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ABSTRACT 

 

Advancements in remote sensing technologies provide new opportunities to answer 

complex ecological questions in tropical forests, which play a crucial role on the 

stability of global biogeochemical cycles and biodiversity. Light Detection And 

Ranging (LiDAR) and Hyperspectral Imaging (HSI) provide complementary 

information that can potentially improve the characterization of tropical forests and 

reduce the uncertainties in estimating greenhouse gas emissions from deforestation and 

forest degradation. This thesis aims to explore optimal procedures for improving 

tropical forest disturbance characterization and aboveground biomass (AGB) modeling 

using integrated LiDAR and HSI data and advanced machine learning algorithms. The 

study area covered 12 sites distributed across the Brazilian Amazon biome, spanning a 

variety of environmental and anthropogenic conditions. The methods were divided into 

three parts: (1) classification of forest disturbance status (Chapter 5); (2) AGB modeling 

(Chapter 6); and (3) analysis of the AGB variability according to anthropogenic and 

environmental variables (Chapter 7). Firstly, four classes of forest disturbance 

(undisturbed forests, disturbed mature forests, and two stages of secondary forests) were 

identified using Landsat time series between 1984 and 2017. Several LiDAR and HSI 

metrics obtained over 600 sample plots were then used as input data to three machine 

learning models for distinguishing those classes. Secondly, georeferenced inventory 

data from 132 sample plots were used to obtain a reference field AGB. A great number 

of LiDAR and HSI metrics (45 and 288, respectively) were submitted to a correlation 

filtering followed by a feature selection procedure (recursive feature elimination) to 

optimize the performance of six regression models. Finally, the average of AGB 

predictions from the best multisensor models was calculated over 600 sample plots 

where field AGB data were not available. A multivariable linear regression model was 

then used to assess the extent to which the predicted AGB variability was affected by 

anthropogenic (disturbance type and time) and environmental (annual rainfall, climatic 

water deficit, and topography) factors in secondary and mature forests. Overall, the 

results showed that the combination of LiDAR and HSI data improved both the 

classification of forest disturbances and the estimation of AGB compared to using a 

single data source. Using multisource remote sensing data was more effective than 

using advanced machine learning for both classification and regression models. The 

LiDAR-based upper canopy cover and the HSI-based absorption bands in the near-

infrared (NIR) and shortwave infrared (SWIR) spectral regions were the most 

influential metrics for characterizing the disturbance status and estimating AGB. 

Anthropogenic disturbances played the greatest effect on predicted AGB variability, 

reducing up to 44% the AGB of disturbed mature forests compared to the undisturbed 

ones. Secondary forests displayed an AGB recovery rate of 4.4 Mg.ha
-1

.yr
-1

. Water 

deficit also affected the variability of AGB in both mature and secondary forests, 

suggesting a lower recovery potential in water-stressed areas. The results highlight the 

potential of integrating LiDAR and HSI data for improving our understanding of forest 

dynamics in the face of increasing anthropogenic global changes. 

Keywords: Hyperspectral remote sensing. Laser scanning. Data fusion. Tropical forest. 

Secondary successions. Forest degradation. Carbon stock. 



x 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

INTEGRAÇÃO DE DADOS LIDAR E HIPERESPECTRAIS PARA A 

CARACTERIZAÇÃO DE DISTÚRBIOS FLORESTAIS E A ESTIMATIVA DA 

BIOMASSA ACIMA DO SOLO NA AMAZÔNIA BRASILEIRA 

 

RESUMO 

Os avanços nas tecnologias de sensoriamento remoto oferecem novas oportunidades 

para responder a questões ecológicas complexas em florestas tropicais, que 

desempenham um papel crucial nos ciclos biogeoquímicos globais e na biodiversidade. 

O sensoriamento remoto LiDAR (Light Detection And Ranging) e HSI (imageamento 

hiperespectral) fornecem informações complementares que podem melhorar a 

caracterização das florestas tropicais e reduzir as incertezas na estimativa das emissões 

de gases de efeito estufa devido ao desmatamento e degradação florestal. Esta tese visa 

explorar os procedimentos ideais para melhorar a caracterização de distúrbios das 

florestas tropicais e a modelagem de biomassa acima do solo (AGB) através do uso de 

dados LiDAR e HSI integrados e algoritmos avançados de aprendizado de máquina. A 

área de estudo abrangeu 12 locais distribuídos no bioma Amazônia no Brasil, incluindo 

uma variedade de condições ambientais e antropogênicas. Os métodos foram divididos 

em três partes: (1) classificação do status de distúrbio florestal (Capítulo 5); (2) 

modelagem da AGB (Capítulo 6); e (3) análise da variabilidade da AGB segundo 

variáveis antropogênicas e ambientais (Capítulo 7). Primeiramente, quatro classes de 

distúrbios florestais (florestas não perturbadas, florestas maduras perturbadas e dois 

estágios de florestas secundárias) foram identificadas usando séries temporais do 

Landsat entre 1984 e 2017. Várias métricas de LiDAR e HSI obtidas em 600 parcelas 

amostrais foram usadas como dados de entrada em três modelos de aprendizado de 

máquina para distinguir essas classes. Em segundo lugar, dados de inventário 

georreferenciados de 132 parcelas amostrais foram usados para obter a AGB de 

referência. Um grande número de métricas LiDAR e HSI (45 e 288, respectivamente) 

foram submetidas a um filtro de correlação seguido de um procedimento de seleção de 

atributos (Recursive Feature Elimination) para otimizar o desempenho de seis modelos 

de regressão. Finalmente, a média das estimativas de AGB derivadas dos melhores 

modelos multisensores foi calculada em 600 parcelas amostrais onde os dados de AGB 

de campo não estavam disponíveis. Um modelo de regressão linear multivariável foi 

então usado para avaliar até que ponto a variabilidade da AGB é afetada por fatores 

antropogênicos (tipo e tempo de distúrbio florestal) e ambientais (precipitação anual, 

déficit hídrico climático e topografia) em florestas secundárias e maduras. No geral, os 

resultados obtidos nos três capítulos mostraram que a combinação dos dados LiDAR e 

HSI melhorou a classificação dos distúrbios florestais e a estimativa da AGB em 

comparação ao uso de uma única fonte de dados. O uso de dados de sensoriamento 

remoto de várias fontes foi mais eficaz do que as técnicas avançadas de aprendizado de 

máquina para os modelos de classificação e regressão. A cobertura superior do dossel 

baseada em dados LiDAR e as bandas de absorção baseadas em dados HSI nas regiões 

espectrais de infravermelho próximo e infravermelho de ondas curtas foram as métricas 

mais influentes para caracterizar o status de perturbação e estimar a AGB. Os distúrbios 
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antropogênicos tiveram o maior efeito na variabilidade da AGB derivada de dados 

multisensores, reduzindo em até 44% a AGB de florestas maduras perturbadas em 

comparação com as não perturbadas. As florestas secundárias apresentaram uma taxa de 

recuperação de AGB de 4,4 Mg.ha
-1

.ano
-1

. O déficit hídrico também afetou a 

variabilidade da AGB em florestas maduras e secundárias, sugerindo um menor 

potencial de recuperação em áreas sob alto estresse hídrico. Os resultados destacam o 

potencial da integração de dados LiDAR e HSI para melhorar nosso entendimento da 

dinâmica florestal diante das crescentes mudanças globais antropogênicas. 

Palavras-chave: Sensoriamento remoto hiperespectral. Perfilamento a laser. Fusão de 

dados. Foresta tropical. Sucessões secundárias. Degradação florestal. Estoque de 

carbono. 
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1 INTRODUCTION 

Remote sensing is an essential tool for forest mapping, monitoring, and modeling, 

especially in large-scale studies. The availability of remotely sensed data from different 

sensors and platforms, spanning a wide range of spatial, spectral, radiometric, and 

temporal resolutions, has enabled various applications on forest resources. Since the 

launching of the first remote sensing system specifically designed for natural resource 

monitoring (the Landsat-1 satellite almost 50 years ago), remote sensing technology has 

been rapidly advancing (BOYD; DANSON, 2005). Such advances provide new 

opportunities to answer complex ecological questions from local to regional scales. 

From global satellites to local drones, improvements in spatial and spectral resolutions 

have allowed a more detailed characterization of forests, such as the detection of 

individual trees (FERRAZ et al., 2016) and the identification of forest species 

(BALDECK et al., 2015). The development of hyperspectral imaging (HSI) systems, 

acquiring data in hundreds of narrow and contiguous spectral bands, has generated high-

resolution reflectance spectra on a per-pixel basis (GOETZ et al., 1985). HSI sensors are 

capable of retrieving information on the biochemical composition of canopies in order 

to better understand forest ecosystem functioning (KOKALY et al., 2009). Moreover, 

the emergence of the Light Detection And Ranging (LiDAR) technology has produced 

three-dimensional measurements of forests, allowing the quantification of important 

structural attributes, such as the canopy height, leaf area density, and aboveground 

biomass (AGB) (LEFSKY et al., 2002a). However, LiDAR systems currently capture 

limited spectral information, which creates difficulties to distinguish structurally similar 

forests with distinct species composition or under stress conditions. In this regard, HSI 

sensors can complement the information produced by LiDAR instruments. 

Unfortunately, along with the advancement of remote sensing technologies, the last 

decades have been marked by increasing anthropogenic pressure on forests and, 

consequently, by a growing concern on the imminent risks of climate change (IPCC, 

2019). In this context, tropical forests are especially relevant because they support the 

greatest biodiversity in the world (DIRZO; RAVEN, 2003) and are fundamental for the 

global carbon cycle (BONAN, 2008). However, the great heterogeneity and complexity 

of tropical forests pose a challenge in obtaining accurate information on their 
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composition and structure through conventional remote sensing approaches. The data 

integration from different sensors, especially the advanced LiDAR and HSI instruments, 

is an attractive alternative to improve the characterization of tropical forests and reduce 

the uncertainties in estimating greenhouse gas emissions from deforestation and forest 

degradation (TORABZADEH et al., 2014). In spite of the potential of the LiDAR and 

HSI complementary information, just a few studies have integrated these multisensor 

data for the characterization of tropical forests (ASNER et al., 2015; CLARK et al., 

2011; VAGLIO LAURIN et al., 2014). None of them has been conducted over tropical 

forests of the Brazilian Amazon, considering also the different environmental and 

anthropogenic conditions of the region. 

Therefore, the main objective of this study is to evaluate the potential of the 

combination of LiDAR and HSI data for characterizing forest disturbance status and 

estimating the AGB of the Brazilian Amazon. 

 

The specific objectives of this research are to: 

- Analyze how metrics derived from HSI and LiDAR data vary as a function of 

different types of anthropogenic forest disturbances and AGB classes. 

- Compare the performance of LiDAR and HSI data used alone and in 

combination to classify forest disturbance status and estimate AGB. 

- Test the performance of different prediction methods, including advanced 

machine learning techniques. 

- Estimate AGB under different environmental and anthropogenic conditions from 

the best combination of remote sensing data source (LiDAR, HSI, or their 

integration) and prediction method. 

- Evaluate the effect of anthropogenic and environmental factors on the estimated 

AGB. 
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To achieve these objectives, the thesis is structured into eight chapters: 

- Chapter 1 (this chapter) presents a brief introduction to the scope of the work 

and the objectives to be achieved. 

- Chapter 2 presents a literature review on the main characteristics of HSI and 

LiDAR remote sensing technologies and the overall framework of multisensor 

data integration. The chapter also reports how LiDAR and HSI data integration 

has been applied to forest research. 

- Chapter 3 describes the LiDAR and HSI data acquisition over the study area and 

related metrics. 

- Chapter 4 presents the general methodology used to reach the goals of the thesis, 

which are detailed in the subsequent chapters (5 to 7) in the format of scientific 

articles. 

- Chapter 5 is dedicated to investigating the integration of LiDAR and HSI data 

for classifying tropical forest disturbance status (undisturbed forests, disturbed 

forests, and two stages of secondary successions). 

- Chapter 6 explores the optimal procedures for estimating AGB based on 

different data sources (LiDAR, HSI, and their combination) and regression 

algorithms (statistical linear models and advanced machine learning models). 

- Chapter 7 uses the estimated AGB, derived from the best models obtained in the 

previous chapter, to investigate how environmental (climate and topography) 

and anthropogenic (disturbance type and time) factors affect the AGB in the 

Brazilian Amazon. 

- Finally, Chapter 8 presents the concluding remarks obtained from the integrated 

analysis of all results from the three predecessor chapters. 
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2 LITERATURE REVIEW 

2.1 Hyperspectral Imaging (HSI) 

HSI is a passive remote sensing technique characterized by the simultaneous acquisition 

of images in a large number of narrow and contiguous spectral bands (GOETZ et al., 

1985). In reality, this concept is much more related to the ability of the sensors to 

measure narrow bands (bandwidth) than to the number of bands itself (GALVÃO et al., 

2012). For instance, the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) with 

224 bands (400-2500 nm) and the Compact High Resolution Imaging Spectrometer 

(CHRIS/PROBA) with 62 bands (410-1000 nm) are both HSI instruments because they 

have narrow (10 nm bandwidth) and contiguous bands in each spectral range of 

operation. HSI is also known as imaging spectroscopy or imaging spectrometry, 

because it combines conventional imaging technologies with spectroradiometry, 

resulting in a multidimensional spatial-spectral image. Since the hyperspectral images 

are acquired using spectral resolution close to that observed in non-imaging laboratory 

spectrometers, their resultant spectra allow adequate measurements of most absorption 

bands that appear in different land covers (e.g., soil, vegetation, and water) on a per-

pixel basis (Figure 2.1). 

 

Figure 2.1 - Hyperspectral imaging (HSI) concept. 

 

Source: Shippert (2003). 
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The ability of HSI to extract more accurate and detailed information compared to other 

passive remote sensors makes it suitable for a wide variety of applications. Several 

studies have shown the potential of hyperspectral data for forest applications, such as 

the classification of land cover (CLARK; KILHAM, 2016) or tree species (BALDECK 

et al., 2015; FÉRET; ASNER, 2013); identification of physiological responses to stress 

(SANCHES et al., 2014); estimation of biochemical variables (KOKALY et al., 2009); 

detection of burned areas (SCHEPERS et al., 2014); study of the canopy phenology (DE 

MOURA et al., 2017; GALVÃO et al., 2011), among others. 

However, the high dimensionality of the HSI data also entails some challenges, such as 

the need for increased storage capacity and greater complexity in image processing. In 

addition, narrow and contiguous spectral bands may present great data redundancy, 

causing multicollinearity problems in several analytical procedures. To minimize these 

problems, different strategies of Feature Extraction (FE) and Feature Selection (FS) 

have been proposed to enhance information on the object or phenomenon of interest, 

while decreasing the data dimensionality and redundancy (BAJWA; KULKARNI, 

2011). While the FE techniques generally include hyperspectral data transformation by 

principal component analysis (PCA) or minimum noise fraction (MNF) and the use of 

the first few components in the subsequent analysis, the FS approach uses different 

algorithms (e.g., correlation-based FS) to select the best variables for a given purpose. 

FS is preferable over FE because the selected spectral attributes are more easily 

interpretable from a physical point-of-view than the statistically transformed data 

(DAMODARAN et al., 2017). Different HSI metrics can be used as input variables for 

classification and regression modeling. They can include the reflectance of the bands; 

the PCAs and MNFs; the absorption band parameters calculated from the continuum 

removal method; several narrowband vegetation indices; and the endmember fractions 

retrieved from linear spectral mixture models (Table 2.1). 
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Table 2.1 - Examples of metrics that can be retrieved from HSI data and used for classification and regression modeling. 

Metrics Description Advantages Limitations Examples 

Spectral 

bands 

Reflectance image of a narrow spectral 

channel 

Contains the original information A large number of bands 

can lead to redundancy 

Reflectance at red 

and NIR bands 

PCA Linear combination of the original bands, 

which preserves the variance contained in the 
data and yields decorrelated components 

Reduces redundancy Difficult interpretation First n PCA 

MNF Linear combination of the original bands to 

reduce dimensionality and minimize noise, 
yielding decorrelated components 

Reduces redundancy and noise Difficult interpretation First n MNF 

Continuum-
removed 

absorption 

features 

The continuum removal is a normalization 
technique to filter out absorption features 

Easily interpretable, based on 
knowledge of the relation 

between the structure and 

chemical composition of targets 
at specific wavelengths 

Requires high signal-to- 
noise ratio 

Depth, width, area, 
and asymmetry of 

the absorption band 

Vegetation 

indices 

Arithmetic combination between bands, such 

as band ratio or normalized band difference 

Can reduce solar and terrain 

illumination effects, while 
enhancing compositional 

information 

Requires identification of 

appropriate bands 

NDVI, EVI, PRI 

Endmember 

fractions 

The model assumes that the pixel response is 

a linear combination of a set of endmembers 

(e.g., green vegetation, soil and shade) for 
retrieving their abundance-fraction images on 

a per-pixel basis 

Allows to evaluate the proportion 

of a particular endmember of 

interest 

Difficulty of endmember 

selection representative 

of all land covers in the 
scene 

Fractions of green 

vegetation, NPV, 

soil and shade 

Source: Adapted from NUMATA (2012) and PU (2012).  



7 

 

2.2 Light Detection and Ranging (LiDAR) 

LiDAR, also known as laser scanning, is an active remote sensing technique based on 

the emission and reception of laser pulses. The basic measurement of a LiDAR device is 

the time elapsed between the emission of a laser beam and the arrival of its reflection at 

the sensor. Multiplying this time interval by the speed of light and then dividing by two 

(to consider round trip) results in the distance between the sensor and the target 

(LEFSKY et al., 2002a). The laser beam can hit multiple objects located at different 

distances from the sensor. Thus, the nearest point will cause a faster returning pulse and 

the farthest point will take a longer return, allowing the distinction of elevations. 

LiDAR-derived distance measurements, accompanied by sensor position and laser beam 

direction information, enable obtaining the three-dimensional (3D) coordinates of each 

imaged point on the earth's surface (CHEN, 2014). For this purpose, LiDAR systems 

aboard mobile platforms (e.g., aircraft) need to integrate laser sensor information with a 

differential GPS and an Inertial Measurement Unit (IMU). The GPS records the 

platform's 3D position, while the IMU registers its orientation (roll, pitch, and yaw) 

(LARGE; HERITAGE, 2009). 

LiDAR systems can be characterized according to:  

(1) Platform: terrestrial (fixed or mobile), airborne, and spaceborne; 

(2) Spectral wavelength: Most LiDAR systems operate in a single range of the 

electromagnetic spectrum, commonly in the green or near-infrared region. 

Systems applied to vegetation studies usually use sensors that operate in the 

near-infrared, region of the highest reflectance of vegetation (LEFSKY et al., 

2002a). Some systems operating in two or more spectral ranges have been tested 

(WEI et al., 2012). There are already prototypes of terrestrial hyperspectral 

LiDAR sensors that emit a “supercontinuum laser” spanning the 420-1680 nm 

range (HAKALA et al., 2012); 

(3) Footprint: the projection size of the laser beam on the ground, being classified as 

small (less than 1 m in diameter), medium (~ 10-30 m in diameter) and large 

(diameters greater than 50 m) (LU et al., 2012); 

(4) Type of return record: discrete-return or full-waveform. In discrete-return 

LiDAR, data is often referred to as a “point cloud”, where each point contains 
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information such as 3D coordinates, signal intensity, and return type (first, last, 

or intermediate). In full-waveform LiDAR devices, the distribution of the entire 

return signal is recorded as a function of time (GIONGO et al., 2010). 

According to the characteristics described above, the most commonly used LiDAR 

systems for forestry applications are airborne, operating in near-infrared, with small-

footprint and discrete-return (VAUHKONEN et al., 2014). This type of LiDAR will be 

addressed in the following paragraphs since it was the one used in this study. 

Metrics derived from LiDAR data can be used to model forest canopy structural 

properties such as diameter at breast height (DBH), basal area, stem volume, and 

biomass. Two approaches have been used to estimate forest properties from LiDAR 

data: individual tree-based and area-based approaches (GOLDBERGS et al., 2018). If 

the LiDAR point density is sufficient to obtain multiple returns from the same tree, it is 

possible to extract attributes by the individual tree through segmentation procedures for 

canopy delineation. The area-based approach consists of obtaining metrics from the 

LiDAR points divided into a regular grid (STRAUB et al. al., 2009). 

Obtaining LiDAR metrics requires pre-processing of raw data, usually involving 

filtering, interpolation, and detrending processes (Figure 2.2). Firstly, the LiDAR point 

cloud is classified into ground and non-ground points. Then, the ground points are 

interpolated into a digital terrain/elevation model (DTM or DEM). The DTM is 

subtracted from the raw point cloud, yielding a detrended point cloud that has a ground 

elevation of zero and captures canopy vertical structure. The resulting normalized point 

cloud can be used to compute area-based metrics and can also be rasterized into a 

Canopy Height Model (CHM). These intermediate LiDAR products are essential for 

empirical models of biomass estimation (ZHAO et al., 2018). 
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Figure 2.2 - Workflow for deriving canopy structural attributes from raw airborne 

discrete-return LiDAR data. 

 

Source: Xiao et al. (2019). 

 

2.3 Multisensor data integration 

The increasing number of remote sensors is generating a massive volume of data with 

different spatial, spectral, radiometric, and temporal resolutions. Multisensor data 

integration (also called multisensor data fusion or combination) takes advantage of this 

increased data availability to produce more detailed information than each source can 

produce separately. Therefore, the purpose of multisensor data integration is to improve 

the quality of information for decision making (POHL; VAN GENDEREN, 1998; 

ZHANG, 2010). 

Image integration can be divided into three processing levels according to the stage at 

which the fusion takes place (Figure 2.3): pixel, feature, and decision level (POHL; 

VAN GENDEREN, 1998). The pixel-level consists of combining the physical 

parameters recorded in two or more images to generate a synthetic image. This level is 

mainly applied to optical images (ZHANG, 2010) and requires only preprocessing 

steps, including radiometric and geometric corrections and resampling to a common 

pixel size. The advantage of this level of integration is the preservation of the original 

information. The disadvantage is the large data dimensionality, which makes processing 
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slow. The integration of redundant information contained in pixels can be accomplished 

by various methods, which are commonly applied in the fusion of multispectral and 

panchromatic images to improve the spatial resolution. Some of these methods are those 

based on algebraic operations (multiplication, Brovey transform, high pass filter), 

spatial transformations (IHS, PCA, Gram-Schmidt), and pyramid decomposition 

(Wavelet transform) (ZHANG; YANG, 2012). 

 

Figure 2.3 - Processing levels of image integration. 

 

Source: Author's production. 

 

In feature-level integration, each original data source is submitted to feature 

extraction/selection techniques in both the spatial domain (e.g., lines, intersections, 

texture) and/or spectral domain (e.g., indices, linear combinations, derivatives). The 

various features derived from the different data sources are later combined to replace 

the original data in information extraction procedures. Feature-level integration has the 

advantage of compressing the amount of data while retaining the relevant information of 
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the variable or phenomenon of interest. Compared to pixel-level integration, feature-

level enables higher processing speed (ZHANG; YANG, 2012). 

