0.26 -0.25 0.24 -0.34 -0.26 -0.23 -0.28 

Mean_def 0.42 0.35 -0.37 1 0.87 0.78 -0.78 0.97 -0.27 0.74 0.55 

DSL 0.41 0.46 -0.26 0.87 1 0.62 -0.87 0.86 -0.35 0.77 0.45 

SD_vs 0.38 0.28 -0.25 0.78 0.62 1 -0.49 0.75 -0.22 0.55 0.74 

Mean_pr -0.38 -0.46 0.24 -0.78 -0.87 -0.49 1 -0.73 0.3 -0.51 -0.3 

SD_def 0.36 0.34 -0.34 0.97 0.86 0.75 -0.73 1 -0.28 0.79 0.54 

Floodpl. 0.27 -0.23 -0.26 -0.27 -0.35 -0.22 0.3 -0.28 1 -0.32 -0.11 

SD_pr 0.24 0.23 -0.23 0.74 0.77 0.55 -0.51 0.79 -0.32 1 0.38 

Mean_vs 0.21 0.11 -0.28 0.55 0.45 0.74 -0.3 0.54 -0.11 0.38 1 

SCC = soil cation concentration; Floodpl. = floodplains fraction; NF_dist = non-
forest distance; def = water deficit; vs = wind speed; DSL = dry season length; pr 
= precipitation. 

Source: Produced by the author.  

 

The full model with all seven predictors (M1) explained up to 55.7% of gap fraction 

variability (R² = 0.557) (Table 6.3). This model still showed multicollinearity 

highlighted by two large VIC values, e.g. > 10, of Mean_def and SD_def. 

Moreover, the inclusion of wind variables produced only small increments to R². 

Thus, to simplify the model, we designed a simpler model (M2) excluding the wind 

variables and considering only one water stress variable (Mean_def). This simple 

model (M2) achieved a relatively inferior goodness of fit (R² = 0.523, BIC = 360.5) 

and statistically different (F = 15.395, p < 0.01) than the full model. However, it 

had the advantage of simplicity as it only used four predictors. Following our 

hypothesis of different forest dynamics in floodplains in relation to water stress, 

we designed another model including an interaction term (Floodplains:Mean_def) 

over the simple model (M3 – Final model), achieving a superior gap fraction 

explanation (R² = 0.573, BIC = 299.6) than the full model (M1), although not 

significantly different (p = 1). The final model (M3), although not statistically 
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different from the full model (M1), showed a BIC value much lower (BIC of M1 = 

334.6 and M3 = 299.6), which indicated a better fit with more parsimony amongst 

the input variables. Moreover, the VIC values of the final model were all below 

two, meaning low intercorrelation between variables. All models were significantly 

different from a null model considering only the intercept term (p < 0.001). They 

showed randomly distributed residuals.  

Table 6.3 - Estimated regression parameters (B), standard errors (SE B), t values (t) and 
p-values for the Generalized Linear Model (GLM) to estimate gap fraction. 
Also, Standardized beta coefficients (β), ΔR² (change in R² by adding the 
variable last on the model) and variance-inflation factors (VIC) for each 
predictor. 

Model ΔR² B SE B β t p-value VIC 

M1 – Full model R² = 0.557; BIC = 334.6; M1 ≠ Null model (p < 0.01) 

(Intercept) - 1.9 0.09 - 21.5 < 0.01 - 

SCC 0.16 0.68 0.05 0.20 14.6 < 0.01 1.19 

Nonforest_dist 0.03 -0.14 0.02 -0.09 -6.53 < 0.01 1.44 

Floodplains 0.12 1.12 0.09 0.18 12.86 < 0.01 1.31 

Mean_def 0.02 0.04 0.01 0.27 5.2 < 0.01 18.1 

SD_def 0.01 -0.02 0.01 -0.21 -4.28 < 0.01 15.3 

Mean_vs 0.01 -0.26 0.08 -0.06 -3.4 < 0.01 2.3 

SD_vs 0.02 1.81 0.37 0.12 4.83 < 0.01 4.2 

M2 – Simple model R² = 0.523; BIC = 360.5; M2 ≠ M1 (p < 0.01) 

(Intercept) - 1.7 0.06 - 30.13 < 0.01 - 

SCC 0.17 0.69 0.05 0.20 14.59 < 0.01 1.17 

Nonforest_dist 0.03 -0.13 0.02 -0.09 -5.99 < 0.01 1.39 

Floodplains 0.12 1.14 0.09 0.18 12.64 < 0.01 1.31 

Mean_def 0.06 0.02 0.002 0.13 8.56 < 0.01 1.53 

M3 – Final model R² = 0.573; BIC = 299.6; M3 = M1 (p = 1) 

(Intercept) - 1.65 0.05 - 30.6 < 0.01 - 

SCC 0.16 0.69 0.05 0.20 15.25 < 0.01 1.17 

Nonforest_dist 0.03 -0.13 0.02 -0.09 -6.3 < 0.01 1.39 

Floodplains 0.17 1.63 0.10 0.08 15.75 < 0.01 1.94 

Mean_def 0.09 0.03 0.002 0.12 11.15 < 0.01 1.68 

Floodplains:Mean_def 0.05 -0.11 0.01 -0.12 -8.39 < 0.01 1.61 

SCC = soil cation concentration; def = water deficit; vs = wind speed. 

Source: Produced by the author. 
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All predictors showed significant effects on the gap fraction (p < 0.01) (Table 6.3). 

The predictors SCC, Floodplains, and Mean_def presented positive regression 

coefficients (B), meaning that an increase in these predictors caused an increase 

in gap fraction. The Nonforest_dist and Floodplains:Mean_def had a negative B, 

indicating that decreases in their values caused an increase in gap fraction. 

