
sid.inpe.br/mtc-m21c/2020/04.20.16.10-TDI

STUDY AND OPTIMIZATION FOR HIGH
PERFORMANCE PROCESSING WITH GALPHAT

Igor Kolesnikov

Master’s Dissertation of the
Graduate Course in Applied
Computing, guided by Drs. Celso
Luiz Mendes e Reinaldo Roberto
Rosa, approved in April 23, 2020.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/42C2DGH>

INPE
São José dos Campos

2020

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Ivone Martins - Serviço de Informação e Documentação (SESID)
Cauê Silva Fróes - Serviço de Informação e Documentação (SESID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21c/2020/04.20.16.10-TDI

STUDY AND OPTIMIZATION FOR HIGH
PERFORMANCE PROCESSING WITH GALPHAT

Igor Kolesnikov

Master’s Dissertation of the
Graduate Course in Applied
Computing, guided by Drs. Celso
Luiz Mendes e Reinaldo Roberto
Rosa, approved in April 23, 2020.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/42C2DGH>

INPE
São José dos Campos

2020

http://urlib.net/xx/yy

Cataloging in Publication Data

Kolesnikov, Igor.
K832e Study and optimization for high performance processing with

galphat / Igor Kolesnikov. – São José dos Campos : INPE, 2020.
xxii + 65 p. ; (sid.inpe.br/mtc-m21c/2020/04.20.16.10-TDI)

Dissertation (Master in Applied Computing) – Instituto
Nacional de Pesquisas Espaciais, São José dos Campos, 2020.

Guiding : Drs. Celso Luiz Mendes e Reinaldo Roberto Rosa.

1. Computational cosmology. 2. Elliptical galaxies. 3. Bayesian
statistics. 4. Galaxies structure and environment. 5. High
performance computing. I.Title.

CDU 004:523.1

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

FOLHA DE APROVAÇÃO

A FOLHA DE APROVAÇÃO SERÁ INCLUIDA APÓS RESTABELECIMENTO

DAS ATIVIDADES PRESENCIAIS.

Por conta da Pandemia do COVID-19, as defesas de Teses e

Dissertações são realizadas por vídeo conferência, o que vem acarretando um

atraso no recebimento nas folhas de aprovação.

Este trabalho foi aprovado pela Banca e possui as declarações dos

orientadores (confirmando as inclusões sugeridas pela Banca) e da Biblioteca

(confirmando as correções de normalização).

Assim que a Biblioteca receber a Folha de aprovação assinada, esta

folha será substituída.

Qualquer dúvida, entrar em contato pelo email: pubtc@inpe.br.

Divisão de Biblioteca (DIBIB).

ACKNOWLEDGEMENTS

Firstly I would like to thank the INPE and its graduate program for the opportunity
and all necessary means to be able to learn and grow in the academic area. The
teachers’ core was extremely helpful both during the curriculum study and research
process. Their helpful tips and bits of advice were a valuable addition to the project.

I want to express immense gratitude to Dr. Martin Weinberg from Massachusetts
University, the author of the GALPHAT. His unparalleled help and assistance in
technical questions concerning the usage and adaptation of GALPHAT were of great
help to the whole research.

Besides Martin, I would like to thank Diego Stalder for innumerable conversations
and questions answered to help me better understand the pipeline and routines of
the processing.

I am grateful to Dr. Reinaldo de Carvalho for the helpful tips and pieces of advice,
as well as for the valuable tips on developing of the project. I am thankful to my
advisors, Dr. Celso Mendes and Dr. Reinaldo Rosa for the help with preparation of
the presentation and the monograph, as well as for the help during the research.

I want to thank CAPES for the financial support that allowed me to conduct this
research.

Last, but not least, I would like to express my gratitude to my girlfriend, Amanda
Guimarães, who helped a lot in reviewing and providing valuable advice on the
monograph, even though she is a professional from the law area and had a hard
time understanding the content of the research.

v

ABSTRACT

The parametric computational modeling of galaxies is a process with a high com-
putational cost. The statistical component of modeling, which may involve model
refinements in relation to the source brightness distribution achieves more satisfac-
tory results when the approach is Bayesian. In this research, we are using GALaxy
PHotometric ATtributes (GALPHAT) as our main tool for data processing.

The GALPHAT modeling of a galaxy observed by the Sloan Digital Sky Survey
(SDSS) can last about 6 hours. In the current scenario of cosmology, this type of
modeling, to be scientifically effective, must be performed on a set containing about
thousands of objects. The sample analyzed within the scope of the FAPESP thematic
project that LABAC participates contains more than 24,309 objects, an amount that
demands the use of high-performance computing (HPC) to enable effective modeling
of the entire sample.