In decision-level integration, each data source is processed independently for 

information extraction. The results obtained are then combined from decision rules to 

generate final information. An example of an application for decision-level integration 

is the classification of regions of interest (e.g., buildings, streets, tree species, and land 

cover) from two or more data sources. Each data source is used to generate one or more 

class maps, which are then combined through voting strategies in an attempt to reduce 

misclassification (MURA et al., 2015). 

According to Zhang (2010), dividing the image integration approaches in three 

processing levels (pixel, feature, and decision) does not fit all the integration 

possibilities. In practice, it is common to proceed with the combination of different 

levels. Importantly, some data fusion methods (e.g., pan-sharpening) were developed 

for similar data types. Thus, using these techniques on data sources of different nature, 

such as active and passive sensors, may not provide the best results. Integrating data 

from different sensors require some caution from the user. For instance, large 

differences in spatial resolution, measured physical quantities, data acquisition 

geometry, light sources, and acquisition periods, can complicate the implementation and 

validation of the integration methods (TORABZADEH et al., 2014). For successful 

integration of data from multiple remote sensors, the quality of each data source must be 

ensured; the radiometric, atmospheric and geometric corrections must be well 

performed; and the choice of the fusion method and level should be appropriate to the 

data type and objectives of the analysis. 

 

2.4 Prediction methods based on multisensor data 

The use of multisensor data, supported by advanced methods of analysis, may overcome 

some of the problems faced with single datasets, improving the quality of the requested 

information (KOCH, 2010). Two major approaches have been used for information 

extraction based on remote sensing data: physical methods, based on the physical laws 

between the electromagnetic radiation and the characteristics of a target; and empirical 

methods, based on statistical relationships between remote sensing and reference data 
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(LIANG et al., 2012). Due to the simplicity of empirical methods, they have been 

widely used for multisensor integration than physical approaches (TORABZADEH et 

al., 2014). Empirical methods include classification techniques, used to predict 

categories, and regression models, used to predict continuous variables. Many 

algorithms have been developed for both classification and regression models, such as 

Linear Models (LM), Support Vector Machine (SVM), Stochastic Gradient Boosting 

(SGB), Random Forest (RF) and Cubist (CB). A brief overview of each model used in 

this thesis is introduced below. 

LM are parametric methods developed for regression analysis, which account for linear 

relationships between response and predictors. LM (multivariable regression with 

ordinary least squares), associated with some technique of feature selection (e.g., 

stepwise), is the most common method applied to AGB estimation (LU et al., 2014). As 

a parametric technique, it requires assumptions such as linearity, residual normality, 

homoscedasticity, and independence (OSBORNE; WATERS, 2002). Furthermore, 

conventional LM may generate spurious results due to multicollinearity. Regularization 

methods such as ridge regression are valuable for addressing this issue, reducing the 

impact of redundant variables by shrinking their coefficients (DUZAN; SHARIFF, 

2015). 

SVM is a non-parametric machine learning technique widely used for classification 

purposes (MOUNTRAKIS et al., 2011). This method is also effective for regression 

tasks, being commonly referred to as SVR (Support Vector Regression) (BASAK et al., 

2007). The main idea behind SVM is to transform a nonlinear problem into linear by 

mapping the input data into a high-dimensional feature space, using a kernel function. 

The radial basis function (RBF) kernel has been widely used, since it generally 

performed better than other kernels, such as linear and polynomial. The required 

parameters for the RBF-SVM are the cost, which controls the complexity of the 

boundary between support vectors, and the sigma, which is a smoothing parameter. The 

range of values for the sigma parameter can be estimated, for instance, using the sigest 

function from the R package kernlab (KARATZOGLOU et al., 2004). The SVM 

method has proven its robustness to dimensionality, outliers in the training data, and the 

generalization ability, for both classification and regression tasks (MONNET et al., 

2011). 
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RF is an ensemble learning method that combines predictions of multiple Classification 

and Regression Trees (CART) (BREIMAN, 2001). Each tree is independently created 

from a bootstrap sample of the original data (a bagging approach). Moreover, each node 

of the tree is split using a specified number of randomly selected features (mtry). RF has 

become popular in remote sensing applications due to its promising predictive 

capabilities for high-dimensional datasets. Furthermore, RF is insensitive to 

multicollinearity, data noise, outliers, and overfitting (BELGIU; DRAGUT, 2016). 

SGB uses a boosting ensemble method for combining predictions of several 

classification or regression trees. Simple trees are fitted sequentially using the loss 

function gradient from the prior tree to increase emphasis on observations modeled 

poorly. At each iteration, a random subsample of the training dataset (without 

replacement) is used as input (FRIEDMAN, 2002). Instead of developing single 

complex trees, relatively small trees are combined by averaging their weighted 

predictions. The SGB involves parameters for controlling the learning process: (i) the 

number of boosting iterations (n.trees); (ii) the number of nodes per tree 

(interaction.depth); (iii) the learning rate (shrinkage), which penalizes the importance of 

each consecutive iteration; and (iv) the minimum terminal node size (n.minobsinnode) 

(ELITH et al., 2008). Several advantages of the SGB algorithm have been highlighted, 

including its low sensitivity to outliers, great ability to deal with unbalanced training 

datasets, and its robustness in dealing with interaction among predictors (FRIEDMAN, 

2002). Promising SGB results have been reported for remote sensing classification 

(CHIRICI et al., 2013; GODINHO et al., 2016; LAWRENCE et al., 2004) and 

regression purposes (CARREIRAS et al., 2012; FILIPPI et al., 2014; MANQI et al., 

2014). For instance, Chirici et al. (2013) found a superiority of the SGB method over 

CART and RF for mapping forest fuel types using both LiDAR and multispectral data. 

SGB has also been used for estimating AGB with RADAR (CARREIRAS et al., 2012), 

LiDAR (MANQI et al., 2014), and HSI (FILIPPI et al., 2014). 

CB is a rule-based tree model, which produces linear regression models instead of 

simple values in the terminal nodes of trees, based on the M5 model tree 

(RULEQUEST, 2018). In contrast to RF and SGB, CB does not retrieve one final model 

but a set of rules associated with sets of multivariable models. CB can also use a 

boosting-like scheme called committees, in which subsequent trees are created using 
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adjusted versions to the training set outcome. Predictions from all the committees are 

averaged to produce the final prediction (JOHN et al., 2018). In addition, the predictions 

generated by the model rules can be adjusted using nearby points from the training set 

data (defined by the parameter neighbors). CB is a viable method for AGB estimation 

across different sites and scales (BLACKARD et al., 2008; JOHN et al., 2018; MANQI 

et al., 2014). 

 

2.5 LiDAR and HSI data integration for forest applications 

Recently, the use of multisensor data for forest applications has gained interest. This is 

especially true for the integration of passive and active remote sensors because of their 

complementary characteristics. The integration of LiDAR and HSI remote sensing 

technologies has been used in several forest applications, such as land cover mapping 

(ZHANG et al., 2016); tree species classification (DALPONTE et al., 2008; SOMMER 

et al., 2015); biomass modeling (CLARK et al., 2011; FASSNACHT et al., 2014); and 

estimation of biochemical and physiological properties (BROADBENT et al., 2014; 

THOMAS et al., 2008). Some examples of the main forest applications of LiDAR and 

HSI data integration will be described below. 

 

2.5.1 Mapping land use/land cover and tree species 

Most forest studies using LiDAR and HSI data integration have prioritized the mapping 

of land use/land cover or tree species (TORABZADEH et al., 2014). Information on 

land cover type and forest species composition are essential for the management and 

monitoring of natural resources. For instance, this information can be applied to 

mapping trees of economic (e.g., timber species) and ecological (e.g., invasive species 

or functional plant groups) importance. In addition, classification of land cover types 

and species may be useful as a preliminary step in quantifying biophysical, biochemical, 

and physiological characteristics by stratifying image attributes by species, species 

groups, or land cover types. 

Individual tree species discrimination from remote sensing data requires high spatial 

and/or spectral resolution. Thus, hyperspectral sensors, especially airborne sensors that 
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have high spatial resolution, have already been used for the classification of forest 

species, functional groups, or land cover types in tropical (CLARK et al., 2005), 

subtropical (YANG et al., 2009), and temperate (BOSCHETTI et al., 2007; PLOURDE 

et al., 2007) regions. However, the information provided by HSI is limited to the bi-

dimensional plane, which restricts a characterization of the canopy vertical structure. 

This structural information may assist in distinguishing species with similar spectral 

behavior. Thus, the interest in integrating HSI with structural data provided by LiDAR 

for forest composition studies has grown over the last decade. 

Table 2.2 summarizes the results of some studies that have evaluated the integration of 

HSI and LiDAR data for the classification of tree species or land cover. Most of them 

showed considerably greater accuracy in the classification performed with both data 

sources, respective to the classification using only HSI data. However, the results 

depend on several factors, such as sensor characteristics, data preprocessing, selected 

metrics for analysis, fusion level, classification method, number and type of classes, and 

characteristics of the studied vegetation. Some studies have considered different 

combinations of these factors to identify the best conditions for accurate classification 

of tree species and land cover. For instance, Ghosh et al. (2014) evaluated the effect of 

the HSI spatial resolution on tree species mapping, with and without the integration of 

LiDAR data. For this purpose, three HSI data sources were used: two airborne HyMap 

datasets with 4 m and 8 m resolutions, and one spaceborne Hyperion dataset with 30 m 

spatial resolution. The authors also tested different features and two classification 

models (SVM and RF). From the spatial resolution analysis, the 8 m resolution dataset 

generally produced the best results, probably because the images were not as 

heterogeneous as in the 4 m resolution, nor as homogeneous as in the 30 m resolution. 

From the classifiers, RF had better results than SVM when spectral indices were used as 

input data. SVM was more appropriate than RF when reflectance data were used. The 

HSI input data that produced the best classification accuracy were the MNF 

components. The integration of LiDAR height did not produce a significant 

improvement in the accuracy of tree species classification. 
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Table 2.2 - Examples of studies on forest species or land cover classification based on the HSI and LiDAR data integration. 

Reference Classes Classification model HSI results HSI+LiDAR results 

Accuracy kappa  Accuracy kappa  

Dalponte et al. (2008)  19 tree species + 4 land cover ML, SVM, kNN  - 0.88 - 0.89 

Jones et al. (2010)  6 broadleaf and 5 conifer species SVM  72.3 0.60 73.5 0.60 

Naidoo et al. (2012)  8 savanna species RF  80.3 0.76 87.7 0.84 

Heinzel, Koch (2012)  Pine, spruce, oak, and beech SVM  64.7 - 88.0 - 

Dalponte et al. (2012)  7 species + non-forest   SVM, RF  74.1 0.66 83.0 0.77 

5 forest types + non-forest   79.3 0.72 91.7 0.88 

Coniferous + broadleaf + non-forest 95.8 0.94 96.3 0.94 

Forest + non-forest  98.8 0.98 99.6 0.99 

Ghosh et al. (2014)  Beech, Douglas fir, oak, red oak, pine SVM, RF  86.0 - 86.0 0.83 

Sommer et al. (2015)  8 broadleaf and 5 conifer species RF  77.0 - 91.4 0.89 

Geerling et al. (2007) 5 floodplain vegetation ML 74.4 0.63 80.6 0.71 

8 floodplain vegetation 57.8 0.51 63.5 0.57 

Koetz et al. (2008) 9 land cover SVM 69.2 0.65 75.4 0.72 

Bigdeli et al. (2015) 15 land cover SVM, kNN, ML, 

fuzzy-kNN, fuzzy- ML 

- - 95.3 0.93 

Wang and Glennie (2015) 9 land cover ML, SVM 85.8 0.82 92.6 0.91 

Zhang et al. (2016) 11 vegetation types SVM, kNN, RF 84.6 0.81 91.1 0.89 
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In addition to the HSI spatial resolution, the density of LiDAR points per m
2
 may also 

interfere in the classification results of forest species. In this context, Dalponte et al. 

(2012) used two LiDAR acquisitions (low and high point density) to evaluate the effect 

of point density in the classification of hardwood and coniferous species. They also 

tested the effect of the spectral resolution of passive sensors, using a hyperspectral 

airborne sensor (Aisa Eagle) and a GeoEye-1 multispectral satellite sensor. The 

influence of the number and type of classes, which ranged from detailed (e.g., tree 

species) to broad vegetation (e.g., coniferous and broadleaf or forest and non-forest), 

was also evaluated. Finally, two classifiers (SVM and RF) were used to obtain the maps 

of species, vegetation types and land cover, by integrating LiDAR height metrics and 

selected spectral bands. The results showed that the hyperspectral data were more 

effective than the multispectral data, both integrated with LiDAR, for the classification 

of species and broad classes. Multispectral data considerably reduced the classification 

accuracy of tree species and forest types, while maintained good accuracy for the more 

generalized classes. LiDAR-derived height increased the classification accuracy when 

combined with both multispectral and hyperspectral data. High LiDAR point density 

provided more information for species-level classification than low point density. This 

greater level of information was related to the possibility of obtaining more metrics 

from higher density data, which increased the accuracy compared with the use of only 

maximum height. In this analysis, SVM was better than RF under all tested conditions. 

The choice of classifier may impact the outcome. As noted by Ghosh et al. (2014), 

several classifiers may yield similar results depending on the input data. An alternative 

to improve classification accuracy is to use decision-level integration of the results 

provided by different classifiers. Based on this strategy, Bigdeli et al. (2015) proposed 

the decision-level integration of LiDAR and HSI data for mapping 15 land cover 

classes. They also compared the performance of two groups of classifiers using crisp 

(SVM, ML, and kNN) and fuzzy (kNN and ML) approaches. In crisp classification, 

each pixel is associated with a class, whereas in fuzzy classification each pixel is related 

to a degree of pertinence to the classes. These results showed that LiDAR and HSI data 

integration improved the classification accuracy compared to the use of single-data 

alone (LiDAR or HSI). Both crisp and fuzzy decision-level fusion schemes produced 
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greater accuracy than any single classifier. However, the best accuracy was obtained 

from integrating the fuzzy classifiers. 

Studies that applied the integration of LiDAR and HSI data for the classification of land 

cover or forest species were mostly conducted over temperate or boreal ecosystems. 

Further studies are needed to fill knowledge gaps in tropical forests, which have greater 

structural complexity and biodiversity. 

 

2.5.2 Estimation of biophysical attributes: aboveground biomass (AGB) 

Remote sensing can be used to estimate biophysical attributes, such as canopy height, 

leaf area index (LAI), fractional cover, and AGB. Empirical relationships between the 

property of interest and remote sensing metrics are commonly used for this purpose 

(TORABZADEH et al., 2014). However, the accuracy of the empirical models based on 

passive optical data is generally limited due to the saturation of some reflectance-

derived metrics over high-density forests (FANG et al., 2012). Three-dimensional 

information obtained from LiDAR active sensors can improve canopy structure 

characterization and increase the accuracy of the estimates, especially over dense forests 

(MAN et al., 2014). Therefore, the integration of HSI and LiDAR data is currently 

being used to improve the biophysical attribute estimates provided by LiDAR, 

especially because of the capacity of HSI data to provide information on species 

composition, senescence, and stress (CLARK et al., 2011; SWATANTRAN et al., 

2011). Biophysical attributes such as basal area (ANDERSON et al., 2008) and LAI 

(THOMAS et al., 2011) had benefited from multisensor integration. However, several 

studies using the combination of HSI and LiDAR data for biophysical attributes 

estimation have focused on AGB. The results of some of them are summarized below. 

Different approaches can be used to integrate LiDAR with passive optical data (FENG 

et al., 2017). One approach is to use optical images for vegetation classification and 

then to establish LiDAR-based AGB models on the different vegetation types. Chen et 

al. (2012) used this approach with LiDAR and aerial photography data and observed 

improvements in the performance of the AGB model. Another alternative is to use both 

LiDAR and optical sensor metrics directly as predictors in AGB models. Several studies 

have used this approach with improved results in biomass estimation (ANDERSON et 
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al., 2008; VAGLIO LAURIN et al., 2014; LUO et al., 2017a). For instance, Vaglio 

Laurin et al. (2014) found that the combined use of LiDAR metrics with HSI reflectance 

bands improved the AGB estimates (R
2
 = 0.70) when compared to the sole use of the 

LiDAR height metrics (R
2
 = 0.64). Luo et al. (2017a) used Partial Least Square 

Regression (PLSR) models to estimate aboveground, belowground and total biomass in 

northwest China from LiDAR metrics and HSI vegetation indices. The results showed 

that LiDAR data had greater biomass prediction power when compared to vegetation 

indices. However, compared to single-LiDAR estimates, the combination of both data 

sources improved the biomass estimates, producing gains of 5.8%, 2.2%, and 2.6% for 

belowground, aboveground, and total biomass, respectively. Anderson et al. (2008) 

combined LVIS LiDAR data with AVIRIS hyperspectral data to estimate basal area, 

stem diameter, and AGB in an experimental mixed temperate forest area. The results 

showed that the data fusion improved the estimation of the three variables compared to 

models that used only LiDAR or only HSI. The improvements in R
2
 ranged between 8 

and 25%, while the decrease in the estimation error varied between 5 and 25%. 

Other AGB studies showed that the addition of hyperspectral data did not significantly 

improve the LiDAR estimates (CLARK et al., 2011; FASSNACHT et al., 2014; 

LATIFI et al., 2012). To evaluate the improvement in AGB and stem density models, 

Latifi et al. (2012) extracted various height and intensity metrics from LiDAR data. 

They combined LiDAR data with four types of hyperspectral metrics: 125 HyMap 

bands, the first 25 PCA components, the first 25 MNF components, and six spectral 

indices. These features were submitted to an evolutionary genetic algorithm for the 

selection of the most parsimonious variables. To estimate the biophysical attributes of 

interest (AGB and stem density), LiDAR height metrics were more effective than the 

HSI metrics. Only a few HyMap metrics contributed to the quantification of these 

attributes. 

Several factors may explain the difference in multisensor integration performance, such 

as the different modeling methods, sensor specifications, vegetation type of the study 

area, and field data sampling. Fassnacht et al. (2014) evaluated the performance of 

different AGB estimation methods (stepwise linear regression, SVM, RF, Gaussian and 

kNN processes). They tested for each method the influence of the data type (HSI, 

LiDAR or both) and field sample size in two study areas located in Chile and Germany. 
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The authors observed that the most important factor for improving the AGB estimation 

was the data type, with LiDAR being superior to HSI. Unlike other studies, the 

integration of LiDAR with HSI data did not improve model performance. In general, the 

prediction method was more important than the sample size. The RF method displayed 

the best AGB performance. The results suggest that the appropriate choice of the 

prediction method may be more effective for increasing performance than obtaining 

more field samples. However, similar to land cover classification studies, more research 

is necessary to confirm their findings over other study areas such as the complex 

tropical ecosystems of the Amazon. 

 

2.5.3 Estimation of biochemical and physiological attributes 

The leaf content of biochemical constituents, such as nitrogen, water, and 

photosynthetic pigments, provides an indicator of the physiological state of the 

vegetation. This information can be used to monitor the spatial and temporal dynamics 

of nutrient cycling, including the vegetation stress to a particular limiting condition or 

the photosynthetic ability of the local vegetation. The different biochemical constituents 

of plants selectively interact with radiation, absorbing energy more intensely at some 

specific wavelengths. Thus, remote sensing data with high spectral resolution allow the 

identification of absorption bands that can be used to estimate the presence and 

concentration of biochemical constituents (NIU; YAN, 2012). 

Most studies on the biochemical properties of vegetation from spectral features were 

performed at the leaf level or over small canopies under controlled laboratory conditions 

(BLACKBURN, 2002). Few studies have examined the HSI applicability in estimating 

biochemical constituents at the canopy level over complex forests (CURRAN et al., 

1997, SMITH et al., 2003). One difficulty in obtaining remote biochemical estimates at 

the canopy/landscape levels is the interference of canopy structure on the spectral 

measurements. Canopy structure can mask the biochemical spectral features, preventing 

their detection. Also, differences in viewing-illumination geometry produce different 

degrees of shadows for the sensors, affecting the remote detection of canopy 

composition (ASNER; MARTIN, 2008). 
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Empirical models, radiative transfer models, and reflectance inversion models have 

been used to describe the effects of viewing-illumination, atmospheric transmissivity, 

and canopy architecture on the reflectance spectra and canopy biochemical attributes 

detected by the sensors (ASNER et al., 1998; ASNER; MARTIN, 2008; BROGE, 

LEBLANC, 2000; ZARCO-TEJADA et al. 2001). Asner and Martin (2008) evaluated 

the relationship between canopy reflectance and biochemical properties by simulating 

different conditions of canopy structure and viewing-illumination geometry. The study 

was supported by field spectral and biochemical data acquired over 162 forest tropical 

species in Australia. First, the authors evaluated the relationship between biochemical 

and spectral data at leaf-level using PLSR analysis. They found a good correlation 

(0.79-0.91) between the leaf reflectance and biochemical constituents such as 

chlorophyll, carotenoid, and water content. Using field data as a reference, the spectral 

reflectance curve of the tree species was then simulated with geometric-optical radiative 

transfer models. The progressive increase in canopy structural characteristics in 

simulated crowns had little effect on pigment and water estimation but affected the 

prediction of nitrogen and phosphorus content. The two factors that most negatively 

affected the prediction of biochemical constituents were the LAI and viewing-

illumination geometry. To circumvent these limitations, the authors suggested 

integrating HSI with LiDAR data to filter out high LAI pixels containing only the 

illuminated fraction of the canopy. In practice, this strategy reduces the negative 

influence of shadows on the estimates. 

Thus, the combination of HSI and LiDAR data can assist in the pixel sampling strategy 

to look for portions of the canopies where the variation in the vegetation structure and 

viewing-illumination geometry affects less the prediction of biochemical parameters. In 

this approach, the contribution of LiDAR data to biochemical modeling is indirect, 

because only HSI data are used as independent variables in regression models. Because 

the vegetation structural information is related, to some extent, to biochemical 

information, another strategy is to use LiDAR metrics directly in the prediction models 

(THOMAS et al., 2008). Unfortunately, despite the potential of using both HSI and 

LiDAR data for the estimation of biochemical and physiological parameters, only a few 

studies of this nature have been conducted to date. 
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Thomas et al. (2008) extracted height metrics from LiDAR data and spectral indices 

from HSI data to predict chlorophyll and carotenoid concentrations in Canadian boreal 

forests. The authors integrated the multisource metrics by dividing the LiDAR height 

metric per the derivative chlorophyll index. The integrated data were more efficient in 

the estimation of photosynthetic pigments compared to the exclusive use of LiDAR or 

HSI metrics, producing an R
2
 value higher than 0.90. The mapping of total chlorophyll 

concentration in the study area revealed a spatial pattern indicative of the composition 

of different tree species. 