These coefficient signs were corroborated by the expected relationship between 

predictors and gap fraction (Figures 6.8A to 6.8D). Floodplains and SCC solely 

explained the most gap fraction variability on the final model (M3) (ΔR² = 0.17 

and 0.16, respectively). The order of predictors’ importance ranked from the 

largest to the smallest absolute β values corresponded to: SCC, Mean_def, 

Floodplains:Mean_def, Nonforest_dist, and Floodplains. Considering β values, 

the Floodplains variable was not included as the most relevant predictor. 

However, it is important to note that the explained variability of this metric was 

shared with the interaction term. Moreover, β values from the simple model (M2), 

i.e. M3 without the interaction term, showed Floodplains as the second important 

predictor. Therefore, β values from M2 should represent more accurately the 

individual contribution of each predictor to the model. The interaction term 

included in M3 (Floodplains:Mean_def) caused a significant improvement over 

M2 likely associated with a better representation of high gap fraction and close to 

zero water deficit areas, i.e. flooded or seasonally-flooded forests (red triangles 

in Figure 6.8D).  
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Figure 6.8 - Relationships between gap fraction (log-scale) and predictors used in the 
final model: (A) soil cation concentration (SCC); (B) Non-forest distance 
(km) (log-scale); (C) Floodplains cover fraction; and (D) Mean_def / Mean 
monthly water deficit (mm). The dashed line represents a linear model. 
Red triangles on panel (D) represent samples with floodplains cover ≥ 0.5. 

 

Source: Produced by the author. 

 

6.3.3 Amazon-Wide Tree Mortality Prediction and Validation 

We used the gap/environmental-climate model (M3 in Table 6.3) to spatialize gap 

fraction estimates over the Amazon biome at 5-km spatial resolution (Figure C.2) 

and then applied the gap-mortality relationship (Figure 6.6) to predict tree 

mortality (Figure 6.9A). In Figure 6.9A and 6.9C, the predictions showed higher 

tree mortality over southeast (Mean ± SD: 0.89% ± 0.2) and west (0.8% ± 0.28) 

regions, and lower tree mortality over the central-east (0.66% ± 0.28) and north 

(0.65% ± 0.17) Amazonian regions (see Figure 6.2 for regions). The regions 
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showed significantly different mean modelled mortality rates considering an 

ANOVA test (p < 0.01) (Figure 6.9C).  

Figure 6.9 - Amazon-wide tree mortality prediction and validation. (A) Map of tree 
mortality (%.yr-1) prediction at 5-km spatial resolution based on gap-
mortality relationship (Figure 6.6) and gap/environmental-climate model 
(Table 6.3); (B) validation of modeled tree mortality using long-term 
inventory plot data from Brienen et al. (2015). Point colors represent the 
Amazon regions of Figure 6.2; and (C) modelled mortality (%.yr-1) per 
Amazonian region. Each boxplot represents n > 40,000 5-km pixels. Mean 
modelled mortality was statistically different between regions (p < 0.01). 

 

Source: Produced by the author. 

Floodplain areas at the west and central-east Amazon showed higher tree 

mortality (>1.5 % yr-1) than other areas. Forests at the southwest, bordering the 

Andes mountains, and at the southeast, on a vegetation transition from Amazon 
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rainforest to Cerrado savannah, also showed very high mortality (>1.5 % yr-1). 

These areas also presented a very high mean water deficit (> 40 mm). These 

patterns were consistent with those of individual gap fraction estimates (Figure 

6.7A). Moreover, the spatialized SD of gap fraction estimates (Figure C.2B) 

indicated larger uncertainty for the southeast and west areas with higher gap 

fraction or tree mortality. The modeled tree mortality was associated with field-

based tree mortality (R² = 0.4, RMSE = 32.8%, Figure 6.9B), while it 

systematically underestimated the field-based mortality of 60%. 

 

6.4 Discussion 

Using five multi-temporal datasets and a unique single-date dataset (n = 610 flight 

lines) of airborne LiDAR for the Amazon, we explored the relationship between 

canopy gaps and mortality as well as its variability and drivers over the Amazon 

forest in an unprecedented way. The main contributions of the work are discussed 

in the next sub-sections face to the proposed scientific questions. 

 

6.4.1 What is the minimum plot area necessary to obtain stable landscape-

scale estimates of canopy tree mortality (Q1)? 

Our LiDAR results showed that the variability of canopy tree mortality was greatly 

reduced over 5-ha plot areas, which would represent the minimum area for stable 

landscape-scale estimates of tree mortality associated with treefalls. In 

comparison with measurements at the ground level, this finding was consistent 

with results obtained by Wagner et al. (2010). They analyzed a tropical forest site 

in French Guiana (Paracou forest) and detected high variability on estimating 

forest structure and mortality over 1-ha plot areas, recommending the use of 4 ha 

for stable measurements in field inventory plots. Moreover, they observed an 

overall smaller coefficient of variation on their tree mortality estimates at 4-ha (CV 

= 20%) when compared to our results at 5-ha (CV = 43%). One explanation for 

this difference in variability is likely because the LiDAR sampled more diverse 

types of vegetation, e.g. forests at bottomlands, slope and plateau, than the 

ground measurements evaluated by Wagner et al. (2010). 
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6.4.2 How do canopy gaps relate to mortality rates of tropical forests and 

which gap definition best represents this relationship (Q2)? 

Our findings indicated that 50% of the gaps were associated with canopy tree 

mortality. Probably, the remaining gaps are mostly mortality derived from past 

events that are not observed in the time scale of our analysis. This is because 

gaps are dynamically opened by natural or human-induced disturbances and 

closed by vegetation regrowth – of either vertical growth or lateral ingrowth. 

Therefore, the measurement of gaps is limited to the aggregated effect of such 

processes. When compared to ground observations, a study at Tapajós forest 

(TAP) found that only 30% of the mortality events were related to gaps measured 

in the ground (ESPÍRITO-SANTO et al., 2013). However, in that study area, part 

of the gaps had been probably closed by regeneration when the ground 

observations of dead fallen-trees (proxy for mortality) were collected, given that 

the trees’ death year was unknown. 

In our study, tree height had an unsuspected effect on tree mortality detection by 

gaps. We observed that LiDAR-gaps more successfully detected the loss of 

shorter trees at the canopy level (< 25 m) than that of taller emergent trees (> 25 

m). This result is important because tree mortality estimated from multi-temporal 

passive optical multispectral sensors is generally restricted to the tallest trees due 

to the influence of within-canopy shadows on the detection and the necessity of 

large changes to offset the variability of view-illumination geometries and trees’ 

phenology between pairs of images (DALAGNOL et al., 2019). In general, by 

closely inspecting the CHM over mortality locations, we verified that tree loss 

created holes on the canopy with an approximate size of the tree crowns. It 

occurred because the crowns were located on the same level of the neighboring 

canopy, i.e. a unique canopy layer. However, when tall trees died (> 25 m), these 

events very often did not create ‘deep’ gaps or exposed the ground. Instead, they 

revealed an understory within the multi-layered forest structure. Therefore, we 

expect that LiDAR gaps likely represent the mortality of most trees, but 

underestimate that of emergent trees (above the mean canopy height). These 

findings provide quantitative evidence for the field survey results from Leitold et 
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al. (2018), who found that the loss of large canopy trees did not always generate 

gaps, because of the tall multi-layered forest structure of the Amazon forests. 

The relative height method for gap delineation provided the best relationship with 

mortality when compared to the fixed height cutoff approach. While the 

performance of the relative height was comparable with the fixed height cutoff of 

10 m, it provides a dynamic adjustment to local height variability, likely providing 

a more stable and trustworthy gap delineation for large-scale applications over 

forests of varied structure. In addition, the use of other fixed height cutoffs with 

lower values (2 and 5 m), which have been traditionally adopted in the literature 

(BROKAW et al., 1982; LOBO; DALLING, 2014; HUNTER et al., 2015), was not 

strongly associated with mortality. We expect this finding to contribute to the 

debate of gap delineation, where the relative height method should be an 

improvement over the accepted fixed height cutoff approach. This will provide 

gap delineations more associated with mortality using an easy and adaptable 

method for multiple-site application. 

Although we observed a strong relationship between gaps and mortality at the 5-

ha plot areas (R² = 0.72; Figure 6.6), this relationship was non-linear (logarithmic 

fitting). This effect was mostly observed over the TAP, BON and TAL sites. BON 

and TAL had effects of fire disturbance, while TAP was disturbed by fire and 

logging. Therefore, some of the very high gap fractions were associated with 

areas that suffered abrupt events of tree mortality in the past caused by fire and 

high-intensity logging. The increased mortality over large gap fractions was 

consistent with the expected behavior of burned forests, which have exhibited 

higher mortality rates, even after many years from the fire event (SILVA et al., 

2018). Nevertheless, the observed relationship describes an average annual 

mortality rate.  

 

6.4.3 How does canopy gap dynamics derived from airborne LiDAR data 

vary across the Brazilian Amazon forests (Q3)? 

Our results showed a consistent differential canopy dynamic across the Brazilian 

Amazon. We observed slow dynamic canopies at the northwest when compared 
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to the rest of the region. In our view, these spatial patterns describe the mixed 

effect between tree mortality and overall forest structure (canopy heterogeneity) 

and functioning (slower vs. faster dynamics); the presence of flooded or 

seasonally-flooded forests in some areas especially on the central-east portion; 

and the potential but limited effect of forest degradation on the gap fractions at 

the southeast. In the southern flank of the Amazon, there was a prevalence of 

higher values of gap fraction, driven by larger gaps. This pattern was coincident 

with very high canopy heterogeneity (high deviations of CHM height). This fact is 

probably related to different types of vegetation observed in the region, such as 

those associated with bamboo-dominated forests at the southwest Amazon 

(DALAGNOL et al., 2018), and the mosaic of vegetation types occurring across 

the transition zone between Amazon rainforest and savannahs (Cerrado) at the 

southeast region (ROSAN et al., 2019). For instance, LiDAR flight lines between 

the limits of the Mato Grosso and Pará states (~52°W; 5° to 10° S) sensed an 

ecotone between dense forests, seasonal forests and savannahs. Liana-infested 

forests may also contribute to part of the increased gap fractions and mortality 

over the eastern Amazon since their occurrence over that area was indicated in 

previous reports (NELSON, 1994), which also described them as having lower 

heights and heterogeneous canopy. Meanwhile, the productivity of these forests 

is limited by water (WAGNER et al., 2017) with the region being recently affected 

by two major droughts in 2010 and 2015/2016. Therefore, we hypothesize that 

the great vegetation variability and drought effects might have jointly contributed 

to the observed increased gap fractions and estimated mortality. 

The proximity of forests with high gap fractions to the ‘deforestation arch’, 

especially in southeast Brazil, also suggests some degree of influence of human 

disturbance, e.g. logging, fire, fragmentation, on results. However, the systematic 

observation of higher gap fractions in eastern Amazon from 3° to 12° S (1000 km 

on a straight line) is an evidence of a stronger influence of this factor, at least 

locally. Because of the inexistence of a forest degradation product for the 

Amazon, we attempted to assess this effect by considering the distance to the 

closest non-forest area. The non-forest distance, although having a significant 

relationship with gap fraction (R² = 0.18; Figure 6.8), did not explain much new 
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gap fraction variability than the other predictors when included last in the model 

(ΔR² = 0.03 at M3; Table 6.3). This suggests that although having an effect on 

gap fraction, it may not necessarily be causal. Even though, we expect that those 

regions with higher gap fraction might still show some level of degradation and, 

thus, mortality estimates can be partly enhanced because of that. In addition, we 

expect that these effects consist of a long-term process, i.e. recovery from logging 

or fragmentation (BROADBENT et al., 2008), rather than recent catastrophic 

events. This is because the observed gap fractions, although higher than other 

regions, do not correspond to those of forests that undergo catastrophic fire 

events (BRANDO et al., 2014), as highlighted by very high gap fractions of 10-

25% at the BON, TAL and TAP sites (Figure 6.6). 