Other studies used HSI data as independent variables in regression models after 

applying masks derived from LiDAR height (BLACKBURN, 2002) or a combination of 

LiDAR height and NDVI thresholds (ASNER et al., 2015). The masks isolated canopy 

pixels, removing areas of clearings, shadows, water, and exposed soils from the 

analysis. The results found by Blackburn (2002) showed that the HSI metrics, without 

the application of the mask, were not related to the photosynthetic pigment 

concentration when considering the data set containing both coniferous and hardwood 

species. However, considering only the hardwoods, a relationship was observed 

between the position of the red-edge wavelength and the pigment concentration. The 

use of the LiDAR-derived mask did not produce significant improvements in the 

estimation of pigment concentration in hardwood species. However, it allowed the 

estimation of pigment concentration per unit of leaf mass for conifer species. 

Asner et al. (2015) also evaluated other biochemical constituents besides photosynthetic 

pigments. The use of the mask before modeling produced the best performance for 

estimating photosynthetic pigments, nitrogen, phosphorus, iron, and carbon, with R
2
 

values ranging from 0.39 to 0.58. The lower performance of the estimates found in this 

study area may be related to the greater complexity of tropical forests compared to tree 

plantations or boreal forests. Higher biodiversity and structural complexity make the 

field sampling a more difficult process, especially considering the sampling restriction 

to the solar illuminated foliage. Although further studies are needed to assess the 

effectiveness of these masking strategies, the results indicate the potential use of HSI 

and LiDAR data for biochemical estimates, even over highly complex forests. 
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3 STUDY AREA AND REMOTE SENSING DATA ACQUISITION 

This study was conducted at 12 sites across the Brazilian Amazon biome, distributed in 

the states of Amazonas, Pará, Rondônia, and Mato Grosso (Figure 3.1). At each site, 

airborne LiDAR and HSI data were collected in transects of approximately 12.5 x 0.3 

km. Most sites were represented by a single transect, while the sites AUT, DUC, and 

TAP were covered by two transects each (Figure 3.2). In this chapter, the characteristics 

of the study area and the LiDAR and HSI data will be described.  

 

Figure 3.1 - (A) Distribution of the studied sites in the Brazilian Amazon Biome. 

Examples of sampled forests are shown in (B) for a seasonally flooded 

undisturbed mature forest (MAM site) and in (C) for a terra firme forest 

degraded by understory fire (AUT site). 

 

Source: Author's production. 
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Figure 3.2 - Landscape (area of 25 x 25 km) around each site represented by the HSI 

and LiDAR superposed flight lines (transects): (A) MAM, (B) ZF2, (C) 

DUC, (D) AUT, (E) TAP, (F) SFX1, (G) SFX2, (H) PAR, (I) JAM, (J) 

ALF, (K) FN1, and (L) FN2. The images are OLI/Landsat-8 color 

composites with bands 6 (red), 5 (green) and 4 (blue), from 2016-2017.  

 

Source: Author's production. 
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3.1 Study area characterization 

The study sites encompass a wide variety of anthropogenic, climatic, geological, and 

edaphic conditions. Regarding the forest disturbance conditions, the MAM site, located 

within the Mamirauá Sustainable Development Reserve (a conservation unit of the 

Amazonas state), is covered by undisturbed flooded forests (Figure 3.2A). The forests 

of both ZF2 and DUC sites, located in Manaus (AM), are predominantly undisturbed 

(Figure 3.2B and 3.2C). The DUC site is mainly located within the Adolpho Ducke 

reserve, an area of 100 km
2
 established in 1962. However, the site also encompasses 

some secondary forests, mostly in old succession stages, situated at the northern borders 

of the reserve. In the AUT site (Figure 3.2D), located in Autazes (AM), some small 

areas were cleared close to highways and rivers, becoming mostly secondary 

successions at the early stages of vegetation regrowth. The area also has a history of 

forest fires under the effect of the El Niño Southern Oscillation (ENSO) in 1998/99, 

2010 and 2015/16. Few relatively undisturbed areas are found at this site. Similarly, the 

TAP site, in the municipality of Belterra (PA), accounts for a few undisturbed areas 

(Figure 3.2E). The site is located between the boundaries of the FLONA Tapajós, 

covering the community of São Jorge, which contains some secondary forests. Some 

areas in the FLONA were submitted to selective logging. Besides, extensive fires also 

affected the area, especially in 2015/16. The SFX1 and SFX2 sites (Figure 3.2F and 

3.2G) are located in the São Félix do Xingu municipality (PA) and are mainly 

composed of forest fragments degraded by recurrent understory fires. The sites also 

encompass few early secondary successions. The PAR site (Figure 3.2H), located in 

Paragominas (PA), comprises very degraded forests by conventional logging operations 

followed by large fire events in 1992, 1998, 2006, and 2016. Some areas of secondary 

forests are also observed at this site. The JAM site (Figure 3.2I), located in the Itapuã do 

Oeste municipality (RO) at the FLONA Jamari, is a conservation unit of sustainable 

use, where reduced-impact logging is authorized by forest concession (SFB, 2020). The 

ALF site (Figure 3.2J) is located between the Alta Floresta and Novo Mundo 

municipalities, in the state of Mato Grosso (MT). The site is mainly covered by mature 

forests, either undisturbed or disturbed by understory fires and fragmentation, with the 

occurrence of few secondary forests. The sites FN1 (Figure 3.2K) and FN2 (Figure 

3.2L) are located in the Feliz Natal municipality (MT), a transitional region between 
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ombrophilous and seasonal forests. The region is composed of large deforested areas. 

Except for some gallery forests, the remaining mature forests over the site are degraded 

by conventional logging and/or major fire events. 

The climate of the Brazilian Amazon biome is classified as type A (equatorial) 

according to the Köppen-Geiger classification (KOTTEK et al., 2006). Rainfall gradient 

ranges from wetter conditions on the MAM, ZF2, DUC, and AUT sites (rainy equatorial 

Af climate) to drier conditions on the PAR, SFX1, SFX2, ALF, FN1, and FN2 sites (dry 

and wet tropical Aw climate). The climate of sites TAP and JAM is classified as Am 

(tropical monsoon), presenting intermediate conditions between the rest of the sites. 

Overall, prolonged dry seasons (three to five months) are usually observed toward the 

eastern Amazon. The long-term (1973-2013) annual rainfall reported for the Brazilian 

Legal Amazon (BLA) is approximately 2100 mm (ALMEIDA et al., 2017). In the 

studied sites, annual rainfall ranges from 1800 mm at the FN2 site to more than 3000 

mm at the MAM site. The mean annual temperature over the BLA is 26.5 ºC 

(ALMEIDA et al., 2017), varying in the study sites from 24.6 ºC at SFX2 to 27.0 ºC at 

AUT. 

Concerning geological and edaphic conditions, the Amazon is commonly classified into 

regions with similar substrate origin and soil fertility (QUESADA et al., 2011). From 

the sites used in this study, MAM, ZF2, DUC, AUT, and TAP are part of the so-called 

Central Amazonia region, comprised of old sedimentary substrates and low soil fertility. 

On the other hand, the sites PAR, SFX1, SFX2, JAM, ALF, FN1, and FN2 are located 

over the Brazilian Shield composed of pre-Cambrian rocks with related high fertility 

soils. The predominant soil types are Acrisols and Ferralsols, with Gleysols occurring in 

the seasonal floodplain of the MAM site (QUESADA et al., 2011). From a topographic 

point of view, all sites are considered as lowlands having altitudes lower than 500 m. 

The AUT and MAM sites present the lowest altitude (< 50 m), while the southeastern 

sites (SFX1, SFX2, ALF, FN1, and FN2) show the highest values ranging from 200 to 

500 m (Table 3.1). 
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Table 3.1 - Description of the study sites.  

Brazilian state Site Latitude Longitude Altitude MAT MAP CWD Forest 

type 

Forest 

status    (º)  (º) (m) (ºC) (mm.yr
-1

) (mm.yr
-1

) 

Amazonas (AM) MAM -2.76 -65.10 36.7 26.7 3406 0.0 SFO UF 

 ZF2 -2.60 -60.21 61.6 26.4 2356 -60.7 TFO UF 

 DUC -2.95 -59.94 86.2 26.5 2308 -127.3 TFO UF, SF 

 AUT -3.51 -59.26 25.7 27.0 2293 -109.2 TFO UF, DF, SF 

Pará (PA) TAP -3.12 -54.95 123.0 25.8 1848 -317.0 TFO UF, DF, SF 

 SFX1 -6.43 -52.11 205.3 24.9 1981 -213.4 TFO DF, SF 

 SFX2 -6.56 -51.81 289.1 24.6 1964 -208.5 TFO DF, SF 

 PAR -3.28 -47.52 128.8 25.9 1915 -512.8 TFO DF, SF 

Rondônia (RO) JAM -9.12 -63.01 93.6 25.2 2388 -231.7 TFO UF, DF 

Mato Grosso (MT) ALF -9.58 -55.90 254.0 26.6 2216 -328.5 TFO UF, DF, SF 

 FN1 -12.00 -54.20 320.0 24.7 1815 -454.6 TFT DF, SF 

  FN2 -12.26 -55.10 338.7 24.7 1807 -446.4 TFT UF, DF, SF 

Altitude are from LiDAR-based DTM. MAT (Mean Annual Temperature) and MAP (Mean Annual Precipitation) are from WorldClim version 2 

(FICK; HIJMANS, 2017). CWD (Climatic Water Deficit) is based on Chave et al. (2014). Abbreviations: SFO, Seasonally Flooded Ombrophilous 

forest; TFO, Terra Firme (unflooded) Ombrophilous forest; TFT, Terra Firme (unflooded) Transitional forest (ecotone between ombrophilous and 

seasonal forests); UF, Undisturbed Forest; DF, Disturbed Mature Forest (submitted to fragmentation, fire, or selective logging); SF, Secondary Forest. 
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3.2 Airborne LiDAR data 

Airborne discrete-return LiDAR data were acquired between January 2016 and April 

2017 using the Trimble HARRIER 68i system at an average height of 600 m above 

ground and a scan angle of 45º. The LiDAR sensor recorded multiple returns with a 

minimum point density of four points.m
-2

 and a small footprint of approximately 30 cm. 

The horizontal accuracy varied among sites from 0.035 m to 0.185 m, while the vertical 

accuracy ranged from 0.07 m to 0.33 m. The raw point cloud of each site was 

preprocessed by first identifying and removing isolated noisy points with the lasnoise 

function, from the LASTools software (ISENBURG, 2018). The parameters step_xy, 

step_z and isolated were set to 10, 5 and 5, respectively. Ground points were filtered 

(GroundFilter function with cellsize of 10, tolerance of 0.05 and 10 iterations) and then 

interpolated (TINSurfaceCreate function) into a digital terrain model (DTM) with a 1 m 

spatial resolution, using the FUSION/LDV software (MCGAUGHEY, 2014). To obtain 

the height above ground of each point, the DTM was subtracted from point elevations 

(function Clipdata, FUSION/LDV). The normalized point clouds were clipped 

according to the spatial extent of samples (function PolyClipData, FUSION/LDV) to 

further calculate the LiDAR metrics at the plot level. 

Several LiDAR metrics have been proposed as potential predictors of canopy structural 

attributes such as AGB (LU et al., 2014; ZHANG Z. et al., 2017). Here, we tested a 

variety of area-based LiDAR metrics (Table 3.2) related to height distribution (height 

statistics such as mean, standard deviation, and percentiles), canopy cover (proportion 

of returns and Leaf Area Density), structural complexity (Shannon and Simpson 

diversity indices), and topography (terrain roughness). 
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Table 3.2 - Metrics calculated from LiDAR data. 

Metrics Description 

Height 

H.max Maximum height (m). 

H.mean Mean height (m) of first returns above 2 m. 

H.pX X
th
 (05, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, or 95

th
) percentile of 

height distribution of first returns above 2 m. 

H.sd Height standard deviation (m) of first returns above 2 m. 

H.cv Height coefficient of variation (%) of first returns above 2 m. 

H.skew Skewness of height distribution of first returns above 2 m. 

H.kurt Kurtosis of height distribution of first returns above 2 m. 

  
Canopy cover 

PDa_b Number of first returns between a height interval a_b (2_10, 10_20, or 

20_30) divided by the number of all first returns. 

PDh Number of first returns above a height h (2, 6, 10, 14, 18, 22, 26, or 30) 

divided by the number of all first returns.  

PD1st Number of first returns above 2m divided by the number of all returns 

above 2m. 

LADa_b Leaf Area Density (m
2 

m
-3

) between the height interval a_b (2_10, 10_20, 

or 20_30). 

LADh Leaf Area Density (m
2
 m

-3
) above the height h (2, 6, 10, 14, 18, 22, 26, or 

30). 

  
Structural complexity 

HSCI Shannon Structural Complexity Index, calculated from the LAD profile. 

DSCI Simpson Structural Complexity Index, calculated from the LAD profile. 

 
 Topography 

Roughness Mean terrain roughness from a 10-m DTM. 

 

Height metrics were calculated from the first returns that were considered to belong to 

the tree canopy, i.e., points above a 2-m height (NÆSSET; GOBAKKEN, 2008). We 

used only the first returns because they are more related to canopy surface structure 

(THOMAS et al., 2006) and are more stable across different LiDAR acquisition 

settings, such as the point density (SINGH et al., 2016) and flying altitude (NÆSSET, 

2009). 

Two types of canopy cover-related metrics were calculated. The first consists of point 

densities (PD) at different height intervals (e.g., the proportion of returns above 2 m or 

between 2 and 10 m) or for different return types (PD1st, the proportion of first returns 
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related to all returns). The second is based on the Leaf Area Density (LAD) profile, 

which corrects the LiDAR point density from occlusion effects (BOUVIER et al., 

2015). The LAD profile was calculated with the LAD function of the lidR package 

(ROUSSEL; AUTY, 2018), with a height bin of 2 m and an extinction coefficient k of 

0.695. The constant k was based on the study by Stark et al. (2012) in central Amazon. 

Canopy cover-related metrics were also derived using just the first returns, except the 

PD1st metric, which also considered the number of all canopy returns in its formulation. 

Metrics related to canopy structural complexity are based on two indices commonly 

used to describe species diversity in biological systems: the Shannon (H‟) and Simpson 

(D) indices (MAGURRAN, 2004). These diversity indices combine richness (number of 

species) and evenness (species abundance distribution) into a single measure. When 

applied to LiDAR data, they operate as a measure of vertical structural diversity, 

increasing with the vertical extent of the canopy and with a more equal distribution of 

point density or leaf area density across the profile (STARK et al., 2012). While the 

Shannon index is more strongly influenced by richness (in that case, canopy height), the 

Simpson index gives more weight to evenness (i.e. the homogeneity of canopy area 

profiles). Therefore, we also tested this approach for measuring structural complexity. 

The HSCI (Equation 3.1) and DSCI (Equation 3.2) indices used here are equivalent to 

the Shannon and Simpson indices, respectively. However, they were normalized by a 

fixed number of height bins to have a scale between 0 and 1: 

     
 ∑       (  )

  
    

  (  )
 

(3.1) 

      
 

∑ (  
 )      

   

 
(3.2) 

where        ∑    ⁄ , i.e. the proportion of LAD in height bin i; and HB is the 

maximum number of height bins. In this study, HB was equal to 30, because we used 2 

m bins between 0 and 60 m (maximum canopy height across the field plots). 

Finally, we calculated the terrain roughness for characterizing the local topographic 

variability. Roughness was defined as the difference between the highest and lowest 

altitude in a 3 × 3 moving window (WILSON et al., 2007). To avoid extreme localized 
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roughness values, we averaged the 1-m DTM to obtain a 10-m DTM, which served as 

input data in the analysis. 

 

3.3 Airborne HSI data 

Airborne hyperspectral data were collected between September and October 2017 using 

the AISAFenix sensor (Specim, Spectral Imaging, Ltd.) at an average height of 800 m 

above ground. To reduce variations in viewing-illumination geometry, we oriented the 

flight lines simultaneously close to the N-S direction. In addition, the HSI data were 

preferentially collected over sunny days between 10 a.m. and 1 p.m. (local time). The 

mean solar zenith angle (SZA) during data acquisition was 30º with a standard deviation 

of 7º. The at-sensor radiance was measured in 361 bands in the spectral range of 380-

2500 nm, where 87 bands were located in the VNIR (visible and near-infrared) region 

and 274 bands in the SWIR (shortwave infrared). Bandwidth ranged from 5.7 nm 

(SWIR) to 6.8 nm (VNIR). The spatial resolution was 1 m. Due to noise, we removed 

bands outside the range of 460-2330 nm and around the two major spectral intervals of 

atmospheric water vapor absorption (1400 and 1900 nm), reducing the number of bands 

to 232. We used the Atmospheric/Topographic Correction for Airborne Imagery tool 

(ATCOR-4; version 6.3) to convert the radiance images into atmospherically-corrected 

surface reflectance data. Water vapor estimates were based on the 940-nm absorption 

feature. Data provided by a GPS onboard the aircraft were used for geometric correction 

of the scenes. 

In addition to the 232 reflectance bands (Rλ, which λ is the wavelength band center in 

nm), we calculated several metrics from the HSI data: 30 vegetation indices (Table 3.3), 

20 continuum-removal absorption parameters, and 6 sub-pixel metrics based on the 

linear spectral mixture analysis (SMA). These metrics explored the potential 

information associated with vegetation properties at the main spectral regions: visible 

region (460-690 nm), mainly associated with pigments; red-edge interval (690-760 nm), 

sensitive to changes in chlorophyll; near-infrared (NIR: 760-1300 nm), expressing 

scattering of radiation by canopy constituents and having absorption bands due to leaf 

water at selected wavelengths (980 and 1200 nm); and SWIR (1500-2330 nm), having 

absorption bands due to lignin-cellulose and nitrogen.  
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Table 3.3 - Vegetation indices calculated from the AISAFenix reflectance data. 

Abbr. Vegetation Index Equation Reference 

ARI1 Anthocyanin Reflectance Index 1 (1/R549) - (1/R701) Gitelson et al. (2006) 

ARI2 Anthocyanin Reflectance Index 2 [(1/R549) - (1/R701)] * R797 Gitelson et al. (2006) 

CAI Cellulose Absorption Index 0.5 (R2039 + R2199) − R2100 Nagler (2000) 

CRI1 Carotenoid Reflectance Index 1 (1/R515) - (1/R549) Gitelson et al. (2006) 

CRI2 Carotenoid Reflectance Index 2 (1/R515) - (1/R701) Gitelson et al. (2006) 

DLAI Difference for Leaf Area Index R1724 - R969 le Maire et al. (2008) 

DWSI1 Disease Water Stress Index 1 R797/R1662 Apan et al. (2004) 

DWSI2 Disease Water Stress Index 2 R1662/R549 Apan et al. (2004) 

DWSI3 Disease Water Stress Index 3 R1662/R680 Apan et al. (2004) 

DWSI4 Disease Water Stress Index 4 R549/R680 Apan et al. (2004) 

DWSI5 Disease Water Stress Index 5 (R797 + R549)/(R1662 + R680) Apan et al. (2004) 

EVI Enhanced Vegetation Index 
2.5 (R797 – R673)/(R797 + 6 R673 – 7.5 R474 

+1) 
Huete et al. (2002) 

GNDVI 
Green Normalized Difference 

Vegetation Index 
(R797 - R549)/(R797 + R549) Gitelson et al. (1996) 

LWVI1 Leaf Water Vegetation Index 1 (R1096 - R983)/(R1096 + R983) Galvão et al. (2005) 

LWVI2 Leaf Water Vegetation Index 2 (R1096 - R1204)/(R1096 + R1204) Galvão et al. (2005) 

NDBleaf 
Normalized Difference for Leaf 

Biomass 
(R2160 - R1540)/(R2160 + R1540) le Maire et al. (2008) 

NDchl 
Normalized Difference for Leaf 

Chlorophyll 
(R927 - R708)/(R927 + R708) le Maire et al. (2008) 

NDLI 
Normalized Difference Lignin 

Index 

[log(1/R1751) − log(1/R1679)]/[log(1/R1751) 

+ log(1/R1679)] 
Serrano et al. (2002) 

NDNI 
Normalized Difference Nitrogen 

Index 

[log(1/R1512) – log(1/R1679)]/[log(1/R1512) 

+ log(1/R1679)] 
Serrano et al. (2002) 

NDVI 
Normalized Difference 

Vegetation Index 
(R797 - R680)/(R797 + R680) Rouse et al. (1973) 

NDWI 
Normalized Difference Water 

Index 
(R859 – R1237)/(R859 + R1237) Gao (1996) 

PRI Photochemical Reflectance Index (R529 - R570)/(R529 + R570) Gamon et al. (1992) 

PSRI 
Plant Senescence Reflectance 

Index 
(R680 - R502)/R749 

Merzlyak et al. 

(1999) 

PWI Plant Water Index R900/R969 Peñuelas et al. (1997) 

REP Red-Edge Position 700 + 40 [(Rre - R701)/(R742 - R701)] Guyot; Baret (1988) 

  
Rre = (R673 + R783)/2 

 

RVSI 
Red-Edge Vegetation Stress 

Index 
[(R714 + R749)/2] - R735 Merton (1998) 

SR Simple Ratio R797/R680 Jordan (1969) 

VIgreen Vegetation Index green (R549 - R680)/(R549 + R680) Gitelson et al. (2002) 

VOG1 Vogelmann Index 1 R742/R721 
Vogelmann et al. 

(1993) 

VOG2 Vogelmann Index 2 (R735 - R749)/(R714 + R728) 
Vogelmann et al. 

(1993) 
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Five continuum-removal absorption bands were defined from fixed wavelength edges: 

461-536 nm (495-nm band), 556-749 nm (670-nm band), 893-1074 nm (980-nm band), 

1097-1265 nm (1200-nm band), and 2039-2199 nm (2100-nm band). The continuum-

removed spectrum was calculated by dividing the reflectance values within the 

absorption band by the corresponding values of a continuum line established between 

the edges (CLARK; ROUSH, 1984). To reduce noise in the original reflectance, the 

spectra were firstly smoothed using a Savitzky-Golay filter with a window size of five 

bands and a first polynomial order. The continuum-removed absorption bands were 

characterized by the depth (Dc) at the absorption center (c), the width at half depth (Wc), 

the band area (Ac, the sum of depths along the band), and the asymmetry (Asc, the ratio 

of the area left to area right of the band center) (KOKALY et al., 2009). 

The fractional abundance of the green vegetation (GV), shade, and non-photosynthetic 

vegetation/soil (NP) endmembers were calculated using the unmix function from the R 

package hsdar (LEHNERT et al., 2018). To select endmembers for GV and NP, we 

applied sequentially the minimum noise fraction (MNF) and the pixel purity index (PPI) 

techniques using the Environment for Visualizing Images (ENVI; Harris Geospatial 

Solutions, Inc). Candidate endmembers detected by the PPI were projected over an n-

dimensional scatterplot for finding the purest pixels at each site. The final GV and NP 

endmembers were then obtained by averaging the purest pixels of all sites (Figure 3.3). 

For the shade endmember, we considered a photometric shade with a uniform 

reflectance of zero (CLARK et al., 2011). The endmember spectrum of NP represents a 

mixture of bright soils and non-photosynthetic vegetation since these scene components 

could not be distinguished from each other in the images. 