A few sites with large gap fractions were also found nearby major rivers such as 

the Amazonas, suggesting an association to flooded or seasonally flooded 

vegetation (floodplains). However, care is necessary for this analysis because: 

(1) we did not explicitly take into account the date of LiDAR acquisition (spread 

across the year of 2016), which would have an important effect on the status of 

the forest (flooded or not flooded); and (2) we did not have available field 

information per site to detail the flooding effect, e.g. height and duration. 

 

6.4.4 What landscape- and/or regional-scale factors drive gap variability in 

the Brazilian Amazon (Q4)? 

Our findings suggest that gap occurrence and size are not linearly related to slope 

or HAND variables, which are common descriptors of topography. We expected 

topography to control part of the tree mortality rates at the landscape scale, 

especially in forests with fast dynamics. On these forests, trees tend to die more 

frequently at valleys than at plateaus, and large trees die more frequently at 

sloped areas (TOLEDO et al., 2012). In less dynamic regions, the influence of 

topography onto the tree mortality is less pronounced or negligible (CHAO et al., 

2009). Goulamoussène et al. (2017) showed also that large gaps were more 

frequent at bottomlands water-logged forests and wind-exposed areas. Since we 

sampled a broad range of forest types with varying slope and HAND, and, thus 
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not all forests were expected to have low dynamism, one explanation for the lack 

of relationship between gaps and topography was the possible occurrence of a 

non-linear association not captured in our regression analysis. 

Water stress has been previously associated with tree mortality and specifically 

to drought-related mortality, as observed over plots located across the Amazon 

forests (PHILLIPS et al., 2009). Meanwhile, the variability in forest structure has 

also been associated with rainfall patterns and specifically the deviation of rainfall 

(SAATCHI et al., 2007). In our study, the analysis of gap dynamics described a 

similar pattern as that of water stress in the Amazon, showing a gradient from the 

northwest (wetter) to the southeast (drier). This relationship has potential 

implications regarding the long-term reduction of rainfall across Amazon forests 

associated with climate change. However, more analyses are still needed to 

assess temporal changes to mortality. 

Higher soil fertility in younger alluvial soils of the western Amazon has been 

associated with faster forest dynamics, which in turn is translated into high tree 

mortality (QUESADA et al., 2010). The observed spatial pattern of gap fraction 

matches the patterns of soil fertility represented by the SCC product. Therefore, 

we expect this variable to be an important predictor of gap fraction and tree 

mortality at the regional scale. Even though SCC was an independent source of 

data that corroborated the gap dynamics and tree mortality at the regional scale, 

it is important to note a few caveats about the product and its relationship with 

gap fraction. For instance: (1) the SCC product should represent only a portion 

of soil fertility; (2) the product has uncertainties related to the interpolation 

method; and (3) the soil sampling used to build the product was rather scarce at 

the eastern region in the Pará state (ZUQUIM et al., 2019). These facts should 

not be ignored because of high SCC in the eastern region was coincident with 

the largest gap fraction observations, which might produce bias in the analysis.  

Wind should also play an important role in the mortality of tropical forests by 

uprooting trees, especially over the northwest Amazon (RIFAI et al., 2016; 

NEGRÓN-JUÁREZ et al., 2018). However, our findings did not support the effect 

of wind on gap dynamics and mortality. This is most likely because each 
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individual gap was constrained to a maximum area of 1 ha in order to describe 

the small-scale disturbances within the forest. Meanwhile, wind-disturbances 

generally affects areas greater than 25 ha (NEGRÓN-JUÁREZ et al., 2018). 

Therefore, this effect was not observed in our small-scale canopy gap analysis.  

As discussed previously, floodplains and non-forest distance (as a proxy for 

degradation) were also significant for predicting gap fraction. These findings 

support the expected effects of increased gaps at water-logged bottomlands 

(FERRY et al., 2010; GOULAMOUSSÈNE et al., 2017), potentially increased 

mortality by flooding (RESENDE et al., 2019), and degradation and fragmentation 

effects (LAURANCE et al., 1998; BROADBENT et al., 2008). 

 

6.4.5 Does tree mortality modelled from gaps and environmental-climate 

proxies reproduce spatial patterns from plot-based estimates across 

the Amazon (Q5)? 

Our findings suggest that tree mortality estimates, derived from 

gap/environmental-climate modelling, match the overall patterns of tree mortality 

estimated from field inventory data. The regional patterns reported in the literature 

of increased mortality at the west and southeast Amazon and lower mortality at 

the central-east Amazon and north (Guiana Shields) were confirmed (QUESADA 

et al., 2010; JOHNSON et al., 2016). Besides these patterns, other notable areas 

in our tree mortality map included: (1) lower mortality over large regions of 

undisturbed forests at northwest Brazil (Amazonas state; 53°W; 12°S) and 

southeast Brazil (Xingu forests from the Mato Grosso state; 53°W; 12°S); (2) 

increased mortality in bamboo-dominated forests at the southwest Amazon in the 

limits from Brazil (state of Acre) and Peru (70°W; 10°S) (DALAGNOL et al., 2018). 

The LiDAR-modelled tree mortality was consistent with field-based mortality, 

even for plots located outside of the initially sampled area. Part of this success 

was due to the use of the largest dataset of airborne LiDAR data available over 

the Amazon (n = 610 flight lines). This unprecedented mission brought unique 

data over remote areas of the Amazon forest, where plot data collection is 

inexistent and extremely hard to be performed. The LiDAR predictions of tree 
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mortality were systematically lower (about 60%) than those of field 

measurements. This was because the model was built considering only the 

mortality of canopy trees, associated with the treefall mode of death, instead of 

the mortality rate of all trees, i.e. including standing dead and mortality of 

understory trees. Moreover, the modeled predictions likely showed good 

agreement with plot data because of an intrinsic relationship between tree 

mortality and environmental and climate predictors, amongst other drivers, 

especially water stress (PHILLIPS, et al., 2009) and soil fertility (QUESADA et 

al., 2010). 