All HSI metrics were first obtained on a pixel-basis and then converted to the plot-level 

by calculating the average of all pixels values within the sample plot. Because shade 

generally relates to canopy structure, we also calculated the proportion of pixels with 

shade fraction below 30% (S0_30), between 30 and 60% (S30_60), and above 60% (S60). 
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Figure 3.3 - Endmembers (GV= green vegetation, NP= non-photosynthetic 

vegetation/soil, and shade) spectra used in the spectral mixture analysis 

(thick lines). The colored area around the lines represents the standard 

deviation of the sites. 

 

Source: Author's production. 
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4 GENERAL METHODOLOGY 

Figure 4.1 summarizes the main methodological steps used in this thesis. In chapters 5 

and 6, LiDAR and HSI metrics were used as predictors for modeling forest ecosystem 

properties. However, in chapter 5, we focused on a classification task, i.e. predicting a 

categorical property (forest disturbance status). Three classification machine learning 

models were tested: Random Forest (RF), Stochastic Gradient Boosting (SGB), and 

Support Vector Machine (SVM). These models were calibrated and validated based on 

the disturbance classes detected from Landsat time series analysis. 

 

Figure 4.1 - Flowchart summarizing the main methodological steps of this thesis. Input 

data are represented in gray boxes, while processed data are indicated in 

black outline white boxes. Modeling processes are shown in dotted 

outline white boxes. 

 

Source: Author's production. 

 

In chapter 6, six regression models were used to estimate AGB from the LiDAR and 

HSI metrics. The reference AGB used for training and testing models was obtained 
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from 132 available field plots. The best models were then used to predict AGB over 600 

samples where we collected disturbance data. As no single best regression method was 

found, with more than one method showing similar prediction power, the mean AGB 

derived from these methods was obtained. Other studies have suggested that model 

averaging generally performs better than single-model predictions (EXBRAYAT et al., 

2013; HU et al., 2015). 

Those predicted AGB, together with environmental and anthropogenic disturbance data 

from the 600 samples over the Brazilian Amazon, were used in chapter 7 to analyze the 

major factors affecting AGB variability. For this purpose, we performed a stepwise 

linear regression for both mature and secondary forests using the estimated AGB as the 

dependent variable and the environmental/anthropogenic variables as potential 

predictors. Further details on the methods will be presented in the specific chapters. 
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5 CHARACTERIZING TROPICAL FOREST DISTURBANCE STATUS WITH 

LIDAR AND HYPERSPECTRAL REMOTE SENSING 

5.1 Introduction 

The Brazilian Amazon forest is recognized for its key role in providing local, regional 

and global ecosystem services, including biodiversity maintenance, climate regulation, 

and greenhouse gas mitigation (STRAND et al., 2018). However, these benefits have 

been threatened by the large extent of deforestation, forest degradation and their 

synergistic relation with climate change (NOBRE et al., 2016). The conversion of 

primary forests by deforestation in the Brazilian Amazon has been well monitored over 

the past three decades (INPE, 2019). In contrast, the extent of forests regenerating after 

deforestation and forests subjected to more subtle disturbances, such as selective 

logging and fire, is less well characterized (ASNER et al., 2009a; TYUKAVINA et al., 

2016). Monitoring the extent of the remaining undisturbed forests, as well as the 

expansion of disturbed mature forests and secondary successions at different vegetation 

regeneration stages, is critically needed for improving conservation, management, and 

restoration strategies. Moreover, discriminating forest status under anthropogenic 

influences can help minimize uncertainties in carbon emission estimates due to forest 

disturbance and carbon uptake through forest recovery. 

In order to better characterize different tropical forest disturbance status, the 

understanding of how forest structural and functional traits respond to anthropogenic 

disturbances is a critical goal. Remote sensing features derived from passive 

multispectral (MSI) or hyperspectral imaging (HSI) are generally related to chemical 

and compositional traits, having great potential for differentiating land use and land 

cover (LULC) classes. For instance, Vieira et al. (2003) showed that the combination of 

NDVI and ETM+/Landsat-7 reflectance of band 5 better separated different 

successional stages in eastern Amazonia. Da Silva et al. (2014) found an overall 

accuracy of 89% for mapping LULC in the Tapajós National Forest (Pará-Brazil) by 

using spectral and textural attributes from the ALI/EO-1 sensor. In the same study area, 

Galvão et al. (2009) demonstrated the potential of the hyperspectral multiangular 

CHRIS/PROBA data for the discrimination between primary forest and three stages of 

secondary successions. Thenkabail et al. (2004) established the advantages of using 
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narrowband Hyperion data over broadband IKONOS, ETM+, and ALI data for 

classifying complex rainforest vegetation in southern Cameroon. 

Active remote sensing, particularly LiDAR, is very suited to characterize vegetation 

structural traits. It has shown promising results for discriminating successional stages in 

tropical forests (BISPO et al., 2019; CASTILLO et al., 2012). The structural 

information provided by LiDAR, along with the spectral information provided by HSI, 

can better describe the highly heterogeneous human-modified tropical forests. Sun et al. 

(2019) reported that waveform LiDAR combined with hyperspectral metrics generally 

produced more accurate forest age maps than using a single data source in a tropical dry 

forest of Costa Rica. Despite the potential of this synergism in data analysis, there are 

no investigations on the Amazonian tropical moist forests to test the combined use of 

LiDAR and hyperspectral data to discriminate LULC classes in human-modified areas. 

In this context, this chapter aims to test the effectiveness of LiDAR and HSI data, alone 

and in combination, to classify forest disturbance status (undisturbed forests, disturbed 

forests, and two stages of secondary forests). Several LiDAR and HSI metrics related to 

structural and functional characteristics were calculated and submitted to three machine 

learning algorithms: Random Forest (RF), Stochastic Gradient Boosting (SGB), and 

Support Vector Machine (SVM). Thus, the effect of using multiple data sources and 

different classifiers was tested to better characterize complex forests at different stages 

of disturbance/recovery in the Brazilian Amazon. 

 

5.2 Material and Methods 

5.2.1 Remote sensing data and reference disturbance classes 

Twelve sites distributed throughout the Brazilian Amazon biome were considered in 

this study (Table 5.1). All study sites were surveyed with both airborne small-footprint 

discrete-return LiDAR and airborne high spatial resolution (1 m) HSI. LiDAR data were 

acquired between 2016 and 2017 by the Trimble HARRIER 68i system, whereas HSI 

data were obtained in 2017 by the AISAFenix sensor. The overlapping flight lines of 

LiDAR and HSI measured approximately 12.5 km by 0.3 km. 
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Table 5.1 - Sample distribution of forest disturbance classes (SF1-15yr: initial-to-

intermediate secondary forests; SF16-32yr: advanced secondary forests; 

DF: disturbed mature forests; and UF: undisturbed mature forests) across 

the studied sites. 

Site Sample distribution by class 

  SF1-15yr SF16-32yr DF UF 

MAM 0 0 0 50 

ZF2 0 0 0 50 

DUC 3 18 0 29 

AUT 18 4 21 7 

TAP 10 4 31 5 

SFX1 3 0 47 0 

SFX2 2 0 48 0 

PAR 8 10 32 0 

JAM 0 0 35 15 

ALF 1 1 18 30 

FN1 6 3 41 0 

FN2 0 1 44 5 

Total 51 41 317 191 

 

Besides the airborne remote sensing data, we also used Landsat time series 

(TM/Landsat-5, ETM+/Landsat-7, and OLI/Landsat-8) from 1984 to 2017 (more than 

32 images per site) to identify the status of the reference forest disturbance over the 

sites. Four classes of forest disturbance were defined based on visual inspection of the 

Landsat images of the time series: initial-to-intermediate secondary forests (SF1-15yr); 

advanced secondary forests (SF16-32yr); disturbed mature forests (DF); and undisturbed 

mature forests (UF). We considered as mature forests the areas under permanent natural 

forest cover since 1984. Undisturbed mature forests were then defined as mature forests 

that showed no evidence of disturbance by fire or selective logging, while disturbed 

mature forests presented at least one of those disturbance types. Secondary forests or 

successions were defined as forests regenerating after complete deforestation. Although 

in some studies secondary forests are not distinguished from disturbed mature forests, 

we considered that these forests are sufficiently different in structure, composition, 

dynamics, and management to justify their distinction (PUTZ; REDFORD, 2010). 

Secondary forests in the Amazon are commonly separated into three successional stages 

based on the stand age (GALVÃO et al., 2009; MORAN et al., 2000): initial (< 5 

years), intermediate (5-15 years), and advanced (> 15 years) successions. Here, due to 
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the limited coverage of the initial successions over the study sites, we grouped the initial 

and intermediate successions into a broader class. Therefore, the class SF1-15yr consists 

of areas where the last deforestation event occurred between 2002 and 2016, while the 

SF16-32yr areas were deforested before 2002. 

 

5.2.2 Sample allocation 

To collect data for training and testing the classification models, a total of 600 samples 

(50 samples per 12 sites) were allocated in forest cover areas within the flight lines of 

LiDAR and HSI. The samples were distributed in a spatially balanced way along the 

flight lines (Figure 5.1), aiming to represent the variability of each site in terms of 

anthropogenic disturbances and environmental conditions. The samples were separated 

by at least 100 m from each other. All samples over undisturbed forests were placed by 

at least 300 m from the forest edges. To capture the spatial variation of forest canopies 

within a stand, the sample unit chosen was a square plot of 0.25 ha (50 x 50 m). Plots of 

0.25 ha have adequate size to represent the structural variability of tropical forests, as 

shown in previous studies (GRUSSU et al., 2016; ZOLKOS et al., 2013). After tracking 

the 600 samples over time using the Landsat time series of images, we allocated 51 

samples in the SF1-15yr class, 41 in the SF16-32yr class, 317 in the DF class, and 191 in the 

UF class. 
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Figure 5.1 - Example of sample allocation in four sites: (A) MAM, in the Amazonas 

state; (B) JAM, in the Rondônia state; (C) PAR, in the Pará state; and (D) 

ALF, in the Mato Grosso state. Samples are represented by small white 

squares. The flight lines are represented by the AisaFenix false-color 

composite with bands centered at 1601 nm (red), 900 nm (green) and 680 

nm (blue). 

 

Source: Author's production. 

 

5.2.3 LiDAR and HSI metrics 

From the LiDAR and HSI data, structural and functional metrics were derived over the 

sample plots to be used as predictors in machine learning models. A total of 34 area-

based LiDAR metrics were considered, including metrics related to height distribution 

(e.g., mean, standard deviation, and percentiles of height), canopy cover (proportion of 

first returns and Leaf Area Density in a specific height interval), structural complexity 

(Shannon and Simpson diversity indices), and topography (terrain roughness). From the 

HSI data, we considered a total of 278 metrics: 232 reflectance bands, 30 vegetation 

indices, 10 continuum-removal absorption parameters (depth and width at five 

absorption wavelengths), and 6 sub-pixel metrics (GV, NP, Shade, S0_30, S30_60, and 

S60). To reduce the number of LiDAR and HSI metrics and avoid redundancy, we 
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eliminated highly correlated metrics (absolute Pearson‟s correlation greater than 0.95) 

and metrics with linear dependencies, using the findCorrelation function and the 

findLinearCombos function from the R package caret, respectively (KUHN, 2008). The 

remained metrics (Table 5.2) were used as predictors for classification models in three 

different datasets: a LiDAR-only dataset (20 metrics), an HSI-only dataset (42 metrics), 

and the combination of both data sources (62 metrics). These metrics have been 

described in detail in Chapter 3. 

 

Table 5.2 - LiDAR and HSI metrics used as predictors in the classification models. 

Data 

Source 

Metric Type Selected Metrics 

LiDAR Height statistics H.max, H.mean, H.p05, H.p95, H.sd, H.cv, 

H.skew, H.kurt 

 Canopy cover PD1st, LAD2_10, LAD10_20, LAD20_30, LAD2, 

LAD6, LAD14, LAD22, LAD26 

 Structural 

complexity indices 

DSCI, HSCI 

 Topography  Roughness 

   HSI Reflectance bands R461, R549, R673, R852, R1181, R1735, R2149, R2265 

 Vegetation indices ARI1, ARI2, CAI, DLAI, DWSI2, DWSI3, 

DWSI4, DWSI5, LWVI1, LWVI2, NDBleaf, NDchl, 

NDLI, NDNI, NDVI, NDWI, PRI, PSRI, PWI, 

REP, RVSI, SR 

 Continuum-removal 

absorption features 

D495, D980, D1200, D2100, W495, W670, W980, W1200, 

W2100 

  Sub-pixel fractions NP, S30_60, S60 

 

5.2.4 Training and validation of classification models 

We tested the performance of three machine learning algorithms: Random Forest (RF), 

Stochastic Gradient Boosting (SGB), and Support Vector Machine (SVM). These 

classifiers were applied to the three datasets by using the train function of the caret 

package. This function fitted each model and calculated a performance measure based 

on cross-validation (5-fold repeated 10 times) over different tuning parameters to select 
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the optimal model from those parameters. For the RF classifier, the mtry parameter was 

tuned (from the values 2, 4, 6, 8, and 10) and the ntree parameter was set to 1000. For 

the SGB, tuning parameters were n.trees (50, 100, and 150) and                                              

interaction.depth (1, 2, and 3). The parameters shrinkage and n.minobsinnode were set 

to the default values (0.1 and 10, respectively). For SVM, we used the Radial Basis 

Function Kernel by tuning the parameters cost (0.5, 1, 2, and 4) and sigma (0.01, 0.03, 

and 0.07). 

Regarding the performance measure used to select the optimal model, we considered the 

overall F1 (F1 average of the four classes). The F1 score combines precision (aka user‟s 

accuracy) and recall (aka producer‟s accuracy or sensitivity) by calculating its harmonic 

mean (Equation 5.1), thus providing a single performance measurement for a given 

class (SOKOLOVA; LAPALME, 2009): 

    
                    

                
 

(5.1) 

In addition to the overall and by-class F1, the overall accuracy (OA) was also reported. 

Even though OA tends to undervalue the performance of classifiers on smaller classes, 

this measure is widely used and may be useful for comparison among other studies. 

A two-way analysis of variance (ANOVA) followed by a Tukey test was used to assess 

whether there were any differences in performance measures (OA and overall/by-class 

F1) among the nine models (3 data sources x 3 classifiers). The eta squared (η
2
), i.e. the 

ratio of the sum of the squares of the factor by the total sum of squares (COHEN, 1988), 

was calculated to examine the effect of the data source, classifier, and their interaction 

on overall model performance (OA and F1). 

 

5.2.5 Variable importance 

To explore the potential of each LiDAR and HSI metric to separate forest disturbance 

classes, we performed the Kruskal-Wallis test and calculated the eta squared based on 

the H statistic (Equation 5.2): 

        
         

     
 

(5.2) 
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where H is the value obtained in the Kruskal-Wallis test; k is the number of disturbance 

classes; and n is the total number of observations. The non-parametric Kruskal-Wallis 

test was chosen because some remote sensing metrics had skewed distribution, violating 

the assumptions of parametric methods. In this context, the eta squared indicates the 

proportion of total variation in the metric explained by the forest disturbance classes, 

serving as a univariate measure of metric importance. We also assessed the metric‟s 

importance ranking provided by the RF and SGB procedures. All statistical analysis 

considered a significance level of 0.05 and was performed in the R version 3.4.0. 

 

5.3 Results 

5.3.1 Effect of remote sensing data and machine learning classifier on model 

performance 

Figure 5.2 shows the results of the cross-validation, in terms of overall accuracy and 

overall F1, for each data source and classifier. Irrespective of the classifier used, the 

best performances were achieved with the use of multisource data for both accuracy 

(mean cross-validated of 0.88-0.89) and F1 (mean cross-validated of 0.81-0.83). The 

ANOVA results (Table 5.3) confirmed that the classification performance was mostly 

affected by the data source, which explained 61% of the OA variation and 31% of the 

F1 variation. The effect of the classifiers and their interaction with data sources was 

significant (p-value < 0.05) but weak (η
2
 ≤ 0.03) for both OA and F1. Therefore, no 

single classifier was better for all data sources. However, the overall performance of the 

SVM was slightly better when used with HSI-only data and the combined LiDAR + 

HSI data. This was due to the greater capacity of the SVM to discriminate the SF16-32yr 

class using HSI data and, thereafter the multisource data (Table 5.4). This is an 

advantage of SVM, considering that the advanced secondary forest was the most 

difficult class to classify (lower F1 score). 
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Figure 5.2 - Overall performance of models with different data sources (LiDAR, HSI, 

and multisource) and classifiers (RF = Random Forest, SGB = Stochastic 

Gradient Boosting, and SVM = Support Vector Machine). 

 

Source: Author's production. 

 

Table 5.3 - ANOVA results for the assessment of differences in performance measures. 

Factor 
Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 
F value p-value η

2
 

Overall Accuracy 

Data 2 0.70 0.35 366.45 0.00 0.61 

Classifier 2 0.01 0.00 3.53 0.03 0.01 

Data:Classifier 4 0.02 0.01 5.11 0.00 0.02 

Residuals 441 0.42 0.00 
   

       
Overall F1 

Data 2 0.57 0.29 107.07 0.00 0.31 

Classifier 2 0.02 0.01 4.27 0.02 0.01 

Data:Classifier 4 0.06 0.02 5.84 0.00 0.03 

Residuals 438 1.17 0.00       
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Table 5.4 - Cross-validated overall and by-class performance for each data source and 

classifier. Distinct letters in a column indicate significant differences in 

performance from the Tukey test. 

 

Data Classifier Overall 

Accuracy 

Overall 

F1 

By-class F1 

    SF1-15yr SF16-32yr DF UF 

LiDAR RF 0.79 a 0.75 a 0.78 a 0.64 ab 0.83 a 0.75 a 

SGB 0.79 a 0.75 a 0.80 a 0.65 ab 0.83 a 0.75 a 

SVM 0.78 a 0.73 ab 0.75 a 0.64 ab 0.82 a 0.73 a 

        

HSI RF 0.82 b 0.71 b 0.61 b 0.51 c 0.87 b 0.83 b 

SGB 0.84 bc 0.74 ab 0.65 b 0.56 ac 0.88 b 0.85 bc 

SVM 0.85 c 0.76 a 0.61 b 0.68 b 0.89 b 0.87 cd 

        

LiDAR + 

HSI 

RF 0.88 d 0.81 c 0.79 a 0.66 b 0.91 c 0.88 de 

SGB 0.88 d 0.81 c 0.79 a 0.66 ab 0.91 c 0.88 de 

SVM 0.89 d 0.83 c 0.78 a 0.71 b 0.92 c 0.90 e 

 

HSI-only models presented higher OA than LiDAR-only models due to the better 

performance of HSI data in the prevailing classes of disturbed and undisturbed mature 

forests. In terms of overall F1, a more suitable metric for unbalanced datasets, the HSI-

only models generally performed similarly as LiDAR-only models, except for the RF 

classifier. RF with LiDAR data displayed a significantly greater overall F1 than the RF 

with HSI data. LiDAR data generally produced better discrimination of secondary 

forests compared to HSI data, especially for the SF1-15yr class. The combination of the 

LiDAR's ability to better discriminate the two successional stages with the HSI's ability 

to better discriminate the disturbed and undisturbed mature forests increased the overall 

F1 of hybrid models in up to 8.1% over the best single-model. 

 

5.3.2 Importance of LiDAR and HSI metrics for class separability 

LiDAR and HSI metrics that explained most of the disturbance classes‟ variability 

(highest η
2
[H]) are presented in Figure 5.3. Most of these metrics were also ranked as 

the most important for the RF and SGB models (Figure 5.4). Table 5.5 summarizes the 

main structural and functional characteristics associated with the LiDAR and HSI 

metrics useful for discriminating the forest disturbance classes. 



47 

 

Figure 5.3 - Top 10 LiDAR (A) and HSI (B) metrics ranked according to eta squared 

(     ). 

 

Source: Author's production. 

 

Figure 5.4 - Relative importance of the 10 highest ranked variables for the RF (A) and 

SGB (B) classifier with LiDAR, HSI, and the combined dataset. 

 
Source: Author's production. 
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Table 5.5 - Comparison of the average structural and functional characteristics derived 

from LiDAR and HSI data among forest disturbance classes. 

Characteristic Metric Unit Disturbance class 

      SF1-15yr SF16-32yr DF UF 

LiDAR       

Upper canopy density LAD20_30 m
2
 m

-3
 0.00 a 0.06 b 0.28 c 0.68 d 

Mean canopy height H.mean m 6.53 a 11.59 b 16.68 c 21.51 d 

Top of canopy height H.p95 m 10.92 a 16.43 b 28.83 c 31.30 d 

Structure complexity HSCI unitless 0.37 a 0.55 b 0.67 c 0.74 d 

Canopy heterogeneity H.sd m 2.59 a 3.32 b 7.20 d 6.74 c 

       HSI       

Canopy moisture/LAI D1200 % 17.85 a 18.89 b 18.61 b 20.03 c 

Canopy moisture/LAI and 

non-photosynthetic 

biochemicals 

W2100 nm 51.57 a 59.24 b 52.46 a 61.32 b 

Photosynthetic pigments R673 % 2.71 a 2.05 c 2.23 b 1.78 d 

Canopy gaps/emergent trees S60 unitless 0.01 a 0.04 b 0.08 c 0.13 d 

Health DWSI5 unitless 1.74 a 2.02 c 1.91 b 2.09 c 

Distinct letters in a row indicate significant differences of the characteristic between disturbance 

classes from a pairwise Wilcoxon test with a Holm correction. 

 

From the LiDAR dataset, metrics related to the upper canopy density (LAD20_30, LAD22, 

and LAD14) were the most important. The upper canopy density exhibited a significant 

increase from the initial-to-intermediate secondary successions to the undisturbed 

mature forests (Table 5.5 and Figure 5.5). The LAD between the height interval of 20 

and 30 m (LAD20_30) presented the highest η
2
[H] (0.51) and relative importance for the 

RF and SGB classifiers, either in single or hybrid models. Such height interval 

represents the canopy height distribution of mature forests, which showed a mean 

canopy height (H.mean) around 20 m and a top of canopy height (H.p95) around 30 m 

(Table 5.5). Very tall trees (> 30 m) were rare in secondary forests. When they 

occurred, such tall trees may be remnants of the native vegetation. Thus, metrics related 

to the top of canopy height, such as H.max and H.p95, showed good separability 

between secondary and mature forests. Canopy structural complexity and heterogeneity, 

as measured by metrics such as HSCI and H.sd, were also good indicators of forest 

regrowth. Consequently, secondary successions had homogeneous canopies with little 

height variation, while mature forests had heterogeneous and complex canopies, 
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commonly presenting several vertical strata. The terrain roughness presented the lowest 

η
2
[H] (0.02), indicating a poor ability to explain alone the variability between the 

disturbance classes. However, RF and SGB using only LiDAR data ranked this metric 

among the four most important. This result suggests that, in a multivariable context, 

roughness helps improve model performance, probably by explaining extra intra-class 

variability. 

 

Figure 5.5 - Leaf area density profile for each forest disturbance status. Blue lines are 

mean values from all samples, while gray areas represent the standard 

deviation. 

 
Source: Author's production. 