Our resultant map of tree mortality for the Amazon biome can be potentially 

integrated into an ecosystem model, e.g. LPJ-GUESS, as background mortality 

rates. The expected outputs will be likely more accurate than the current mortality 

representation, facilitating also the simulations of carbon balance under distinct 

climate change scenarios. However, additional studies are still needed to further 

understand gap phase dynamics and relationship with mortality over open forests 

and floodplain environments. The effect of disturbance can also be further 

disentangled by the means of ancillary degradation maps, e.g. to be developed 

using time-series analyses of remote sensing data (LIMA et al., 2019). 

 

6.5 Conclusions 

We conclude that tree mortality estimates from repeated airborne LiDAR high-

spatial resolution data can provide stable estimates at the landscape scale when 

sampling an area of at least 5 ha. When only single-date airborne LiDAR data is 

available, the delineated gaps can be used to represent canopy tree mortality, 

because they are associated with at least 50% of mortality events. Tree height 

affected the detection of mortality by gaps. Contrary to the generally observed 

with passive optical multispectral sensors, LiDAR-gaps detected more 

successfully the loss of shorter trees at canopy level (< 25 m) than the loss of 

taller and emergent trees (> 25 m).  

This was the first time that gap dynamics were studied using LiDAR data at a 

regional scale in tropical forests. Our findings showed clear patterns of gap 
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variability across the Amazon forest, where higher gap fractions occurred in the 

west and southeast regions. These regions are known by higher tree mortality 

when compared to the central-east and north areas. These patterns were 

influenced to some extent by forest degradation. However, water stress (proxied 

by water deficit) and soil fertility (proxied by SCC) were key predictors of gap 

dynamics and tree mortality. Considering environmental-climate drivers and tree 

mortality predictions over the entire Amazon region, the patterns of mortality 

matched those derived from long-term field inventory data.  
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7 GENERAL DISCUSSION 

Accurate large-scale detection of tropical forest mortality is required to assess 

environmental and climate change effects. This study addressed new 

approaches for quantifying and monitoring tropical forest mortality. It contributed 

to fill knowledge gaps of mortality variability at very diverse and heterogeneous 

environments across the Amazon forests. Overall, the findings highlighted the 

feasibility of detecting tropical forest mortality using different sources of passive 

and active optical remote sensing data. Specifically, three approaches were 

developed to: (1) study mortality processes of bamboo die-off using MODIS 

(MAIAC) data at the landscape scale; (2) quantify individual tree loss with multi-

temporal VHR passive optical imagery; and (3) relate high-resolution canopy 

gaps detected from airborne LiDAR data to tree mortality at the local scale, up-

scaling gap estimates to produce Amazon-wide mortality maps considering 

environmental-climate predictors. Since there was no unique strategy to address 

all scales and processes at once, the best-suited data and methods were 

assessed for each study.  

In Chapter 4, a method was proposed to detect mortality in a specific Amazonian 

vegetation type: the bamboo-dominated forests. When compared with forest 

types in the Amazon, increased rates of mortality can be observed over bamboo-

dominated forests due to interspecific competition between bamboo and trees. 

The present findings showed that large-scale bamboo die-off can be 

automatically detected with very high accuracy (> 80%) using a time series of 

MODIS (MAIAC) data. Even though the ‘bamboo-fire hypothesis’ was rejected by 

our analysis, the fire occurrence was enhanced by bamboo die-off when it 

occurred nearby human settlements, e.g. agricultural and pasture lands, roads 

and rivers, and when following severe droughts. This occurs because most of the 

fire occurrence in the Amazon is dependent on an anthropogenic ignition source 

since natural fires are rare. Therefore, the generated map portraying the size-age 

of bamboo structure can be used in further studies to explore tree mortality drove 

by bamboo dynamics and fire at the southwestern Amazon region. In addition, it 

can provide strategical information for forest management planning and 

prevention of major fire events. The map can also constitute a species distribution 
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layer for Essential Biodiversity Variables (EBV). These EBVs are sets of 

spatialized variables that report about forest biodiversity. They were first 

developed around 2015 having increased attention from the scientific community 

since this year. 

In Chapter 5, a method to semi-automatically track canopy tree loss using multi-

temporal VHR optical data has been successfully developed and validated. 

Although the resultant accuracy was not optimal (64%), it consisted of an 

improvement over the existing methods that either relied on visual assessment 

of the imagery or only assessed tree species mortality by their flowering events. 

The accuracy of the current approach can still be improved by utilizing pairs of 

imagery with more similar view-illumination angles and day of year acquisition. It 

can also take advantage of more precise tree-crown delineation methods based, 

for instance, on deep learning techniques. Using better-segmented crowns, one 

could calculate a more precise spectral difference between the crowns of 

sequential images. It is important to note that the approach used in Chapter 5 is 

still limited in terms of area coverage by data availability since there are not many 

satellites collecting VHR data. The recent advent of satellite constellations could 

help on this matter. However, new studies should assess whether the spatial 

resolution of such instruments, such as the 3-m from the PlanetScope satellite 

constellation, would fit for tree mortality detection. 

In Chapter 6, the findings showed that canopy gaps could be used as proxies for 

small-scale mortality since they represented at least 50% of mortality. In addition, 

the spatial patterns from the modelled tree mortality matched those of field data. 

However, if the forest is degraded, the gap-mortality relationship becomes weak, 

because it is difficult to disentangle the natural disturbance from the human-

degradation signal. In this case, multi-temporal LiDAR is still the optimal method 

to estimate tree mortality. The produced Amazon-wide tree mortality map from 

LiDAR was the final product of this chapter. The map showed spatial patterns 

consistent with those observed in field data from the RAINFOR network. It also 

showed increased tree mortality varying with water deficit and soil fertility 

gradients; with spatial location alongside floodplains (potential flood mortality) 

and/or close to rivers; and with disturbance or forest degradation represented by 
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distances from roads and human settlements. Other potential drivers of tree 

mortality, proxied by gap dynamics, should be further explored. This is especially 

true at the landscape scale, where the current analyses have not detected clear 

drivers of mortality. The resultant map of Amazon tree mortality from Chapter 6 

has great potential to be further analyzed. For instance, this tree mortality map 

should be combined with regional AGB maps in order to calculate average carbon 

turnover rates for the Amazon forests. 

The combined results from Chapters 4, 5 and 6 highlighted the limitations 

imposed by the nature of the data and the developed methods on tree mortality 

estimates. For instance, only the mortality associated with treefalls was detected 

in Chapters 5 and 6, which is the mode-of-death causing larger changes in the 

canopy structure and opening gaps. This fact should partly explain why the 

detected gaps do not represent the full extent of tree mortality measured by field 

plots. Furthermore, studies based on field data have shown that tree mortality is 

higher at plots with bamboo than without bamboo. However, since their plots have 

a limited sampling (only a few hectares), the generalization of these patterns to 

the whole bamboo-dominated forests is a huge leap. Given the availability of VHR 

imagery over the bamboo-dominated areas, the tree loss detection method 

developed in Chapter 5 could be applied to detect tree mortality and assess how 

it varies across different bamboo patches and with bamboo age. Therefore, by 

confirming patterns observed at the plot scale, such study contributes to precise 

estimates of carbon turnover in the southwest region. In this region, the bamboo-

dominated forests cover a significant area. Nevertheless, the resultant Amazon 

tree mortality map generated here showed increased tree mortality rates at the 

southwest Amazon where bamboo dominates. However, this pattern was not 

directly related to the bamboo occurrence. It was possibly linked to the more 

fertile soils of the region, which partly drove the mortality estimates. 

Additionally, contrasting findings regarding the accuracy of mortality detection 

with different tree sizes were highlighted in Chapters 5 and 6. While the multi-

temporal analysis of multispectral VHR data (Chapter 5) more successfully 

detected the loss of the tallest and emergent trees, an opposite pattern was 

observed for LiDAR. The mortality inferred by gaps, delineated using single-date 
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airborne LiDAR data (Chapter 6), more accurately represented the mortality of 

the intermediate canopy trees (< 25 m). As an explanation, the VHR approach 

requires large structural canopy changes for accurate detections in order to offset 

the different view-illumination geometries and trees’ phenology between the pairs 

of images. On the other hand, in the LiDAR data, as discussed in Chapter 6, the 

multi-layered canopy might be responsible for rapidly closing the space 

previously occupied by a large/tall tree, thus not allowing the creation of gaps. 

Multi-temporal LiDAR data would in fact solve this problem. 

It is very important to highlight the LiDAR datasets used in this study. They 

comprise unique observations over the Amazon forests, in terms of total sampled 

area (610 flight lines, 2,300 km² total) and sampled locations over remote areas. 

Most of these sampled areas will be hardly covered by ground surveys over the 

next decades, especially those located in remote locations of the Amazon. This 

fact emphasizes the importance of the present broad-scale investigation that has 

used more than 600 flight lines of LiDAR data in the analysis. 

Finally, considering the future LiDAR satellite missions, the assessment of 

temporal changes of gap dynamics and tree mortality across the Amazon 

deserves new studies. An alternative and innovative way to tackle both spatial 

and temporal estimates of tree mortality is the development of a data-model 

fusion approach. The approach could combine the LiDAR measurements of 

forest structure to parametrize an ecosystem model, e.g. the LPJ-GUESS model, 

and use it to model tree mortality. Alternatively, such an approach could leverage 

the availability of orbital large-footprint LiDAR data from the recent Global 

Ecosystem Dynamics Investigation (GEDI) mission to help parametrize the 

model, using the airborne small-footprint LiDAR data for validating the spatial 

patterns.  
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8 CONCLUDING REMARKS 

This study showed the importance and applicability of passive and active optical 

remote sensing data, and especially multi-temporal data, for quantifying and 

monitoring tropical forest mortality considering observations at different scales. 

From the combined analysis of results, the most relevant findings were: 

(i) Bamboo die-off can be automatically detected with 79% accuracy at 

coarse MODIS spatial resolution and annual revisit time. The die-off may 

be associated with increased fire probability during drought years and 

especially nearby land use areas, suggesting a bamboo-human-fire 

association. Further studies can use multi-temporal VHR imagery over 

these areas to quantify individual tree mortality in order to corroborate 

field estimates at larger scales. This would lead to more consistent 

estimates of bamboo effects onto southwest Amazon carbon balance. 

(ii) Individual tree losses can be mapped with an average precision of 64% 

using multi-temporal VHR satellite imagery. The VHR data detected more 

accurately the loss of the tallest trees that generally opened large canopy 

gaps. This approach can be further improved by having better tree-crown 

delineation methods and/or acquiring pairs of images with more similar 

view-illumination geometries and close dates of collection. 

(iii) Canopy gaps delineated by single-date airborne LiDAR data represented 

at least 50% of the tree mortality. The mortality of shorter trees at canopy 

level (< 25 m) was more successfully detected than the mortality of taller 

emergent trees (> 25 m). The relative height-gap delineation method was 

superior to the fixed height cutoff approach. Higher gap fractions were 

associated with increased water deficit, soil fertility, and the occurrence 

of degraded and flooded forests. 