 

The HSI dataset provided better discrimination between disturbed and undisturbed 

mature forests, as disturbed forests were generally more spectrally similar to the 

secondary successions (Figure 5.6A). From the HSI reflectance bands, the most relevant 

spectral interval for discriminating forest disturbance status (η
2
[H] values > 0.3) was the 

SWIR (1500–2260 nm), especially bands located around 1735 nm and 2149 nm (Figure 
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5.6B). Red reflectance bands (~ 670 nm), related to chlorophyll absorption, were also of 

great importance (η
2
[H] ~ 0.3) in characterizing forest disturbance. They were followed 

by leaf-water absorption bands in the NIR (980 nm and, especially, 1200 nm) and 

photosynthetic pigment features in the blue-to-green spectral region (~ 500 nm). In 

contrast, the spectral transition from the red-edge to the NIR (740 to 890 nm) showed 

the lowest η
2
[H] values. The greater relevance of spectral regions associated with 

absorption by biochemical constituents was evidenced by the use of the continuum-

removal technique. This approach enhances the vegetation absorption features of 

interest, while reduces the interference of other factors such as the effects of soil 

background, illumination or albedo. Absorption features at 1200 nm (D1200) and 2100 

nm (W2100) were the most relevant metrics, displaying the highest η
2
[H] values (0.39 

and 0.37, respectively) and relative importance values for the RF and SGB models 

among all HSI metrics. 

 

Figure 5.6 - (A) Average reflectance spectra of each forest disturbance class and (B) eta 

squared (η
2
[H]) for all reflectance bands. 

 
Source: Author's production. 
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In addition to the reflectance bands and absorption features, other HSI metrics were also 

relevant to distinguish forest classes. From the sub-pixel metrics, the proportion of 

pixels with shade fraction above 60% (S60) had great importance, presenting a 

significantly different average among the four disturbance classes (Table 5.5). Deep 

shaded areas occur due to canopy gaps and shadowing of emergent trees, thus serving as 

a measure of canopy complexity. Among the vegetation indices, those with higher η
2
[H] 

(> 0.2) were DWSI5, PRI, PSRI, ARI1, and DWSI4. REP (η
2
[H] = 0.19) was also very 

important for the performance of the RF and SGB models using HSI data. The advanced 

secondary forests were not significantly different from the undisturbed forests according 

to some HSI metrics, such as W2100 and DWSI5 (Table 5.5). 

 

5.4 Discussion 

LiDAR and HSI data contain complementary information that, when combined, 

improved the characterization of tropical forest disturbance status. While LiDAR 

performed well in classifying successional stages from differentiating them from mature 

forests, HSI was effective in distinguishing disturbed from undisturbed forests. Canopy 

structural characteristics, such as height, basal area, and biomass, have been used to 

characterize successional stages (LU et al., 2003). Thus, LiDAR metrics, which are 

directly related to canopy structure, provide an important source of information for 

characterizing secondary successions at different regrowth stages. For instance, the most 

important LiDAR metrics found here were similar to the ones used to estimate 

aboveground carbon density in the Borneo‟s tropical forests (JUCKER et al., 2018a): 

canopy cover at 20 m aboveground (Cover20), based on the same concept that the 

LAD20_30 or LAD22 used here; and top of canopy height (TCH), related to the metrics 

H.max or H.p95 used in this study. Nonetheless, the main errors related to LiDAR-only 

models expressed the confusion between disturbed and undisturbed mature forests, as 

some disturbed areas were structurally similar to undisturbed forests. Furthermore, the 

recovery of secondary and disturbed forests also implicates changes in species 

composition displaying different functional attributes. Thus, approaches based solely on 

structural characteristics limit the characterization of a broad spectrum of forest 

disturbance status. 
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From the HSI data, the SWIR spectral region, especially the absorption feature around 

2100 nm, was very relevant for characterizing forest disturbance status. The greater 

canopy complexity along with forest regeneration leads to increased canopy moisture 

and shadowing, decreasing SWIR reflectance. Furthermore, absorption features around 

1700 nm and 2100 nm have been related to non-pigment biochemical components, such 

as lignin and cellulose (KOKALY et al., 2009), indicating the occurrence of dead or 

senescent vegetation. For instance, when including the 1660-nm SWIR band in the 

formulation of vegetation indices (e.g., DWSI5), Apan et al. (2004) obtained the 

maximum discrimination between healthy and non-healthy vegetation (sugarcane 

severely affected by disease). Accordingly, other studies have indicated that SWIR 

bands contain most of the relevant information for distinguishing forest regeneration 

(VIEIRA et al., 2003; WANG et al., 2019). Water absorption bands, especially at 1200 

nm, were also very important. Asner et al. (2004), using EO-1 Hyperion data in the 

central Amazon, showed that the canopy water metrics were highly sensitive to changes 

in canopy leaf area and water stress. They also showed that pigment metrics related to 

LUE (PRI) and anthocyanin levels (ARI) were a proxy for physiological and 

biochemical changes from chronic water stress. Thus, the importance of those metrics to 

identify tropical disturbance status suggests a greater susceptibility to canopy stress in 

disturbed forests. 

In agreement with the current results, Thenkabail et al. (2004) also found that 

hyperspectral bands related to absorption by biochemical constituents, such as water, 

chlorophyll, lignin, cellulose, and proteins, were very important to characterize tropical 

forest status following anthropogenic disturbance of different magnitudes. They used 

EO-1 Hyperion data to classify different LULC classes in African rainforests, including 

primary forests without evidence of anthropogenic disturbance, degraded primary forest 

with some evidence of anthropogenic disturbance, young secondary forest (between 9 

and 15 years old), mature secondary forest (between 15 and 40 years old), mixed 

secondary forest with significant anthropogenic disturbance, and agricultural lands 

recently abandoned (between 1 and 8 years old). They reported an overall accuracy of 

96%, achieved with 23 Hyperion bands. The most important spectral intervals for 

characterizing different vegetation types were located in the 1300–1900 nm, 1100–1300 

nm, 1900–2350 nm and 600–700 nm wavelength ranges. 
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Despite the potential of combining passive and active sensors data, few studies have 

used this approach for the classification of land cover types and successional stages in 

tropical ecosystems (e.g., CARREIRAS et al., 2017; SUN et al., 2019). Carreiras et al. 

(2017) recognized the ability of combined single-date ALOS PALSAR dual-pol and 

TM/Landsat-5 reflectance data to map mature forest, non-forest and secondary forest on 

three sites in the Brazilian Amazon. Results presented an overall accuracy of 95-96%. 

For the secondary forests, the authors also retrieved the stand age, with an RMSE of 

4.3-4.7 years (25.5–32.0%) for forests aged up to ~30 years. In the tropical dry forest of 

Costa Rica, Sun et al. (2019) used different airborne remote sensing data (waveform 

LiDAR, HSI, and their combination) and machine learning classifiers (Artificial Neural 

Network, SVM, and RF) to map secondary forest age. The best result was found with 

the RF classifier and the combination of LiDAR and HSI data (overall accuracy of 

83%). 

Secondary successions and disturbed mature forests are an integral part of tropical 

landscapes. However, they present different composition and structure, leading to 

divergent functioning patterns. Therefore, their accurate characterization and 

discrimination from the remaining undisturbed forests are essential for establishing 

conservation and management priorities. The distinct structural and functional 

characteristics of undisturbed forests suggest that some of their ecosystem services 

cannot be replaced by degraded or secondary forests (WATSON et al., 2018). 

Therefore, it is necessary to conserve forests that are still relatively intact and to prevent 

new areas from being degraded or deforested. 

LiDAR metrics of disturbed mature forests generally had intermediate values between 

secondary and undisturbed forests. Meanwhile, for some HSI metrics, disturbed forests 

displayed intermediate values between initial-to-intermediate and advanced secondary 

successions (see example in Figure 5.7). Previous studies (BARLOW; PERES, 2008; 

BERENGUER et al., 2014; XAUD et al., 2013) have reported a “secondarization” of 

disturbed mature forests, a process that transforms closed-canopy primary forests into 

more open forests dominated by short-lived pioneer species due to recurrent 

anthropogenic disturbances. However, depending on the disturbance intensity and 

recurrence, disturbed mature forests can retain important structural characteristics of the 

former primary forests, as well as a generally heterogeneous species composition 
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(ITTO, 2002). Likewise, the advanced successions had distinct characteristics from the 

initial-to-intermediate successions and, according to some HSI metrics, were more 

similar to the undisturbed forests. Thus, both degraded and secondary forests have great 

potential to provide significant environmental benefits, as well as contribute to poverty 

alleviation through products and services of socio-economic importance. However, 

avoiding recurrent disturbance is essential to ensure the continued functioning of 

forests.  

 

Figure 5.7 - Scatterplot relating an HSI metric (D1200 = depth of the 1200-nm absorption 

band) to a LiDAR metric (H.p95 = 95% percentile of height). Points are 

colored according to the forest disturbance class. The density plot of each 

metric is also shown at the respective axis. 

 
Source: Author's production. 

 

Sustainable management practices, such as agroforestry, can also bring benefits in 

highly disturbed mature forests or younger successions, producing economic value 

while restoring important physical attributes (e.g., soil fertility). Furthermore, 
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management strategies for degraded and secondary forests, if well planned, can also 

reduce the pressure on the remaining undisturbed mature forests. 

 

5.5 Conclusion  

We concluded that the use of multisource remote sensing data, specifically the 

combination of LiDAR and HSI, was more effective than the use of advanced machine 

learning classifiers to improve discrimination between tropical forests with different 

disturbance status (initial-to-intermediate secondary forests, advanced secondary 

forests, disturbed mature forests, and undisturbed mature forests). Models based on a 

single remote sensing data presented a reasonable overall performance (F1 of 0.73-0.75 

for LiDAR models and 0.71-0.76 for HSI models), but displayed superior accuracy in 

specific classes. While LiDAR produced significantly fewer errors for discriminating 

secondary succession classes, HSI performed significantly better than LiDAR for 

separating disturbed from undisturbed mature forests. This result was due to the distinct 

structural characteristics of secondary successions highlighted by LiDAR compared to 

mature forests. For disturbed mature forests, their functional characteristics derived 

from the HSI data, such as those related to water stress, photosynthetic efficiency, and 

senescent or dead vegetation, were more similar to secondary forests than the 

undisturbed ones. 

Thus, combining the strengths of each data source significantly improved the 

classification performance, increasing the overall F1 in up to 8% relative to the best 

single-model. In general, no significant differences were observed in overall 

performance of the machine learning classifiers. However, the SVM had better accuracy 

in the advanced secondary forest when used with HSI data. It also performed slightly 

better than RF and SGB with multisource data.  

The current study brings unprecedented insights into how advanced remote sensing 

technologies can be used together to improve our understanding of forest dynamics 

concerning anthropogenic disturbances in tropical Amazon forests. The role played by 

data sources, metrics and models, described in this study, represents the first step 

toward the production of maps to be further validated with detailed field information in 

the Amazon. 
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6 COMBINING LIDAR AND HYPERSPECTRAL DATA FOR 

ABOVEGROUND BIOMASS MODELING IN THE BRAZILIAN AMAZON 

USING DIFFERENT REGRESSION ALGORITHMS
1
 

6.1 Introduction 

Aboveground biomass (AGB) is a major component of the terrestrial carbon cycle and 

its accurate estimate is critical for supporting policies of ecosystem functioning 

conservation and climate change mitigation (HOUGHTON et al., 2009). Amazonian 

forests host Earth‟s most extensive areas of high plant biomass (PAN et al., 2013). 

However, carbon stocks and balance across the Amazon are still highly uncertain (LE 

QUÉRÉ et al., 2018; OMETTO et al., 2014). 

Remote sensing has been recognized as an effective tool for quantifying carbon stocks 

over large areas, allowing accurate monitoring at the landscape scale (LU et al., 2014). 

Several studies have estimated AGB from different sources of remotely sensed data, 

such as the hyperspectral imaging (HSI) (DE JONG et al., 2003; PSOMAS et al., 2011) 

and Light Detection And Ranging (LiDAR) (ASNER; MASCARO, 2014; LEFSKY et 

al., 2002b; NELSON et al., 2017). Among the various types of sensors, LiDAR has 

been recognized as a consolidated technology to characterize complex forest structure 

due to its ability to capture three-dimensional information of the land surface (KOCH, 

2010). Moreover, LiDAR is less sensitive to signal saturation than passive optical 

sensors. Despite its advantages, LiDAR has restricted spectral resolution, generally 

covering a single spectral range in the near-infrared region (LU et al., 2014). Thus, 

variations in biomass due to species composition and stress may not be accurately 

detected by this sensor. 

In contrast to LiDAR, HSI (also called imaging spectrometry/spectroscopy or 

hyperspectral remote sensing) sensors acquire data in a large number of narrow and 

                                                        
 

1 This chapter is an adapted version of the paper: 

ALMEIDA, C. T. et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in 

the Brazilian Amazon using different regression algorithms. Remote Sensing of Environment, v. 232, p. 

111323, 2019.  

The publisher authorizes the publication of the adapted version of the paper in this thesis (Appendix A). 
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contiguous spectral bands. HSI is capable of detecting absorption features useful for 

distinguishing functional and compositional traits (USTIN et al., 2004). For instance, 

hyperspectral sensors have been used to estimate land cover classes, plant functional 

types, tree species (ROTH et al., 2015), biochemical content (ASNER et al., 2015), 

health status (PU et al., 2008), and biophysical properties such as Leaf Area Index 

(LAI) (GONG et al., 2003) and biomass. On the other hand, when compared to LiDAR, 

the ability of the HSI instruments to detect vertical structure over dense vegetation is 

limited since the reflectance comes mostly from the upper canopy (FASSNACHT et al., 

2014). 

Integrating the complementary information provided by LiDAR and HSI sensors can 

therefore potentially improve the accuracy of the AGB modeling (KOCH, 2010). 

Several studies have investigated the potential of combining LiDAR and HSI data for 

classifying land cover (e.g., GEERLING et al., 2007; KOETZ et al., 2008; WANG; 

GLENNIE, 2015) or forest species (e.g., DALPONTE et al., 2012; GHOSH et al., 

2014). However, few studies have evaluated this combination for estimating AGB 

(ANDERSON et al., 2008; FASSNACHT et al., 2014; LATIFI et al., 2012; LUO et al., 

2017a, 2017b; SWATANTRAN et al., 2011), particularly with focus on tropical regions 

(CLARK et al., 2011; VAGLIO LAURIN et al., 2014). In Costa Rica, Clark et al. 

(2011) found that linear regression models combining a single LiDAR and 

hyperspectral metric were no better than the best model using two LiDAR metrics. 

However, they pointed out the need to analyze a wide range of LiDAR and HSI metrics, 

as well as other regression techniques to estimate AGB. In Sierra Leone, Vaglio Laurin 

et al. (2014) found improved AGB estimates using Partial Least Square Regression 

(PLSR) from combined LiDAR and hyperspectral data, when compared with LiDAR 

data alone. Thus, more research efforts are needed to explore different statistical 

procedures and metrics of HSI and LiDAR for AGB modeling, especially over tropical 

forests. 

Many challenges arise from the integration of different data sources, such as the high 

data dimensionality, the redundancy of some metrics and the selection of the most 

suitable prediction model. Linear regression models (LM) have been commonly used 

for estimating AGB from remote sensing data, because of their simplicity and 

interpretability (FASSNACHT et al., 2014). However, these statistical models are less 
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flexible than non-parametric techniques, demanding large sample sizes and being 

affected by multicollinearity (MANQI et al., 2014). Nonparametric machine learning 

techniques, such as Support Vector Regression (SVR), Stochastic Gradient Boosting 

(SGB), Random Forest (RF) and Cubist (CB), are more versatile than LM in identifying 

complex nonlinear relationships and in dealing with high data dimensionality. Such 

techniques may provide more accurate AGB estimates than linear regression models, 

especially when multisource data are used (LU et al., 2014). 

Apart from identifying proper regression algorithms, an equally important challenge in 

multisource data integration is the selection of the most informative independent set of 

metrics for AGB estimation (TORABZADEH et al., 2014). In this context, feature 

selection methods, such as the recursive feature elimination (RFE), have the advantages 

of maximizing model performance (GUYON et al., 2002). RFE improves the 

generalization efficiency by avoiding overfitting while reducing the complexity of the 

model. The selection of a small subset of metrics generally facilitates the interpretation 

of the models and their inversion and applicability over large areas. 

This chapter aims to explore optimal procedures for improving AGB modeling in the 

Brazilian Amazon through a comparative analysis of different data sources (airborne 

LiDAR and HSI, and their combination) and algorithms (linear models with (LMR) and 

without (LM) regularization, SVR, RF, SGB, and CB). For this purpose, we calculated a 

large variety of LiDAR and HSI metrics for maximizing the potential information 

related to vegetation biomass retrieved by each data source. By using a backward 

feature selection (RFE) method, we dealt with the high data dimensionality and 

evaluated the impact of reducing the number of input features for the models. 

At the best of our knowledge, this is the first study that examines whether the use of 

HSI in conjunction with LiDAR data can improve AGB estimates using 12 sites 

regionally distributed over the Brazilian Amazon. Moreover, we addressed the synergy 

between airborne LiDAR and HSI data for AGB modeling from the perspectives of: (1) 

using both high spatial (1 m) and spectral resolution optical data; (2) detecting the 

metrics more related to AGB from a large set of attributes; (3) determining the optimal 

number of metrics required by each dataset; (4) testing the performance of different 
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regression algorithms; and (5) examining the effect size of data source, regression 

algorithm and their interactions on models‟ performance. 

 

6.2 Material and methods 

6.2.1 Study sites and field data 

This study was conducted on 12 sites in the Brazilian Amazon, representing different 

climate conditions (Köppen-Geiger classes Af, Am, and Aw) (KOTTEK et al., 2006), 

soil types (Ferralsols, Acrisols, and Gleysols) (QUESADA et al., 2011), forest structure, 

species composition, and disturbance history. On each site, forest inventory data were 

collected to obtain a reference field AGB (Table 6.1).  

 

Table 6.1 - Field-based AGB characteristics for each site. 

Site 
AGB 

mean±sd 
Plots Plot size

b
 Year Source 

 
(Mg.ha

-1
) (n) (m) 

  
MAM 232±71 8 50x50 2016 IDSM 

ZF2 318±73 23 120x20 2015 LMF/INPA 

DUC 277±63 11 50x50(20) 2016 SL 

AUT 166±43 16 250x10 2017 FATE 

TAP 142±78 5 50x50 2016 SL 

SFX1 107±78 8 40x40 2012 SL 

SFX2 160±86 8 40x40 2012 SL 

PAR 101±54 17 125x20(2) 2013 SL 

JAM 179±72 11 50x50(5) 2013 SL 

ALF 174±61 8 60x40 2017 FATE 

FN1 34±38 6 50x50(5) 2015 SL 

FN2 170±46 11 50x50(5) 2015 SL 

Total 189±101 132 
   

*The subplot size, when used, is given in parentheses. Abbreviations: IDSM, Instituto de 

Desenvolvimento Sustentável Mamirauá; LMF/INPA, Laboratório de Manejo Florestal do 

Instituto Nacional de Pesquisas da Amazônia; SL, Sustainable Landscapes project; FATE, Fire-

Associated Transient Emissions in Amazonia. 
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Forest inventory data comprised 132 sample plots collected between 2012 and 2017. 

Most plots (116) have approximately 0.25 ha and 16 plots have 0.16 ha. For the oldest 

plots, we assumed that potential changes in AGB due to temporal differences between 

forest inventories and remote sensing data acquisitions (2016-2017) had limited 

influence on the predictive modeling. For instance, changes in yearly AGB across the 

Amazon biome are, on average, 1.0 Mg.ha
-1

.yr
-1

 in old-growth forests (BAKER et al., 

2004); 2.7 Mg.ha
-1

.yr
-1

 in selectively logged forests (RUTISHAUSER et al., 2015); and 

6.1 Mg.ha
-1

.yr
-1

 in secondary forests (POORTER et al., 2016). This variation is within 

the uncertainty in field AGB estimates observed here, which will be further considered 

in our modeling framework. 

Inventory data included species identification and measurements of DBH (Diameter at 

Breast Height) and total tree height. Due to differences in inventory protocols among 

the sites, especially with respect to the sampling of palms, lianas, and standing dead 

trees, we only considered the living trees in the AGB calculation. DBH measurements 

were obtained with metric tapes for living trees with a minimum of 10 cm DBH. For 

most sites, all trees that met this DBH threshold were measured along the entire plot 

area. A subsampling strategy for smaller trees (10-35 cm) was used at sites DUC, PAR, 

JAM, FN1, and FN2. For these sites, we accounted for the size-dependent sampling area 

when aggregating individual AGB to plot-level AGB. 

The total height of trees was measured using clinometers, whenever possible. When the 

height was not measured for every tree, a stand-specific height-DBH (H-D) relationship 

based on a Weibull function (FELDPAUSCH et al., 2012) was used. When no height 

data were available (ZF2, DUC, JAM, and ALF sites), the regional-specific H-D model 

proposed by Feldpausch et al. (2012) was used. For further uncertainty propagation of 

the AGB, each tree in the database was associated with a height error. When a 

measurement was present, we assumed an error of 12% of the total height, based on the 

median error found by Hunter et al. (2013). When the height was estimated by Weibull 

functions, we considered the residual standard error for the local or regional H–D 

model. 

The identification of plant species was used to obtain the values of wood density (WD) 

with the getWoodDensity function from the R package BIOMASS (RÉJOU-MÉCHAIN 
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et al., 2017). The global tree wood density database (CHAVE et al., 2009; ZANNE et 

al., 2009) was used as a reference. Each tree received a wood density value based on its 

species- or genus-level average if at least one value in the same genus was available in 

the reference database. For unidentified trees, or if the genus was not determined in the 

reference database, the stand-level mean wood density was assigned to the tree, based 

on trees for which a value was attributed. The standard deviation of wood density for 

each tree was stored to account for uncertainty in this variable. 

Based on the DBH (in cm), height (H, in m) and WD (in g.cm
-3

), the AGB (in Mg) of 

individual trees was estimated using the pantropical allometric equation of Chave et al. 

(2014): 

AGBtree (Mg) = 6.73 * 10
-5

 * (DBH
2
 * H * WD)

0.976
 (6.1) 

To account for the uncertainty introduced by the measurements and the allometric 

equation, we propagated the errors using the AGBmonteCarlo function (BIOMASS 

package). This Monte Carlo approach simulated 1000 AGBtree by adding random errors 

to the measurements and the allometric model parameters (RÉJOU-MÉCHAIN et al., 

2017). The individual tree biomass was divided by its associated sampling area to 

convert to Mg.ha
-1

. Then, the AGB of all trees of each plot was summed to calculate the 

plot-level AGB. Thus, each plot had 1000 AGB values and its respective average value 

(AGBmean). The plots covered a wide range of AGBmean, varying from 2.7 Mg.ha
-1

 to 

493.7 Mg.ha
-1

, with a mean of 188.5 Mg.ha
-1

 and a standard deviation of 101.1 Mg.ha
-1

. 