(iv) Modelled tree mortality, based on the gap dynamics and environmental-

climate predictors, reproduced patterns of Amazon forest mortality 

observed from long-term field inventory data. Increased rates of LiDAR-

derived mortality were observed at the western and southeast regions of 

the Amazon than at the central-east and north regions of this biome.  
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APPENDICES A - SUPPLEMENTARY MATERIALS FROM CHAPTER 4 

 

Data availability. The processed MODIS (MAIAC) data and bamboo maps 

processed in this paper are freely available and published at: 

https://doi.org/10.5281/zenodo.1229425. 

 

Table A.1 - Dates of TM/Landsat-5 images used for validation of bamboo die-off 
predictions. The date of each image (YYYY-MM-DD) is presented for each 
path-row (World Reference System 2) in the columns. 

Path-Row 006-065 003-066 002-067 003-067 005-067 003-068 

Dates 1985-06-28 1985-07-09 1985-09-04 1985-08-26 1985-07-23 1985-07-09 

1986-08-02 1986-07-28 1986-08-06 1986-09-30 1986-07-26 1986-10-16 

1987-08-05 1987-08-16 1987-08-25 1987-08-16 1987-08-14 1987-08-16 

1988-08-07 1988-07-17 1988-08-11 1988-08-18 1988-07-15 1988-06-15 

1989-08-26 1989-07-20 1989-08-14 1989-09-22 1989-09-04 1989-08-21 

1990-04-23 1990-07-07 1990-09-18 1990-07-23 1990-06-19 1990-08-24 

1991-06-13 1991-07-26 1991-07-27 1991-07-26 1991-07-08 1991-07-10 

1992-10-05 1992-08-13 1992-07-21 1992-07-28 1992-08-27 1992-07-28 

1993-08-05 1993-09-01 1993-08-25 1993-06-13 1993-08-14 1993-06-13 

1994-07-23 1994-07-18 1994-07-27 1994-07-18 1994-06-30 1994-07-18 

1995-08-27 1995-08-22 1995-07-30 1995-08-22 1995-06-17 1995-07-05 

1996-07-12 1996-07-23 1996-08-01 1996-07-23 1996-07-05 1996-07-23 

1997-09-01 1997-07-10 1997-07-19 1997-07-10 1997-07-24 1997-08-27 

1998-07-18 1998-07-13 1998-09-24 1998-08-30 1998-09-13 1998-07-13 

1999-08-06 1999-08-01 1999-08-10 1999-08-17 1999-07-30 1999-08-17 

2000-10-11 2000-07-18 2000-07-27 2000-07-18 2000-09-02 2000-09-04 

Source: Produced by the author. 
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Figure A.1 - Spatial distribution of validation samples obtained from MODIS (2001–
2017) imagery in red and Landsat (1985–2000) imagery in blue. The 
image at background is a false-color composite from MODIS (MAIAC) 
images of bands 1 (Red), 2 (NIR) and 6 (shortwave infrared), in RGB, 
respectively, in August 2015. 

 

Source: Produced by the author. 
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Figure A.2 - Temporal distribution of validation samples for bamboo die-off detection 
(2001–2017) from MODIS imagery; and for bamboo die-off prediction 
(2018–2028) from Landsat imagery. 

 

Source: Produced by the author. 
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Figure A.3 - Bamboo die-off during 2001–2017 from the combined detections using 
MODIS (MAIAC) NIR-1 and NIR-2 and the bilinear model. The black lines 
indicate the perimeter of the bamboo-dominated areas delineated in a 
previous study (CARVALHO et al., 2013). 

 

Source: Produced by the author. 
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Figure A.4 - MODIS bamboo die-off prediction map from 2000 to 2028 using the 
empirical reflectance profiles of the near infrared 2 (NIR-2) reflectance as 
a function of bamboo cohort age (a). Validation between predicted die-off 
(2017–2028) and visual interpreted die-off from previous life cycle in 
Landsat false-color composites (1985–2000) (c) and residuals distribution 
(b). The dashed line represents the 1:1 line in (c) and age residual = 0 in 
(b). Size of circles is related to the number of pixels that hit the same 
observed/estimate die-off year. 

 

Source: Produced by the author. 
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APPENDICES B - SUPPLEMENTARY MATERIALS FROM CHAPTER 5 

 

Two methods were applied for ITC delineation in the study: the voronoi-based 

method for LiDAR data and the marker-controlled watershed segmentation 

(MCWS) for very high-resolution (VHR) satellite data. Both methods consisted of 

detecting the tree tops and then segmenting the tree crowns. The basic 

assumption for the tree top detection is that tree tops have a higher signal than 

the rest of the crown, i.e., they reflect more electromagnetic energy or have a 

higher elevation. Therefore, they can be detected over an image attribute using 

a moving local maxima filter given a window size. The tree crown segmentation 

was performed differently for the two methods, as described below.  

The voronoi-based method for LiDAR data delineated the tree crowns following 

a series of steps: (1) defined an initial radius for each tree top based on a fixed 

maxcrown parameter; (2) segmented the data using the centroidal voronoi 

tessellation approach; and (3) excluded cells with a height below a percentage of 

the maximum height inside the tree crown, based on an exclusion percentage 

parameter. The parameters used for the ITC delineations were: 3x3 m window 

size, maxcrown of 15 m, exclusion of 0.7, and minimum height threshold of 8 m. 

The canopy height model (CHM) was used as the input.  

The MCWS used with the VHR satellite data delineates the crowns using the 

watershed concept. The MCWS considers the forest canopy as a topographic 

surface and segments the tree crowns by virtually flooding the surface with water 

from the tree tops to the crown lowest values, which are usually shadows. The 

parameters used were: 5x5 m window size and the reflectance of the near 

infrared (NIR) band as the input.  