 

6.2.2 LiDAR and HSI metrics 

Airborne LiDAR and HSI data were collected to derive metrics (45 from LiDAR and 

288 from HSI) that could be used as predictors for the statistical AGB models. Prior to 

the RFE routine, the total number of predictors was reduced by eliminating highly 

correlated metrics and by checking for linear dependencies (using the functions 

findCorrelation and findLinearCombos, respectively, from the R package caret). A high 

correlation threshold (absolute Pearson‟s correlation greater than 0.98) was adopted to 

remove only the metrics with nearly perfect correlation since the RFE algorithm later 

selects the most important variables to estimate AGB. The remaining metrics after 

filtering by correlation and linear dependence are summarized in Table 6.2. The 
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removed LiDAR metrics consisted of six height percentiles (H.p25, H.p30, H.p50, 

H.p60, H.p70, and H.p75) and five canopy cover metrics (PD10, PD26, PD30, LAD10, and 

LAD30). The removed HSI metrics consisted of 216 reflectance bands, four vegetation 

indices (CRI2, DWSI1, DWSI4, and VOG1), five absorption features (depth at 670 nm 

and area of 495, 670, 980, and 2100 nm bands), and the mean shade fraction. Thus, 

three datasets were tested for AGB modeling: (1) 34 LiDAR metrics; (2) 60 HSI 

metrics; and (3) their combination (94 predictors). All remote sensing metrics were 

normalized (centered by mean and scaled by the standard deviation). The metrics have 

been described in detail in Chapter 3. 

 

Table 6.2 - LiDAR and HSI metrics after filtering by correlation and linear dependency. 

Data source Metric Type Metrics 

LiDAR Height statistics H.max, H.mean, H.p05, H.p10, H.p20, H.p40, 

H.p80, H.p90, H.p95, H.sd, H.cv, H.skew, H.kurt 

 Canopy cover PD1st, PD2_10, PD10_20, PD20_30, PD2, PD6, PD14, 

PD18, PD22, LAD2_10, LAD10_20, LAD20_30, LAD2, 

LAD6, LAD14, LAD18, LAD22, LAD26 

 Structural complexity 

indices 

DSCI, HSCI 

 Topography  Roughness 

   
HSI Reflectance bands R461, R522, R604, R659, R694, R701, R852, R1091,R1220, 

R1506, R1646, R2056, R2155, R2309 

 Vegetation indices ARI1, ARI2, CAI, CRI1, DLAI, DWSI2, DWSI3, 

DWSI5, EVI, GNDVI, LWVI1, LWVI2, NDBleaf, 

NDchl, NDLI, NDNI, NDVI, NDWI, PRI, PSRI, 

PWI, REP, RVSI, SR, VIgreen, VOG2 

 Continuum-removal 

absorption features 

D495, D980, D1200, D2100, W495, W670, W980, W1200, 

W2100, A1200, As495, As670, As980, As1200, As2100 

  Sub-pixel fractions GV, NP, S0_30, S30_60, S60 
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6.2.3 Modeling framework: feature selection and model validation 

Six regression algorithms were used, encompassing three main approaches: (i) linear 

models (LM and LMR), (ii) kernel-based models (SVR), and (iii) tree-based models 

(RF, SGB, and CB). For the SVR method, we tested three kernels: linear, polynomial, 

and RBF. We further reported the results of the RBF, which generally performed better 

than linear and polynomial kernels (Figure B.1). All algorithms were implemented in 

the R package caret (KUHN, 2008), which required other packages listed in Table 6.3. 

The six regression algorithms were applied to the three datasets in a modeling 

framework composed by two main steps: (1) selection of the most relevant metrics; and 

(2) validation of the selected models considering the field AGB uncertainty. 

For feature selection, we applied the RFE algorithm (rfe routine of the caret package), 

using the AGBmean of each plot as the response variable. The RFE was used to assess the 

effect of the number of input features over the model performance. The performance 

was evaluated by the Root Mean Squared Error (referred to RMSErfe), quantified in a 5-

fold cross-validation scheme, repeated 10 times. Model parameters were optimized by 

using an internal 4-fold cross-validation and selecting the parameters with the lowest 

RMSE. The RFE procedure started with all available predictors of each dataset. The 

predictors were ranked according to a criterion of importance, specific for each 

regression method (Table 6.3). Less important features were sequentially removed prior 

to modeling until the two most important variables remained. At the end of the process, 

the optimal feature subset size was selected, defined as the lowest number of predictors 

whose mean RMSErfe was within the 95% confidence interval of the lowest RMSErfe. 

This approach selects the most parsimonious yet informative model. 
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Table 6.3 - Description of the regression models used in this study, including the parameters considered and the criteria used to rank the 

feature importance for AGB estimation. 

Type Abbr. Model Parameters Feature rank criteria R package 

Linear LM Linear Model - Absolute value of t-statistic stats 

       LMR Linear Model with Ridge 

Regularization 

alpha = 0 Absolute value of coefficients glmnet, 

Matrix  lambda = 0.01, 0.5, 1 

      Kernel-based SVR Support Vector Regression with 

Radial Basis Function Kernel 

cost = 0.5, 1, 2, 4 Squared weights
*
 kernlab 

 sigma = e
i
 (i= -5,...,1) 

      Tree-based RF Random Forest ntree = 1000 Increase in mean squared 

error by permuting a variable 

randomForest 

 mtry = k/3 

       SGB Stochastic Gradient Boosting n.trees = 50, 100, 150, 

200, 250, 300 

Sum of the empirical 

improvement in squared error 

over all trees 

gbm, plyr 

 interaction.depth = 2 

 shrinkage = 0.1 

 n.minobsinnode = 5 

       CB Cubist committees = 10, 20, 30 Usage (Linear combination of 

the rule conditions and 

terminal model) 

Cubist 

 neighbors = 9 

k is the number of predictors. *GUYON et al., 2002  
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The best set of metrics and parameters selected for each dataset and regression method 

(Tables B.1, B.2, and B.3) was used to train 1000 models, each with a Monte Carlo 

field-AGB simulation as the response variable. This yields a probability distribution of 

model performance, which accounts for variations due to uncertainties in the field data. 

We applied a 5-fold cross-validation scheme with 10 repetitions to quantify the 

performance of each model, in terms of coefficient of determination and RMSE 

(hereafter termed as CV-R
2
 and CV-RMSE, respectively). The CV-RMSE was 

expressed both in AGB units (Mg.ha
-1

) and as a percentage relative to the mean AGB of 

all sample plots (CV-RMSE%). 

A two-way analysis of variance (ANOVA) was applied to examine the influence of the 

data source, regression method, and their corresponding interactions on model 

performance (CV-R
2
 and CV-RMSE). Subsequently, a Tukey‟s test was considered for 

pairwise comparison of mean CV-R
2
 and CV-RMSE calculated from the 1000 model 

runs of each 18 combinations of data sources and regression methods. Since the 

statistical significance (p-value) is affected by large samples, we also calculated the 

effect size as a measure of practical significance. For the ANOVA, we calculated the eta 

squared (η
2
), the ratio of the sum of the squares of the factor by the total sum of squares. 

For multiple comparisons between models, we calculated the Cohen‟s d (COHEN, 

1988), the absolute difference between groups, standardized by the residual standard 

error from the ANOVA. We considered that a difference in mean CV-R
2
 or CV-RMSE 

between models is practically significant when d ≥ 1, that is, two groups differ by 1 

standard error or more. 

Finally, for analyzing the spatial variability of biomass, the dataset and regression 

method that produced the highest CV-R
2
 and the lowest CV-RMSE were used to predict 

AGB on a regular 50×50 m grid (corresponding to the field plots area). It resulted in 

1000 AGB estimations per pixel from which we calculated the AGB mean and standard 

deviation. 
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6.3 Results 

6.3.1 Selection of LiDAR and HSI metrics to estimate AGB 

LM was the method whose accuracy was mostly affected by the number of input 

variables, showing an increase in RMSErfe after reaching the best accuracy (Figure 6.1). 

The more variables were used in the LM, the greater the increase in RMSErfe, 

particularly when the two data sources were combined. This pattern was expected given 

the limitations of this parametric method in relation to the high dimensionality. The use 

of regularization (LMR models) solved well this problem. The methods LMR, SVR, 

and CB, when used only with LiDAR data, were less affected by the number of input 

metrics. Thus, adding variables into these models did not greatly improve their 

performance (reduction of the RMSErfe in up to 4.6%). 

 

Figure 6.1 - Effect of the subset feature size on the cross-validated RMSErfe for the 

regression methods and data sources used. The selected feature size was 

the smallest possible whose RMSErfe was within the 95% confidence 

interval of the lowest RMSErfe. Note that the RMSErfe scale for the LM 

method is different from the others. 

 
Source: Author's production. 
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LiDAR-only models required fewer metrics (from 2 for LM, LMR, and CB to 5 for RF) 

than HSI-only models (from 5 for LM to 12 for CB) to achieve optimal performance. 

The number of metrics selected for the multisensor models varied between 6 for LM to 

38 for SVR. The contribution of each data source to the combined models, both in 

number of selected metrics and in their importance for the model performance, 

depended on the regression method considered (Figure 6.2). The linear models (LM and 

LMR) selected more HSI than LiDAR variables when using the combined dataset. SVR 

prioritized the selection of LiDAR metrics (24 against 14 HSI metrics), which had 

greater relative importance for the model performance. RF and SGB also selected more 

LiDAR than HSI variables (14 vs. 9 in RF and 17 vs. 12 in SGB), but the most 

influential variable was derived from the HSI data (W2100). The CB method had a more 

even contribution from LiDAR and HSI variables (10 LiDAR metrics vs. 11 HSI 

metrics). However, the ranking of the variables showed that the CB had a greater 

influence of a LiDAR metric (LAD20_30). 
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Figure 6.2 - Relative importance of the 20 highest ranked variables for each regression 

method with the combined dataset. 

 

Source: Author's production.  



69 

 

The most important LiDAR and HSI metrics for estimating AGB were generally 

consistent among the different models. The most informative LiDAR metrics were 

related to canopy cover of the upper layers (LAD20_30, LAD22, PD22, LAD26, LAD18, 

and PD18), height percentiles (e.g., H.p95, H.p40, and H.p05), and mean height 

(H.mean), showing a positive association with AGB (Figure 6.3A). Structural 

complexity metrics (DSCI or HSCI) were selected for the methods SVR and SGB based 

on combined data. Some LiDAR metrics related to topography (roughness), height 

distribution variability (H.sd, H.cv, H.skew, and H.kurt) and canopy cover (LAD2_10 

and LAD10_20) were not selected by any model. 

 

Figure 6.3 - Scatterplots of the four most important LiDAR (A) and HSI (B) metrics for 

aboveground biomass (AGB) estimation. The blue line represents a linear 

fit. The correlation coefficient (R) with p-value is showed upward in 

blue. 

 

Source: Author's production. 
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For the HSI data, the NIR and SWIR spectral regions were the most sensitive to AGB 

variations, including the absorption bands at 980 nm (leaf water) and 2100 nm (lignin-

cellulose) (Figure 6.3B and 6.4). Thus, metrics from these absorption bands (D980, W980, 

As980, W2100, and D2100) were ranked as very informative for AGB estimation. Some 

vegetation indices and reflectance bands from the NIR (LWVI1, PWI, and R1091) and 

SWIR (NDNI, CAI, NDBleaf, and R1646) regions were also highly ranked. The proportion 

of shaded pixels (S0_30 and S30_60) was also important for the AGB estimation, either 

directly, being selected by the methods SVR, SGB, and CB, or indirectly, being 

associated with the reflectance. Few metrics from the visible region (W495, PRI, As670, 

and R461) were selected by the RFE. From that, the most informative was the width of 

the 495 nm chlorophyll absorption band (W495), selected by five models (all except LM) 

with only HSI data and three models (RF, SGB, and CB) with the combined data. 

Vegetation indices resulting from a combination of visible and NIR reflectance were 

selected a few times (SR, PSRI, and VIgreen) or not selected (e.g., NDVI, EVI, and 

GNDVI). 

 

Figure 6.4 - Reflectance spectra (A) and continuum-removed reflectance spectra (B) 

across five aboveground biomass (AGB) ranges, indicated by the 

different colors. Spectral values are shown as mean ± standard deviation. 

 

Source: Author's production. 
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6.3.2 Performance of the data sources and regression methods for AGB 

modeling 

The ANOVA results (Table 6.4) showed that the data source had the greatest effect on 

models‟ performance, explaining 65% of the variation in CV-R
2
 and 55% of the 

variation in CV-RMSE. The regression method and its interaction with data source had 

a smaller contribution to the CV-R
2
 (η

2
 of 0.14 and 0.09, respectively) and CV-RMSE 

(η
2
 of 0.10 and 0.07, respectively) variation. Therefore, there was no single best 

regression method. However, the LM method was less suitable for HSI and hybrid data, 

while the LMR presented high performance for all analyzed data sources (Figure 6.5). 

 

Table 6.4 - Analysis of variance of the cross-validated R
2
 and RMSE respective the data 

source, regression method, and their interaction. 

Response variable: CV-R
2
 

Factor 
Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 
F value p-value η

2
 

Data 2 50.0 25.0 51,079.6 <2e-16 0.65 

Method 5 11.1 2.2 4,515.9 <2e-16 0.14 

Data:Method 10 7.3 0.7 1,495.5 <2e-16 0.09 

Residuals 17,982 8.8 0.0       

Response variable: CV-RMSE (Mg.ha
-1

)         

Factor 
Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 
F value p-value η

2
 

Data 2 336,205.1 168,102.6 18,120.1 <2e-16 0.55 

Method 5 62,476.6 12,495.3 1,346.9 <2e-16 0.10 

Data:Method 10 45,849.6 4,585.0 494.2 <2e-16 0.07 

Residuals 17,982 166,821.0 9.3       
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Figure 6.5 - Distribution of the 1000 cross-validated RMSE (A) and R
2
 (B) for each 

regression method and data source (LiDAR, HSI, and their combination). 

 

Source: Author's production. 

 

The combination of LiDAR and HSI data improved the performance of the models for 

all regression methods by reducing the CV-RMSE and increasing the CV-R
2
 (Figure 6.5 

and Table 6.5). The improvements in CV-RMSE (reduction of 4.05-13.83 Mg.ha
-1

) and 

CV-R
2
 (increase of 0.05-0.18), achieved by the multisource models relative to models 

with single data, were both statistically and practically significant (Cohen‟s d ≥ 1) for 

all regression algorithms (Figure 6.6). Relative to the best single-model of each method, 

the improvements in the combined models reached up to 15% reduction in CV-RMSE 

and 21% increase in CV-R
2
. 
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Table 6.5 - Average cross-validated performance (for the 1000 model runs) for each 

regression method and data source. 

Model Data #Features Mean CV-RMSE Mean CV-R
2
 

      Mg.ha-1 %   

LM LiDAR 2 68.90 36.54 0.56 

 

HSI 5 78.69 41.73 0.44 

 

Combined 6 64.85 34.39 0.62 

LMR LiDAR 2 67.60 35.85 0.58 

 

HSI 8 69.50 36.86 0.56 

 

Combined 12 57.69 30.59 0.70 

SVR LiDAR 4 68.10 36.11 0.58 

 

HSI 11 69.54 36.88 0.57 

 

Combined 38 61.78 32.77 0.66 

RF LiDAR 5 70.91 37.61 0.54 

 

HSI 8 69.96 37.10 0.55 

 

Combined 23 60.26 31.96 0.67 

SGB LiDAR 3 67.90 36.01 0.58 

 

HSI 8 70.68 37.48 0.55 

 

Combined 29 61.26 32.49 0.66 

CB LiDAR 2 69.12 36.66 0.57 

 

HSI 12 68.11 36.12 0.58 

  Combined 21 59.98 31.81 0.68 

 

Figure 6.6 - Difference in mean cross-validated RMSE between models based on 

different data sources for each regression method. 

 
Source: Author's production.  
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Overall, models based on single-LiDAR data performed similarly to models based on 

single-HSI data, with no practical difference (Figure 6.6). Only the LM method 

presented significantly superior performance with LiDAR when compared to the HSI 

data. SGB performed slightly better with LiDAR data than HSI data with a significant 

practical difference for CV-R
2
 (increase in 0.03), but with no practical difference for 

CV-RMSE. All models underestimated the AGB for values greater than 300 Mg.ha
-1

. 

However, models with multisensor data showed slightly lower underestimation (Figure 

6.7). We also found an overestimation for low AGB values (< 50 Mg.ha
-1

), mainly with 

the HSI data. 

 

Figure 6.7 - Field AGBmean versus predicted AGB (mean of cross-validated predictions 

from the 1000 model runs) from the different methods and data sources. 

The blue dashed 1:1 line is provided for reference. 

 

Source: Author's production. 

 

6.3.3 Spatial variability of the predicted AGB 

The spatial distribution of the HSI and LiDAR data and the AGB map (mean and 

standard deviation) derived from their combination are exemplified for the SFX1 

(Figure 6.8) and DUC (Figure 6.9) sites. The AGB predictions covered both the 

variability within and between sites. In the SFX1 site, the predicted AGB ranged from 
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zero Mg.ha
-1

, due to intensively degraded areas, to 223 Mg.ha
-1

, due to the presence of 

tall trees. The DUC site is an old-growth forest accounting for greater AGB. In this site, 

the predicted AGB varied from 193 Mg.ha
-1

 to 454 Mg.ha
-1

, due to variations in canopy 

density and height. The AGB uncertainty (standard deviation) was greater (~ 15 Mg.ha
-

1
) at the tails of the predicted interval, i.e., at the locations with very low or very high 

predicted AGB. 

 

Figure 6.8. (A) Spatial variability of HSI data (AISAFenix true color composite). (B) 

LiDAR data (Canopy Height Model). (C) Mean and (D) standard 

deviation of AGB predictions from the LMR method with multisensor 

data. Figures A and B are in 1 m resolution, while Figures C and D are in 

50 m resolution. Results refer to the SFX1 site. 

 

Source: Author's production. 
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Figure 6.9. (A) Spatial variability of HSI data (AISAFenix true color composite). (B) 

LiDAR data (Canopy Height Model). (C) Mean and (D) standard 

deviation of AGB predictions from the LMR method with multisensor 

data. Figures A and B are in 1 m resolution, while Figures C and D are in 

50 m resolution. Results refer to the DUC site. 

 

Source: Author's production. 

 

6.4 Discussion 

6.4.1 Single-LiDAR versus single-HSI AGB predictions 

Our study confirmed the reliability of LiDAR-based AGB predictions in tropical 

ecosystems, consistent with previous tropical studies using small-footprint airborne 

LiDAR (ASNER; MASCARO, 2014; D‟OLIVEIRA et al., 2012; HANSEN et al., 2015; 

KRONSEDER et al., 2012; LONGO et al., 2016; MAUYA et al., 2015; RÉJOU-

MÉCHAIN et al., 2015; VAGLIO LAURIN et al., 2014; ZOLKOS et al., 2013). The 

LiDAR metrics selected here as important for estimating AGB were also comparable 

with metrics identified in other studies, such as the mean height (LATIFI et al., 2012; 

LONGO et al., 2016), height percentiles (LONGO et al., 2016; MANQI et al., 2014; 

VAGLIO LAURIN et al., 2014), and canopy-cover attributes (LATIFI et al., 2012). 

Previous studies that compared LiDAR with hyperspectral sensors have shown that 

LiDAR was more powerful for biomass prediction (CLARK et al., 2011; FASSNACHT 
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et al., 2014; VAGLIO LAURIN et al., 2014). Koch (2010) states that a direct AGB 

estimation based only on HSI data is not likely, especially in high biomass stands. 

However, our results suggest that single-HSI models can provide good AGB predictions 

even over dense tropical forests with an accuracy equivalent to LiDAR models. The 

wide range of HSI metrics calculated in this study, exploring the information of 

different vegetation properties (e.g., canopy structure, biochemistry, leaf/canopy water 

content, and plant physiology or stress), contributed to the good performance of the HSI 

models. On the other hand, while few LiDAR variables generally contained most of the 

information needed to estimate AGB, a larger set of HSI metrics was necessary to 

achieve a similar performance of the models. 

The absorption bands from the SWIR and NIR regions, as well some vegetation indices 

from the same spectral regions, were the most influential metrics for estimating AGB 

with HSI data. For instance, the leaf/canopy water absorption bands, centered at 980 nm 

and 1200 nm, were indicated as important in the analysis. The same was verified for the 

2100 nm SWIR absorption band, related to nitrogen, lignin, and cellulose (KOKALY et 

al., 2009). Previous studies suggested that such biochemical traits co-varied with 

canopy structure (KOKALY et al., 2009; SERRANO et al., 2002). Therefore, optical 

metrics from the SWIR and NIR spectral regions have been recommended to estimate 

canopy structural attributes such as LAI (GONG et al., 2003; LE MAIRE et al., 2008) 

and AGB (PSOMAS et al., 2011; SWATANTRAN et al., 2011). They have been used 

also to estimate aboveground forest productivity (SMITH et al., 2002). 

In addition to the high spectral resolution, the high spatial resolution of the 

hyperspectral images used in this study contributed positively to the AGB models. The 

spatial resolution of 1 m provides information on the distribution of crowns and gaps. 

This resolution can be more directly related to the forest inventory information used to 

establish the models. Sub-pixel-based metrics, such as the proportion of shaded pixels, 

served as a measure of the canopy spatial arrangement, improving the AGB models. 

The proportion of shade increased with increasing amounts of AGB, reducing the 

overall reflectance. These results are consistent with those found by Barbier and 

Couteron (2015), who observed a negative linear relationship between the mean 

reflectance and the maximum DBH, a measure of forest structure, due to the shade 

proportion. Moreover, studies based on texture metrics from high spatial resolution 
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optical data have shown good potential to provide non-saturating proxies for stand 

parameters, including AGB (BARBIER; COUTERON, 2015; PLOTON et al., 2017). 

As a result, Barbier and Couteron (2015) state that LiDAR is not the only option for 

monitoring canopy structure and carbon stocks in tropical forests. 

Our findings showed that some HSI indices commonly used for biomass estimation 

(e.g., SR and NDVI) saturated for AGB above 100 Mg.ha
-1

. Thus, these metrics may be 

more useful for estimating AGB in simpler stand structures than in dense forests. In 

contrast, the most relevant HSI metrics for AGB estimation found here were almost 

unaffected by saturation at high AGB values. 

 

6.4.2 Single-models versus combined-models 

The improvements in AGB models based on the integration of LiDAR and 

hyperspectral data were consistent with the studies performed in temperate mixed 

forests from the USA (ANDERSON et al., 2008), tropical forests from Africa 

(VAGLIO LAURIN et al., 2014) and in wetland vegetation from China (LUO et al., 

2017b). The gain in explained variance (R
2
) by the use of the hybrid approach reported 

in these studies, when compared with the best single-model, was within the range found 

in our investigation (absolute increase of 6-9%). In contrast, some studies performed in 

tropical (CLARK et al., 2011) and temperate forests (FASSNACHT et al., 2014; 

LATIFI et al., 2012; LUO et al., 2017a) have shown only slight (around 2% absolute 

increase of R
2
) or no improvements in AGB estimation after combining LiDAR and 

HSI for AGB modeling. 

The differences in results from the literature can be explained by several factors that 

influence the performance of the AGB models. Examples of these factors include the 

regression technique chosen for analysis; the number and type of metrics selected as 

potential input data; the type of vegetation under study; and the quality of the field and 

remote sensing data used to obtain the models. For instance, some studies suggest that 

LiDAR data provide a more straightforward connection with vegetation structure, being 

able to produce satisfactory predictions with relatively simple techniques, such as linear 

regression approaches (LONGO et al., 2016; MANQI et al., 2014). On the other hand, 

hyperspectral measurements relate indirectly with biophysical properties, and thus, may 
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need more complex models (TORABZADEH et al., 2014). In this study, the 

conventional linear regression model was not very suited for high dimensional datasets 

(based on HSI and multisensor source). However, the linear model with regularization 

showed superior performance by solving the issue of multicollinearity between the 

metrics. Nevertheless, this good performance was only possible because several metrics 

used in this study were non-saturating with large amounts of AGB, showing a consistent 

linear relationship with it. Studies based on metrics that saturate over dense vegetation 

may not find the same results. 

Few studies have applied machine learning techniques for estimating AGB from 

multisource remote sensing data. Fassnacht et al. (2014) verified that the RF method 

outperformed other approaches (stepwise linear regression, SVR, Gaussian processes, 

and k-nearest neighbor) when using combined LiDAR and HSI data. Feng et al. (2017) 

compared different data sources and modeling approaches (linear, nonlinear, RF, and 

SVR) under stratification and non-stratification conditions of vegetation types. For the 

combination of LiDAR and RapidEye data, RF had the best performance under 

stratification. RF emerged also as the best algorithm for different data sources in the 

study by Cao et al. (2018) when compared to SVR, neural networks, k-nearest neighbor, 

and generalized linear mixed model. In our study, the regression method had little effect 

on the models‟ performance. With the exception of the LM with HSI and hybrid data, 

all the evaluated algorithms were useful for estimating AGB from remote sensing data. 

Selecting the most appropriate metrics to estimate AGB is another factor that can affect 

model performance. We showed that it was possible to reduce considerably the number 

of metrics used as input data without losing much accuracy in AGB estimates. Even 

regression methods not entirely affected by the high data dimensionality can benefit 

from the reduction in the number of features. More elaborated feature selection 

procedures can produce parsimonious models for practical applications. Therefore, 

models based on multisource datasets require strategies to overcome the trade-off 

between the high data dimensionality and the loss of information for achieving a proper 

number of features. 

The characteristics of the vegetation are also relevant to AGB prediction. In our study, 

we considered a wide variety of vegetation types, from intact old-growth forests to 



80 

 

secondary forests, also including areas under different levels of degradation by fire, 

logging, or fragmentation. The information gain in AGB modeling provided by the HSI 

may be related to the discrimination of different vegetation types or conditions, such as 

canopy stress (SWATANTRAN et al., 2011). Other studies based on multispectral data 

(VIEIRA et al., 2003; ZHANG W. et al., 2017) have demonstrated the potential of 

metrics related to the NIR and SWIR spectral regions and shade fractions for 

differentiating vegetation at different regrowth stages. Nevertheless, it is important to 

note that variations in the remote sensing data acquisitions, especially the varying view-

illumination geometry, may affect some metrics (GALVÃO et al., 2013). In our study, 

the remote sensing data acquisition was designed to reduce such effects by orienting 

simultaneously most of the flight lines in the same direction (N-S). Although some 

variations in the average SZA remained (SZA = 30º±7º across sites), since the data were 

collected at different locations, we observed that such variations did not produce a 

systematic effect on the residuals of our best model (Figure B.2). 

Modeling AGB in the extensive and highly diverse Amazon region has some obstacles 

such as the acquisition of high quality and standardized field data. For instance, the 

variable size of the field plots may be a source of uncertainty in the data analysis. Small 

plots are more susceptible to spatial heterogeneity, GPS location errors, and boundary 

effects (i.e., confusion in the inclusion/exclusion of trees at the edges of the plot). 

Moreover, the shape of the plots may also favor the edge effect, in cases of large 

perimeter-area ratio (MAUYA et al., 2015). In our study, most plots were larger than 

0.24 ha, the minimum area required to achieve model errors lower than 20% of field 

biomass (ZOLKOS et al., 2013). The few plots smaller than this size or the plots with 

greater perimeter-area ratio did not influence the residuals of our best model (Figure 

B.3). Another issue is the scarcity of field data in some underrepresented regions and 

the considerable uncertainties related to field measurements and allometric equations. 

Terrestrial LiDAR offers a possible alternative to address this issue by improving field 

estimates of AGB, and therefore, the calibration and validation of models based on 

remote sensing data (STOVALL; SHUGART, 2018). 
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6.5 Conclusions 

In this chapter, we explored the potential of combining LiDAR and HSI data for 

estimating AGB in the Brazilian Amazon, using six regression methods and a great 

number and type of metrics. We concluded that:  

(1) Both LiDAR and HSI data used alone can effectively estimate AGB in tropical 

forests of the Amazon if proper metrics and regression methods are considered. 

However, HSI models required more input variables (5-12) than LiDAR models 

(2-5) for estimating AGB. 

(2) The accuracy of the AGB estimates was improved in up to 15% in RMSE and 

21% in R
2
 after using the hybrid dataset relative to the single model of best 

performance. 

(3) The most informative LiDAR metrics for estimating AGB were related to the 

upper canopy cover and tree height percentiles. 

(4) The most important HSI metrics were associated with the NIR and SWIR 

spectral regions, mainly the water and lignin-cellulose absorption bands. 

(5) From ANOVA, results showed that the source of remote sensing data (HSI, 

LiDAR, or their combination) had a more important effect than the regression 

algorithms to estimate AGB. Thus, there was no single best regression method. 

This chapter contributes to the investigation of the potential of LiDAR and 

hyperspectral remote sensing to estimate the AGB of tropical forests. More accurate 

estimates of forest carbon are highly required, considering the current scenario of global 

environmental changes. 
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7 ANTHROPOGENIC AND ENVIRONMENTAL DRIVERS OF 

ABOVEGROUND BIOMASS IN MATURE AND SECONDARY TROPICAL 

FORESTS 

7.1 Introduction 

Amazon rainforests are crucial for the global carbon balance by storing large amounts 

of carbon, about 86 Pg C in above and belowground plant biomass (SAATCHI et al., 

2007). However, they also represent a carbon source when subjected to natural or 

anthropogenic disturbances that lead to total (deforestation) or partial (forest 

degradation) forest cover loss. Thus, opportunities to mitigate climate change arise by 

avoiding anthropogenic disturbances and regenerating already disturbed areas. To meet 

these efforts, it is essential to monitor forest aboveground biomass (AGB) and 

understand the factors that control its potential recovery from different disturbance 

types such as deforestation, wildfires, and selective logging. 

Both the AGB density of mature forests and the rate of accumulation following 

deforestation or degradation vary as a function of environmental factors 

(GUARIGUATA; OSTERTAG, 2001; VILANOVA et al., 2018). The water 

availability, determined by annual rainfall and drought intensity, has been mentioned as 

a key factor for biomass variability (POORTER et al., 2016; SAATCHI et al., 2007). 

Other factors, such as topographic features, may also affect the biomass potential of an 

area (ASNER et al., 2009b). Furthermore, local forest disturbances summed to the 

global climate change may cause irreversible loss of structural and functional 

characteristics of tropical forests (GIBSON et al., 2011). Thereby, it is highly relevant 

to understand the AGB loss caused by different types of anthropogenic disturbances 

compared to undisturbed forests in different environmental gradients. 

Field surveys have provided important insights into the factors influencing AGB 

variability in the Amazon (BERENGUER et al., 2014; POORTER et al., 2016; 

QUESADA et al., 2011). However, field data are often limited in sample coverage and 

may be biased to easily accessible locations. Remote sensing technology adds new 

possibilities for analysis, enabling large-scale data collection, including areas of difficult 

access. In addition, the combination of advanced remote sensing sources can help to 

reduce uncertainties in regional scale AGB estimates. In previous chapters of this thesis, 
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we verified that combining LiDAR and HSI data better characterized different forest 

status according to anthropogenic disturbances (chapter 5) and reduced the uncertainty 

of AGB models (chapter 6) in the Brazilian Amazon. 

Here, multisource remote sensing data (airborne LiDAR and HSI) were used to estimate 

AGB in 600 samples over the Brazilian Amazon for addressing the following questions: 

(i) How different types of anthropogenic forest disturbance (deforestation and 

degradation by fire and/or selective logging) can affect the AGB of the 

Brazilian Amazon forests?  

(ii) To what extent can variability in AGB of mature forests and secondary 

successions be explained by anthropogenic (disturbance type and post-

disturbance time) and environmental factors (climate and topography)? 

(iii) What is the rate of AGB recovery over time and how can climate and 

topography affect this recovery? 

 

7.2 Material and methods 

7.2.1 Study sites and sample plots 

This study was conducted at 12 sites in the Brazilian Amazon biome, spanning a variety 

of anthropogenic and environmental conditions. The sites were distributed over four 

Brazilian states: the sites MAM, ZF2, DUC, and AUT in the Amazonas state; the sites 

TAP, SFX1, SFX2, and PAR in the Pará state; JAM site in the Rondônia state; and the 

sites ALF, FN1, and FN2 in the Mato Grosso state. Each site included a transect of 

approximately 12.5 km x 0.3 km where airborne LiDAR and HSI data were collected. 

In the sites AUT, DUC, and TAP, two transects were available.  

In order to sample the variability in forest structure and environmental conditions over 

the sites, 50 square plots of 0.25 ha (50x50 m) were distributed on each site, separated 

by at least 100 m from each other and spatially balanced within the transects. Therefore, 

a total of 600 samples (50 samples for each of the 12 sites) were allocated in forested 

areas over the Brazilian Amazon.  
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7.2.2 Anthropogenic variables 

To obtain the history of anthropogenic forest disturbances over the sites, Landsat 

images from 1984 to 2017 were visually inspected on the Google Earth Engine 

platform. Based on the Landsat time series, we obtained two anthropogenic variables: 

the type of forest disturbance and the time since the last disturbance from 2017 

(reference year).  

The detected types of disturbance (Figure 7.1) included deforestation (n = 92 samples), 

degradation by fire only (n = 146), degradation by conventional logging only (n = 54), 

degradation by both logging and fire (n = 68), and low-intensity logging (n = 49). For 

the JAM site, where low-intensity logging was authorized by forest concession, the 

boundaries of the annual production areas are available online (SFB, 2020). Areas with 

no evidence of fires but located close to roads (< 300 m) were also considered as 

disturbed by low-intensity logging since small-scale degradation events are common in 

such fragmented areas. 191 samples were identified as undisturbed forests, that is, 

forests with no signs of anthropogenic disturbance since the first year of satellite 

observation in our study (1984). 

Disturbance timing ranged from 1 to 32 years. For areas where multiple degradation 

events (fire, logging, or both) were detected, we considered the time from the last 

degradation event. For secondary forests, i.e. forests that regenerated following 

deforestation, we also referred to the time since deforestation as the age of the stand. 

Some secondary forests had evidence of understory fire following regrowth. Since not 

all trees are affected in these cases, we did not consider these fire events when 

accounting for the age of these forests. For the undisturbed forests, there was no data to 

confirm whether disturbance events occurred before 1984. In order to include these 

forests in the analysis, we filled in the time since last disturbance by attributing an 

arbitrary value of 35 years. 
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Figure 7.1 - Types of forest disturbance. Images show a post-disturbance Landsat NDVI 

(Normalized Difference Vegetation Index) for a subset area (4 km
2
) 

around a sample plot (small red squares). 

 
Source: Author's production. 

 

7.2.3 Environmental variables 

To evaluate the AGB variability as a function of environmental factors, we obtained 

climatic and topographic data over the 600 samples of the study area. Two climatic 

variables related to water availability were considered: Mean Annual Precipitation 

(MAP) and Climatic Water Deficit (CWD). MAP was obtained from the WorldClim 

version 2 (FICK; HIJMANS, 2017), in a spatial resolution of 30 s (~1 km
2
). The 

WorldClim data provide a set of bioclimatic variables (MAP is the BIO12 variable) 

based on the average for the period 1970-2000. CWD was obtained from 

http://chave.ups-tlse.fr/pantropical_allometry.htm, based on Chave et al. (2014), in a 

spatial resolution of 2.5 arc-minute (~4.5 km
2
). CWD (in mm per year) is the amount of 

water lost during dry months (defined as months where evapotranspiration exceeds 
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rainfall). CWD is by definition negative, and sites with CWD of 0 are not seasonally 

water-stressed.  

Regarding the topographic variable, a LiDAR-based terrain roughness was considered 

for characterizing the local topographic variability. Roughness was defined as the 

difference between the highest and lowest altitude in a 3 × 3 moving window (WILSON 

et al., 2007). The altitude used to compute the roughness was obtained from a LiDAR-

based DTM with a spatial resolution of 10 m. Although the LiDAR data was also used 

to estimate AGB in this study, no AGB model has considered the terrain roughness as a 

predictor. 

 

7.2.4 AGB estimation from multisensor data 

Airborne LiDAR and HSI data were available for all samples, from which we calculated 

metrics related to structural and functional characteristics of the vegetation. These 

metrics were used to estimate AGB from three models that performed best in Chapter 6: 

the LMR, CB and RF methods, based on a subset of combined LiDAR and HSI metrics. 

These models were chosen because they displayed the lowest RMSE values, with no 

practical difference between them. Since there was no best single model, the average 

predicted AGB was calculated from the estimates of these three models. Other studies 

have suggested that model averaging generally performs better than single-model 

predictions (EXBRAYAT et al., 2013; HU et al., 2015). Some values predicted by the 

LMR method were negative, which were corrected to zero before averaging, as negative 

AGB values are not possible. 

 

7.2.5 Statistical analysis 

To examine whether there were significant differences in predicted AGB among forests 

submitted to diverse anthropogenic disturbances (deforestation; degradation by fire, 

conventional logging, low-intensity logging, or both conventional logging and fire; and 

undisturbed forests), a Kruskal-Wallis test, followed by a pairwise Wilcoxon test (with 

Holm correction for multiple testing), was applied. 
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To analyze the effect of anthropogenic and environmental factors on the AGB, we 

divided the 600 samples into two groups: mature (n= 508) and secondary (n= 92) 

forests. Secondary forests are areas affected by deforestation followed by vegetation 

regrowth, while mature forests included both undisturbed and degraded forests in our 

analysis. This division is necessary due to the different patterns of regrowth of these 

forests. The natural regeneration of secondary forests depends on seeds that are 

dispersed from the nearby remaining forests or that germinate from the dormant seed 

bank. In contrast, regeneration after fire or logging is typically dominated by plants that 

remained on the site (PUTZ; REDFORD, 2010). 

Thus, a multivariable linear regression model was used to assess the extent to which 

AGB variability is affected by different anthropogenic and environmental factors in 

secondary and mature forests. To select the explanatory variables, we first fitted a 

model with all possible variables and then used a stepwise selection by AIC (function 

stepAIC of the R package MASS). Using this strategy, we selected the optimal set of 

variables that produced the lowest AIC. The full model for mature forests included, as 

possible explanatory variables, the type of disturbance (fire, conventional logging, low-

intensity logging, and logging + fire), time since last disturbance, CWD, MAP, and 

natural logarithm (ln) of roughness. An ln transformation for roughness produced a 

more linear relationship of this variable with AGB. On the other hand, the linearity was 

not observed for the other variables after the ln transformation, which was not 

implemented. For secondary forests, the same explanatory variables used for mature 

forests were considered, except the disturbance type. To further investigate patterns of 

AGB recovery over time in secondary forests, we also built simple linear regressions 

considering AGB as a function of forest age in different climatic conditions: low to 

moderate water-stressed areas (CWD > -400) and highly water-stressed areas (CWD < -

400). The intercept for all regression models with secondary forests was set to zero 

since we expect no AGB in the stand age zero. 

To determine the effect of each selected variable on the AGB, we calculated the 

magnitude of the t-value, i.e. the coefficient estimate divided by its standard error. To 

validate the models, we examined the distribution of residuals against fitted values and 

the normality of residuals, using QQ (quantile-quantile) plots and the Shapiro-Wilk test. 



88 

 

All statistical analysis considered a significance level of 0.05 and was performed in the 

R version 3.4.0. 

 

7.3 Results 

7.3.1 AGB variation as a function of the type of disturbance 

The type of disturbance had a significant contribution to the AGB variability across the 

Brazilian Amazon. Vegetation regenerating after deforestation and/or degradation by 

fire/logging had a significantly lower average AGB than undisturbed forests (Figure 

7.2). Undisturbed forests exhibited an average AGB of 226.73 Mg.ha
-1

 and high inter-

site variability, especially due to the lower values in the seasonally flooded MAM site 

(Table 7.1). Secondary forests accounted for the lowest mean AGB (70.93 Mg.ha
-1

), 

ranging from values around 15 Mg.ha
-1

 in younger successions (up to 10 years old) to 

values generally greater than 100 Mg.ha
-1

 in older successions (> 15 years). Disturbed 

mature forests displayed, on average, intermediate AGB values between secondary and 

undisturbed forests. However, some areas degraded by fire or logging + fire showed 

equivalent AGB to younger secondary successions. AGB average of forests disturbed 

by conventional logging (126.74 Mg.ha
-1

) had no significant difference from the forests 

disturbed by both logging and fire (130.84 Mg.ha
-1

), being 42-44% lower than 

undisturbed forests. Forests degraded only by fire showed high AGB variability, with a 

mean (159.99 Mg.ha
-1

) 29% lower than the undisturbed ones. Finally, forests disturbed 

by low-intensity logging had the smallest AGB difference compared to undisturbed 

forests, with an average AGB of 203.13 Mg ha
-1

 (10% lower than AGB average of 

undisturbed forests). 
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Figure 7.2 - AGB variability according to the disturbance type. The time since last 

disturbance is displayed in different colors. The average AGB ± standard 

deviation is shown as red points and lines. Distinct letters indicate 

significant differences between average AGB from a pairwise Wilcoxon 

test with a Holm correction. 

 

Source: Author's production. 
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Table 7.1 - Summary of the aboveground biomass (AGB) estimated by the remote 

sensing models for each site and disturbance type. 

 

Site Disturbance type n Estimated AGB (Mg.ha
-1

) 

      Min. Max. Mean Sd. 

MAM Undisturbed 50 48.6 228.5 135.5 49.5 

       ZF2 Undisturbed 50 227.3 392.0 283.0 36.7 

       DUC Deforestation 21 28.4 246.2 132.4 47.3 

Undisturbed 29 236.7 398.4 306.7 44.2 

       AUT Deforestation 22 13.0 86.7 44.4 24.5 

Fire 21 41.7 229.1 156.3 47.8 

Undisturbed 7 125.0 202.4 165.4 29.5 

       TAP Deforestation 14 50.5 158.6 92.4 34.3 

Logging + fire 6 171.4 244.8 201.9 26.0 

Fire 25 120.8 283.8 218.4 38.7 

Undisturbed 5 254.3 332.3 289.9 38.1 

       SFX1 Deforestation 3 15.5 52.2 28.2 20.7 

Fire 47 33.0 199.4 111.0 49.1 

       SFX2 Deforestation 2 68.9 75.4 72.2 4.6 

Fire 48 63.7 256.3 175.2 54.4 

       PAR Deforestation 18 10.6 66.0 35.2 16.6 

Logging + fire 32 51.4 228.8 128.7 45.4 

       JAM Low-intensity logging 35 155.0 275.0 210.9 24.8 

Undisturbed 15 179.9 334.5 229.2 40.1 

       ALF Deforestation 2 49.5 89.0 69.2 28.0 

Fire 4 200.1 240.2 221.4 18.8 

Low-intensity logging 14 120.7 231.8 183.8 31.3 

Undisturbed 30 172.7 297.5 222.1 31.4 

       FN1 Deforestation 9 13.0 103.5 37.5 29.4 

Conventional logging 17 60.4 169.0 110.1 31.5 

Logging + fire 23 25.4 230.2 111.4 50.5 

Fire 1 102.0 102.0 102.0 - 

       FN2 Deforestation 1 138.9 138.9 138.9 - 

Conventional logging 37 58.8 193.3 134.4 26.8 

Logging + fire 7 118.6 178.4 143.7 21.1 

Undisturbed 5 121.5 187.5 155.8 29.3 
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7.3.2 AGB drivers in mature forests 

As expected, the results of the multivariable linear regression model for mature forests 

(Table 7.2, Figure 7.3) confirmed that the occurrence of anthropogenic disturbances had 

the greatest effect on AGB variability, especially disturbances caused by fires, 

conventional logging, or both logging and fire. Considering the mature forests across all 

sites, the variables selected by the stepwise procedure indicate that disturbance by fire, 

conventional logging, or logging + fire, MAP, roughness, CWD, and time since last 

disturbance, explained 55% of the AGB variability. Time since last disturbance showed 

no significant effect on AGB (p-value < 0.05), as well as the disturbance due to low-

intensity logging, not selected by the stepwise procedure. MAP had an unexpected 

negative effect on AGB, which can be explained by the low AGB values shown at the 

MAM site. This site has the highest MAP (> 3000 mm) over the study area, which 

combined with its low terrain roughness, characterizes a poor drainage condition that 

leads to seasonal flooding, negatively affecting biomass (Figure 7.4). By excluding this 

site from the analysis, MAP no longer had a significant negative effect on AGB and the 

disturbance due to low-intensity logging became significant. The disturbance timing, 

however, continued to have no significant effect on AGB and was not selected by the 

stepwise procedure. Topography still affected AGB, especially over undisturbed forests 

(R
2
 of 0.43 for all undisturbed sites and 0.12 when excluding MAM). In short, the AGB 

in mature forests was affected mainly by the disturbance type, followed by terrain 

roughness and CWD. 
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Table 7.2 - Multivariable linear regression results for mature forests considering all sites 

and excluding the MAM site. 

Variable Coeff. CI 95% Std. 

Error 

t-value p-value R
2
 

Mature forests (n = 508) 

Intercept 513.16 [450.96; 575.36] 31.66 16.21 8.5E-48 0.55 

Disturbed by fire -99.83 [-117.80; -81.86] 9.15 -10.91 5.1E-25 

MAP -0.11 [-0.13; -0.09] 0.01 -10.26 1.5E-22 

Disturbed by conv. 

logging 

-99.88 [-120.44; -79.32] 10.47 -9.54 6.1E-20 

Disturbed by logging + 

fire 

-95.67 [-116.61; -74.74] 10.65 -8.98 5.5E-18 

ln(Roughness) 16.29 [11.88; 20.71] 2.25 7.25 1.6E-12 

CWD 0.18 [0.12; 0.25] 0.03 5.28 1.9E-07 

Time 0.49 [-0.05; 1.02] 0.27 1.79 7.4E-02 

 
Mature forests with MAP < 3000 mm (n = 458) 

Intercept 276.18 [262.69; 289.66] 6.86 40.24 2.4E-151 0.55 

Disturbed by fire -91.73 [-103.67; -79.78] 6.08 -15.09 5.9E-42 

Disturbed by logging + 

fire 

-91.43 [-113.99; -68.86] 11.48 -7.96 1.4E-14 

Disturbed by conv. 

logging 

-87.66 [-110.27; -65.05] 11.50 -7.62 1.5E-13 

ln(Roughness) 13.25 [8.54; 17.97] 2.40 5.53 5.5E-08 

Disturbed by low-int. 

logging 

-32.82 [-50.39; -15.24] 8.94 -3.67 2.7E-04 

CWD 0.11 [0.05; 0.17] 0.03 3.54 4.4E-04 
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Figure 7.3 - Distribution of residuals versus fitted values (A) and QQ plot (B) for the 

multivariable regression with all mature forests. The regression model 

without the MAM site presented the same patterns in residuals 

distribution (Figure B.4). 