For assessment of the automatic ITC delineation parameters, we compared them 

to a manual delineation by visual assessment. To do that, we randomly selected 

seven plots of 100 x 100 m (1 ha), equivalent to 5% of the total LiDAR data area, 

and performed an independent visual assessment where we manually delineated 

the tree crowns inside the plots based on the visual inspection of natural color 

composites (Red-Green-Blue) from the satellite data and the CHM from LiDAR 
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data. Then, we calculated a set of statistical metrics: true positive (TP, correct 

detection), false positive (FP, commission error), false negative (FN, omission 

error), precision (p, Eq. B.1), recall (r, Eq. B.2) and F-score (F, Eq. B.3) metrics, 

over-segmentation (OS), and relative tree density root mean square error 

(RMSE). OS was calculated as the ratio of tree crowns over-segmented to tree 

crowns delineated. The tree density RMSE was calculated considering the 

number of reference trees and detected trees in each plot and then converted to 

relative RMSE by dividing the RMSE by the average number of reference trees 

between the plots. The tree crown delineation, i.e., the area mapped by each tree 

crown, was assessed considering the intersection-over-union (IoU) metric. The 

IoU is calculated as the ratio between the intersection of areas and the union of 

areas of each ITC delineated between the manual and automatic methods. 

p = TP/(TP + FP) (B.1)

r = TP/(TP + FN) (B.2)

F = (2 * p * r)/(p + r) (B.3)

We found that the mean precision for determining the tree locations was high for 

both VHR satellite (p = 0.79) and LiDAR data (p = 0.88) (Table B.1 and B.2). 

However, the method using LiDAR data more precisely delineated the tree 

crowns in terms of area (IoU = 0.39) than the VHR satellite data (IoU = 0.27). 

Regarding the lower IoU of VHR satellite data, this means that the tree crowns 

automatically delineated using VHR data on average did not represent their true 

area; however, the ITCs should still show spectral similarity intra-objects, which 

is the main objective of this application. Overall, the automatic method using VHR 

satellite data showed a more similar density of trees (n = 591) to the reference (n 

= 598), than the automatic method with LiDAR data (n = 551) did with its reference 

(n = 426). This probably occurred because neighboring tree crowns, visually, are 

more easily distinguished by their color difference using VHR satellite data than 

by their elevation differences using airborne LiDAR data. However, we expect 

that the automatic method should be able to detect these subtle differences with 

LiDAR data. This is supported by the high precision, recall, and IoU with LiDAR 

data. 
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Table B.1 - ITC delineation assessment per plot for VHR satellite data. 

Grid Nref Ndet TP FP FN p r F OS IoU 

1 128 92 69 17 59 0.80 0.54 0.64 0.22 0.22 

2 95 86 53 19 42 0.74 0.56 0.63 0.19 0.24 

3 84 77 53 12 31 0.82 0.63 0.71 0.17 0.28 

4 75 83 48 17 27 0.74 0.64 0.69 0.35 0.29 

5 80 90 52 14 28 0.79 0.65 0.71 0.27 0.29 

6 73 80 51 7 22 0.88 0.70 0.78 0.24 0.28 

7 63 83 44 11 19 0.80 0.70 0.75 0.41 0.32 

Total 598 591 370 97 228 0.79 0.62 0.69 0.26 0.27 

Nref = Number of reference trees; Ndet = Number of detected trees; TP = true 
positive; FP = false positive; FN = false negative; p = precision; r = recall; F= F-
Score; OS = over-segmentation; IoU = Intersection over Union. 

Source: Produced by the author. 

 

Table B.2 - ITC delineation assessment per plot for airborne LiDAR data. 

Grid Nref Ndet TP FP FN p r F OS IoU 

1 84 75 62 5 22 0.93 0.74 0.82 0.19 0.35 

2 60 81 51 8 9 0.86 0.85 0.86 0.33 0.39 

3 58 86 51 11 7 0.82 0.88 0.85 0.31 0.45 

4 58 75 46 2 12 0.96 0.79 0.87 0.30 0.34 

5 50 81 45 7 5 0.87 0.90 0.88 0.40 0.44 

6 57 83 45 11 12 0.80 0.79 0.80 0.44 0.37 

7 59 70 43 3 16 0.93 0.73 0.82 0.35 0.37 

Total 426 551 343 47 83 0.88 0.80 0.84 0.33 0.39 

Nref = Number of reference trees; Ndet = Number of detected trees; TP = true 
positive; FP = false positive; FN = false negative; p = precision; r = recall; F= F-
Score; OS = over-segmentation; IoU = Intersection over Union. 

Source: Produced by the author. 
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APPENDICES C - SUPPLEMENTARY MATERIALS FROM CHAPTER 6 

Table C.1 - Multi-temporal airborne LiDAR data acquisition information. 

Site Acquisition 
Date 

Sensor Flight 
altitude (m) 

Scan 
frequency 

(kHz) 

Area 
(ha) 

DUC 
17 Feb 2012 Optech ALTM 3100 850 59.8 

1200 
09 Apr 2017 Optech ALTM 3100 850 40 

TAP 
31 Jul 2012 Optech ALTM 3100 850 59.8 

1047 
06 Mar 2017 Optech ALTM 3100 850 40 

FN1 
15 Aug 2013 Optech Orion M300 850 67.5 

992 
06 Oct 2018 Optech ALTM 3100 750 40 

BON  
16 Sep 2013 Optech Orion M300 900 61.4 

572 
08 Oct 2018 Optech ALTM 3100 750 40 

TAL 
29 May 2014 Optech Orion M300 900 61.4 

480 
08 Oct 2018 Optech ALTM 3100 750 40 

Source: Produced by the author. 

Figure C.1 - Spatial variability of canopy height model (CHM) across the Brazilian 
Amazon (n = 610 flight lines): (A) CHM average (CHMAVG), (B) CHM 
standard deviation (CHMSD), (C) 5th percentile (CHMP05), and (D) 95th 
percentile (CHMP95). Units represent meters. 

 
Source: Produced by the author. 
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Figure C.2 - Amazon-wide gap fraction prediction based on environmental and climate 
drivers. (A) Estimate gap fraction (%), and (B) standard deviation (SD) of 
gap fraction estimate (%). Areas in white correspond to either missing 
data or rivers. 

 

Source: Produced by the author. 
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