 

Source: Author's production. 

 

Figure 7.4 - Relationship between estimated AGB and log-transformed roughness for 

undisturbed, disturbed, and secondary forests. Blue lines represent a 

linear fit. Points are colored by the MAP (Mean Annual Precipitation). 

 

Source: Author's production. 
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7.3.3 AGB drivers in secondary forests 

For secondary forests, the stand age was the most important variable, explaining 84% of 

the AGB variability across all sites (Figure 7.5). However, CWD and MAP also had a 

significant effect on second-growth AGB, explaining, along with age, 86% of their 

variability. Keeping climate conditions constant, the recovery rate of biomass in 

secondary forests was 4.42 Mg.ha
-1

.yr
-1

. In assessing the relationship between age and 

AGB of secondary forests subjected to different water stress gradients, we found that 

the recovery rate of AGB was slower (2.83 Mg.ha
-1

.yr
-1

) where climate stress was high 

(CWD < -400 mm.yr
-1

) and faster (5.63 Mg.ha
-1

.yr
-1

) in areas with less water stress 

(CWD > -400 mm.yr
-1

). The results of simple and multivariable linear regressions for 

secondary forests are summarized in Table 7.3. Figure 7.6 shows the distribution of 

residuals for the multivariable regression with secondary forests. 

 

Figure 7.5 - Estimated AGB as a function of the age of vegetation regrowth. The yellow 

line represents a linear fit for samples with Climatic Water Deficit 

(CWD) < -400. The blue line represents a linear fit for samples with 

CWD > -400. The black dashed line represents a linear fit for all 

samples. Points are colored by the CWD. 

 

Source: Author's production. 
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Table 7.3 - Results of linear regressions for secondary forests considering only the stand 

age as the explanatory variable and also other environmental variables 

subjected to a stepwise selection. 

Variable Coeff. CI 95% Std. Error t-value p-value R
2
 

Simple regression for secondary forests (n = 92) 

Age 4.86 [4.41, 5.31] 0.23 21.55 <2E-16 0.84 

       
Multivariable regression for secondary forests (n = 92) 

Age 4.42 [3.56, 5.29] 0.43 10.18 1.4E-16 0.86 

CWD 0.07 [0.04; 0.11] 0.02 4.06 1.0E-04 

MAP 0.01 [0.01; 0.02] 0.00 3.29 1.4E-03 

       
Simple regression for secondary forests with CWD < -400 (n = 28) 

Age 2.83 [2.31, 3.35] 0.25 11.19 1.2E-11 0.82 

       
Simple regression for secondary forests with CWD > -400 (n = 64) 

Age 5.63 [5.15, 6.10] 0.24 23.62 <2E-16 0.90 

 

Figure 7.6 - Distribution of residuals versus fitted values (A) and QQ plot (B) for the 

multivariable regression with secondary forests. 

 

Source: Author's production. 
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7.4 Discussion 

We found that anthropogenic disturbance had a fundamental impact on AGB variability 

in the Brazilian Amazon. Deforestation is the major source of carbon emissions in 

tropical forests (ARAGÃO et al., 2014). However, once the land use is discontinued, 

secondary forests show a high resilience to regenerate biomass over time (POORTER et 

al., 2016). Thus, the age of vegetation regrowth was the main factor controlling the 

amount of biomass following deforestation. In contrast, for mature forests, the time 

since last disturbance did not show a significant effect on AGB. Instead, the type of 

disturbance was mainly responsible for biomass variations. This is due to the great 

heterogeneity of forest damage produced by different types of degradation, also being 

related to the severity and recurrence of degradation events. Longo et al. (2016) 

analyzed the variability of AGB derived from inventory data and LiDAR-based models 

in the Brazilian Amazon and observed that disturbances of different intensities and 

recurrences, such as reduced-impact logging and multiple fires, often had similar 

disturbance age. Therefore, the type of degradation was more important than the time 

since last disturbance for explaining AGB variability. 

Moreover, the patterns of AGB recovery can also depend on the disturbance type. A 

meta-analysis on aboveground carbon trajectories through time after logging and fire in 

tropical forests showed that logging emissions were concentrated at the beginning of the 

disturbance event (ANDRADE et al., 2017). However, fire emissions tend to peak 

several years after the disturbance event, as trees take longer to die due to fire damage 

and subsequent synergistic impacts such as drought and diseases. Additionally, we 

observed that some burned forests, previously logged or not, had very low AGB stocks 

that were more similar to AGB from earlier second-growth than undisturbed forests. 

Other studies in the Brazilian Amazon have also indicated that anthropogenic 

disturbances caused by fires engender a secondarization process that reduces carbon 

stocks even after a long period of the degradation event (BARLOW; PERES, 2008; 

BERENGUER et al., 2014; RAPPAPORT et al., 2018; SILVA et al., 2018; XAUD et 

al., 2013). These findings reveal the high impact of fire on carbon loss and persistence, 

highlighting the urgent need to avoid fires in tropical forests. 
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Nonetheless, the effect of anthropogenic disturbances on the AGB depletion in mature 

forests remains largely unaccounted for in carbon emission estimates. We provided an 

overview effect of anthropogenic disturbances on mature Amazonian forests that, on 

average, stored up to 44% less AGB than undisturbed forests. This result is consistent 

with those reported by Berenguer et al. (2014) based on ground data, in which forests 

disturbed by both selective logging and understory fires had, on average, 40% less 

aboveground carbon than undisturbed forests. Similarly, Longo et al. (2016) verified 

that forests disturbed by conventional logging showed an AGB depletion of about 42% 

compared to intact forests. 

Besides the anthropogenic factors, environmental conditions related to topography and 

climate act as pivotal drivers of tropical forests AGB. Topography constrains soil 

nutrient and hydraulic conditions, playing an important control over the AGB of mature 

tropical forests (ASNER et al., 2009b; BERENGUER et al., 2014; JUCKER et al., 

2018b; QUESADA et al., 2011). Here, terrain roughness was an important variable for 

explaining AGB variability in mature forests, especially in the undisturbed ones. Low 

biomass values associated with low terrain roughness suggest that this topographic 

variable may act as a proxy for two important factors: variation of soil properties and 

occurrence of flooded areas. However, the effect of topography on AGB decreased in 

areas with a higher predominance of anthropogenic disturbances, playing no significant 

effect in secondary forests. As secondary forests recover, becoming more similar to 

undisturbed forests, the topography is expected to play an important role in AGB 

variability. 

Regarding climatic conditions, CWD affected the variability of AGB in both mature and 

secondary forests, suggesting a greater recovery potential in less water-stressed areas. In 

mature forests of Venezuela, Vilanova et al. (2018) verified that water deficit and 

turnover rates are key drivers of forest biomass. In areas where the turnover rates are 

low, mostly because of shorter dry seasons, the forests tend to have higher AGB with 

stands dominated by medium to high wood density species. The synergistic effect of 

extreme droughts and fire incidence in Amazonian mature forests has been inducing 

increased tree mortality and a shift in forest composition to pioneer species with lower 

wood density, thus sequestering less carbon (ARAGÃO et al., 2014; BARLOW; 

PERES, 2008; SILVA et al., 2018). 
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In secondary forests, the AGB recovery rate in areas with lower water deficit (5.6 

Mg.ha
-1

.yr
-1

) was twice as high as in water-stressed areas (2.8 Mg.ha
-1

.yr
-1

). The results 

found by Poorter et al. (2016) corroborate our findings in which both higher rainfall and 

lower seasonal water deficit increase the potential AGB of secondary forests. However, 

the average AGB recovery rate of 6.1 Mg.ha
-1

.yr
-1

 found by Poorter et al. (2016) was 

more similar to the rate of the less water-stressed areas found here. The results of 

Poorter et al. (2016) were based on compiled data from chronosequence studies in 

Neotropical secondary forests, of which three were carried out in the Brazilian Amazon 

(JUNQUEIRA et al., 2010; VIEIRA et al., 2003; WILLIAMSON et al., 2012). It is 

important to note that the age range of our study (up to 32 years, with 75% of the 

samples with up to 22 years old) is more limited than that considered by Poorter et al. 

(2016) (up to 100 years). Moreover, the recovery rates calculated here cannot be 

extrapolated to older ages, as AGB growth tends to decrease with advanced ages. 

Nevertheless, our estimate of AGB recovery rate considering all secondary forest 

samples (4.4 Mg.ha
-1

.yr
-1

) was consistent with that found by Lennox et al. (2018) across 

20 years of succession, of 4.5 Mg.ha
-1

.yr
-1

. 

The results found here have important implications in the context of climate change, 

given the expected increase in drought conditions in the Amazon forests (MALHI et al., 

2009), already observed in a few locations over the Brazilian Amazon (ALMEIDA et 

al., 2017). More intense and frequent droughts may affect the functioning of Amazonian 

forests, by increasing tree mortality (PHILLIPS et al., 2010), vulnerability to forest 

fires, and consequently, exacerbating carbon emissions (ARAGÃO et al., 2014). 

Moreover, those drier conditions potentially threaten biomass recovery following 

natural or anthropogenic disturbances. 

Other factors not considered in this study may also influence the AGB variability, 

potentially interacting in complex ways. For example, soil fertility (BECKNELL; 

POWERS, 2014), intensity of prior land use (JAKOVAC et al., 2015), and surrounding 

landscape forest cover (BERENGUER et al., 2014) has been reported as important 

factors affecting tropical forest structure and resilience. Therefore, future studies that 

consider these factors may expand the understanding of the variability of AGB in the 

Brazilian Amazon. 
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7.5 Conclusion 

In this chapter, we used airborne LiDAR and HSI data to estimate AGB of forests under 

different anthropogenic and environmental conditions over the Brazilian Amazon. 

Based on this multisensor-derived AGB, we concluded that: 

(1) Anthropogenic disturbances significantly reduced the AGB compared to 

undisturbed forests. Forest degradation accounted for an AGB depletion of up to 

44%. 

(2) In mature forests, the occurrence of anthropogenic disturbances had the greatest 

effect on AGB variability, especially those caused by fires, conventional 

logging, or both logging and fire. Topography and climatic water deficit also 

displayed a significant effect. However, time since last disturbance had no 

significant effect on AGB variation of mature forests. 

(3) Secondary forest age was the major factor explaining AGB recovery following 

deforestation, with a rate of 4.4 Mg.ha
-1

.yr
-1

. However, the AGB resilience of 

secondary forests depended on climatic water deficit and rainfall. Therefore, it is 

expected that the AGB recovery potential will vary according to the gradient of 

water availability in the Amazon. 

These results were consistent with other field-based studies, highlighting the potential 

of multisensor data to capture AGB variations due to anthropogenic and environmental 

factors over the complex forests of the Brazilian Amazon.  
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8 CONCLUDING REMARKS 

The combined analysis of results from Chapters 5, 6 and 7 showed some common and 

interesting aspects. For instance, the HSI and LiDAR metrics that had the greatest 

influence on the classification of forest disturbance status were also the most important 

for estimating AGB. This is because AGB integrates important forest structural and 

functional information associated with forest disturbance and regrowth, such as tree 

height, basal area, number of trees per area, and wood density. Moreover, climatic 

conditions related to water availability also showed a great relevance for the AGB 

variation, which was evidenced by the importance of HSI metrics related to canopy 

moisture and water stress. This suggests that HSI metrics are sensitive to physiological 

and compositional characteristics due to adaptation to drier climate as well as changes 

in forest functioning such as water regulation given microclimatic changes generated by 

anthropogenic disturbances. Those results highlight the relevance of AGB as a measure 

of forest ecosystem functioning and the usefulness of integrating different remote 

sensing data for its characterization. 

The moist Amazonian forests showed high AGB resilience overtime after deforestation. 

Thus, the recovery of secondary forests from initial to advanced successions has great 

potential to increase the carbon reservoir of the Amazon. However, the recovery of 

highly degraded forests, mainly by fire, is uncertain and may lead to an opposite 

pathway, from mature forests to earlier successional stages. 

Most studies on forest ecosystems based on LiDAR and HSI data integration have been 

performed locally, on single study sites (e.g., ANDERSON et al., 2008; DALPONTE et 

al., 2012; JONES et al, 2010; THOMAS et al., 2008). Although it is important to 

consider different spatial scales in the study of multisensor data integration, the full 

realization of its potential as a source of forest information requires an ability to 

generalize in different environmental conditions and human-induced disturbance 

dynamics. Thus, the integrated use of LiDAR and HSI data can also help to understand 

the dynamics of complex Amazonian forests from a regional perspective. 

As an overall conclusion of this thesis, the combined use of LiDAR and hyperspectral 

remote sensing data significantly improved the discrimination of forests subjected to 

different types of anthropogenic disturbances (Chapter 5) and the estimation of 



101 

 

aboveground biomass in the Brazilian Amazon (Chapter 6). The gain of information 

provided by the multisensor data is highly required to support strategies of conservation 

of priority areas, sustainable management, and reduction of greenhouse gas emissions as 

well as improving our understanding of forest dynamics in the face of increasing human 

pressure and climate change risks. For instance, integrating LiDAR and HSI data 

provided a unique opportunity to assess the relative importance of environmental and 

anthropogenic factors affecting forest aboveground biomass across a broad set of sites 

(Chapter 7). Therefore, the use of information derived from multiple remote sensing 

sources has proved useful for the study of the highly biodiverse and complex Amazon 

forests. 
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APPENDIX B - SUPPLEMENTARY FIGURES AND TABLES 

 

Figure B.1 - Comparison of the feature selection results for the SVR (Support Vector 

Regression) method with three different kernels: linear, polynomial and 

RBF (Radial Basis Function). The points represent the selected feature 

size. The RBF kernel was chosen because it produced the smallest 

RMSErfe values with the lowest number of metrics selected. 

 

Source: Author's production. 
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Figure B.2 - Analysis of the residuals from the best model (LMR with LiDAR plus 

hyperspectral data), as a function of field plot location (latitude in A and 

longitude in B) and of the solar zenith angle at the time of the 

hyperspectral data acquisition (C). The blue line represents a linear fit 

and the gray area represents its 95% confidence interval. 

 

Source: Author's production. 
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Figure B.3. Analysis of the residuals from the best model (LMR with LiDAR plus 

hyperspectral data), as a function of the field plot area (A) and perimeter-

area ratio (B). The blue line represents a linear fit and the gray area 

represents its 95% confidence interval. 

 

Source: Author's production. 
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Figure B.4 - Distribution of residuals versus fitted values (A) and QQ plot (B) for the 

multivariable regression with the mature forests, with exception of the 

MAM site. 

 

Source: Author's production. 
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Table B.1. LiDAR metrics selected by RFE (Recursive Feature Elimination) for each 

regression algorithm (LM: Linear Model, LMR: Linear Model with 

Regularization, SVR: Support Vector Regression, RF: Random Forest, 

SGB: Stochastic Gradient Boosting, and CB: Cubist). Metrics in bold 

have relative importance greater than 80%. Model tuning selected the 

following parameters: lambda 0.01 for LMR; cost 4 and sigma 0.05 for 

SVR; n.trees 100 for SGB; and committees 10 for CB. 

Rank LiDAR Model 

  LM LMR SVR RF SGB CB 

1 PD2_10 LAD20_30 H.p05 LAD20_30 LAD20_30 LAD20_30 

2 LAD22 H.p95 LAD20_30 PD22 H.p80 PD22 

3 

  

LAD22 LAD22 PD1st 

 
4 

  
LAD18 LAD26 

  
5       H.p80     

Abbreviations of the LiDAR metrics: H.pX= X
th
 (05, 80, or 95

th
) percentile of height 

distribution of first returns above 2 m; PD2_10= number of first returns between 2 and 10 m 

divided by the number of all first returns; PD22= number of first returns above 22 m divided by 

the number of all first returns; PD1st= number of first returns above 2m divided by the number 

of all returns above 2m; LAD20_30= Leaf Area Density between 20 and 30 m; and LADh= Leaf 

Area Density above the height h (18, 22, or 26).  
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Table B.2. Hyperspectral (HSI) metrics selected by RFE (Recursive Feature 

Elimination) for each regression algorithm (LM: Linear Model, LMR: 

Linear Model with Regularization, SVR: Support Vector Regression, RF: 

Random Forest, SGB: Stochastic Gradient Boosting, and CB: Cubist). 

Metrics in bold have relative importance greater than 80%. Model tuning 

selected the following parameters: lambda 0.01 for LMR; cost 2 and 

sigma 0.018 for SVR; n.trees 50 for SGB; and committees 20 for CB. 

Rank HSI Model 

  LM LMR SVR RF SGB CB 

1 LWVI1 W2100 NDNI W2100 W2100 W2100 

2 R1646 NDNI W2100 W495 W495 W495 

3 NDBleaf LWVI1 As980 NDNI NDNI W980 

4 LWVI2 As980 W495 D2100 CAI NDNI 

5 R852 W980 LWVI1 R1091 R1091 LWVI1 

6 

 

W495 S30_60 CAI D2100 DLAI 

7 

 

R461 DWSI2 As980 W980 PSRI 

8 

 

NDBleaf NDLI PRI D980 S0_30 

9 

  

D2100 

  

VIgreen 

10 

  

As670 

  

R701 

11 

  

S0_30 

  

As980 

12           GV 
Abbreviations of the HSI metrics: Rλ= reflectance of a band centered at the wavelength λ (461, 

701, 852, 1091, or 1646 nm); CAI= Cellulose Absorption Index; DLAI= Difference for Leaf Area 

Index; DWSI2= Disease Water Stress Index 2; LWVI1= Leaf Water Vegetation Index 1; 

LWVI2= Leaf Water Vegetation Index 2; NDBleaf= Normalized Difference for Leaf Biomass; 

NDLI= Normalized Difference Lignin Index; NDNI= Normalized Difference Nitrogen Index; 

PRI= Photochemical Reflectance Index; PSRI= Plant Senescence Reflectance Index; VIgreen= 

Vegetation Index green; Dc, Wc, and Asc = depth, width, and asymmetry, respectively, of the 

absorption band centered at 495, 670, 980, and 2100 nm; GV= mean green vegetation fraction; 

S0_30= proportion of pixels with shade fraction below 30%; and S30_60= proportion of pixels with 

shade fraction between 30 and 60%.  
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Table B.3 - Metrics selected by RFE (Recursive Feature Elimination) for each 

regression algorithm (LM: Linear Model, LMR: Linear Model with 

Regularization, SVR: Support Vector Regression, RF: Random Forest, 

SGB: Stochastic Gradient Boosting, and CB: Cubist) with hybrid datasets 

(LiDAR + hyperspectral). Metrics in bold have relative importance 

greater than 80%. Model tuning selected the following parameters: 

lambda 0.01 for LMR; cost 4 and sigma 0.018 for SVR; n.trees 150 for 

SGB; and committees 20 for CB. 

Rank Combined Model 

  LM LMR SVR RF SGB CB 

1 R1646 As980 LAD26 W2100 W2100 LAD20_30 

2 H.p40 W2100 LAD22 H.p95 NDNI H.mean 

3 SR H.p95 H.p05 NDNI R1091 W980 

4 As980 LAD22 LAD18 H.mean H.p95 LAD22 

5 R1220 PWI LAD20_30 LAD26 CAI W2100 

6 As1200 D980 As980 CAI W495 PD22 

7 

 

As670 H.p95 PD22 H.p80 PD14 

8 

 

PD2 PD22 LAD22 W980 As980 

9 

 

LAD20_30 LAD14 H.p80 LAD26 H.p20 

10 

 

W980 H.p10 W495 PD22 H.p95 

11 

 

As2100 LAD6 R1091 D2100 PD18 

12 

 

PRI H.mean H.p90 H.mean R1091 

13 

  

NDNI H.p10 H.p90 D980 

14 

  

H.p20 D2100 H.p10 D2100 

15 

  

DSCI LAD20_30 HSCI H.p40 

16 

  

H.p90 LAD18 NDBleaf NDNI 

17 

  

H.p40 PD18 PD20_30 LAD18 

18 

  

H.p80 W980 DSCI W495 

19 

  

H.max PD2_10 PD18 DWSI3 

20 

  

W2100 NDBleaf D980 As1200 

21 

  

PD18 PD20_30 PD6 PSRI 

22 

  

D980 D980 S0_30 

 23 

  

LAD2 H.p05 PD1st 

 24 

  

HSCI 

 

PD2_10 

 25 

  

D2100 

 

H.p05 

 26 

  

R1091 

 

DWSI2 

 27 

  

PD14 

 

LAD20_30 

 



128 

 

28 

  

As1200 

 

S30_60 

 29 

  

S30_60 

 

H.p40 

 30 

  

GV 

   31 

  

S0_30 

   32 

  

D1200 

   33 

  

PD2_10 

   34 

  

R1220 

   35 

  

PWI 

   36 

  

PD1st 

   37 

  

PD10_20 

   38     R1646       

Abbreviations of the metrics: H.mean= mean height of first returns above 2 m; H.max= 

maximum height; H.pX= X
th
 (05, 10, 20, 40, 80, 90, or 95

th
) percentile of height distribution of 

first returns above 2 m; PDh= number of first returns above a height h (2, 6, 14, 18, or 22) 

divided by the number of all first returns; PDa_b= number of first returns between a height 

interval a_b (2_10, 10_20, or 20_30) divided by the number of all first returns; PD1st= number 

of first returns above 2m divided by the number of all returns above 2m; LADh= Leaf Area 

Density above the height h (2, 6, 14, 18, 22, or 26); LAD20_30= Leaf Area Density between 20 

and 30 m; DSCI= Simpson Structural Complexity Index; HSCI= Shannon Structural 

Complexity Index; Rλ= reflectance of a band centered at the wavelength λ (1091, 1220, or 1646 

nm); CAI= Cellulose Absorption Index; DWSI2= Disease Water Stress Index 2; DWSI3= 

Disease Water Stress Index 3; NDBleaf= Normalized Difference for Leaf Biomass; NDNI= 

Normalized Difference Nitrogen Index; PRI= Photochemical Reflectance Index; PSRI= Plant 

Senescence Reflectance Index; PWI= Plant Water Index; SR= Simple Ratio; Dc, Wc, and Asc = 

depth, width, and asymmetry, respectively, of the absorption band centered at 495, 670, 980, 

1200, and 2100 nm; GV= mean green vegetation fraction; S0_30= proportion of pixels with shade 

fraction below 30%; and S30_60= proportion of pixels with shade fraction between 30 and 60%. 
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