In this postgraduate project, we have as the main objective to study and optimize
HPC solutions that allow GALPHAT processing on a SDSS sample in the fastest
possible way. For this, we have two HPC systems that can work in a coordinated
way to optimize the modeling strategies. The first system belongs to LABAC and is
based on Intel Xeon Phi 7250 platform. The second system belongs to the partition
of the multi-core platform of the Santos Dumont supercomputer.

The research, therefore, includes the initial process done to set up and run GAL-
PHAT on both platforms, thus using different types of processors and compilers.
Considering the different processing steps, in different modeling strategies we ap-
plied refactoring and complete modules rewriting. Our studies have found the op-
timal combination of software, hardware and optimizations to minimize processing
time. This is the first step in implementing and integrating the graphical user inter-
face to make GALPHAT easier to use. This dissertation, therefore, presents all of
the activities that were performed to allow, as a final result, to process, in a timely
manner, via HPC, the entire selected sample including the description of benchmark
among the computational systems used. It includes the development of the auxiliary
visualization system as well.

Keywords: Computational Cosmology. Elliptical Galaxies. Bayesian Statistics.
Galaxies Structure and Environment. High Performance Computing.

vii

ESTUDO E OTIMIZAÇÃO PARA PROCESSAMENTO DE ALTO
DESEMPENHO COM GALPHAT

RESUMO

A modelagem computacional paramétrica de galáxias é um processo com alto custo
computacional. O componente estatístico da modelagem, que pode envolver refina-
mentos do modelo em relação à distribuição do brilho da fonte, obtém resultados
mais satisfatórios quando a abordagem é bayesiana. Nesta pesquisa, estamos usando
o GALaxy PHotome-tric ATtributes (GALPHAT) como nossa principal ferramenta
para processamento de dados.

A modelagem usando o GALPHAT de uma galáxia observada pelo Sloan Digital
Sky Survey (SDSS) pode durar cerca de 6 horas. No cenário atual da cosmologia,
esse tipo de modelagem, para ser cientificamente eficaz, deve ser realizado em um
conjunto contendo milhares de objetos. A amostra analisada dassa pesquisa, que faz
parte de projeto temático da FAPESP da qual o LABAC participa contém mais de
24.309 objetos, quantidade que exige o uso do processamento de alto desempenho
(PAD) para permitir a modelagem eficaz de toda a amostra.

Neste projeto de pós-graduação, temos como principal objetivo estudar e otimizar
soluções de PAD que permitem o processamento com GALPHAT em uma amos-
tra de SDSS da maneira mais rápida possível. Para isso, temos dois sistemas PAD
que podem funcionar de maneira coordenada para otimizar as estratégias de mo-
delagem. O primeiro sistema pertence ao LABAC e é baseado na plataforma Intel
Xeon Phi 7250. O segundo sistema pertence à partição da plataforma multinúcleo
do supercomputador Santos Dumont.

A pesquisa, portanto, inclui o processo inicial feito para configurar e executar o
GALPHAT nas duas plataformas, usando diferentes tipos de processadores e com-
piladores. Considerando as diferentes etapas de processamento, nas diferentes estra-
tégias de modelagem, aplicamos a refatoração e a reescrita completa dos módulos
de pipeline. Nossos estudos descobriram a combinação ideal de software, hardware
e otimizações para minimizar o tempo de processamento. Este é o primeiro passo
na implementação e integração da interface gráfica do usuário para facilitar o uso
do GALPHAT. Esta dissertação, portanto, apresenta todas as atividades realizadas
para permitir, como resultado final, processar em tempo hábil, via PAD, toda a
amostra selecionada, incluindo a descrição de uma referência entre os sistemas com-
putacionais utilizados. Inclui também o desenvolvimento do sistema de visualização
auxiliar.

Palavras-chave: Cosmologia Computacional. Galáxias Elípticas. Estatística Bayesi-
ana. Galáxias Estrutura e Ambiente. Computação de Alta Performance.

ix

LIST OF FIGURES

Page

1.1 Hubble Tunning Fork is showing the galactic form variation. 7
1.2 Distribution of sizes of images of galaxies in the sample that was used in

this research. The x-axis is showing the half-light radius of the galaxies
in pixels. The value in pixels is computed by dividing the De Vaucouleurs
fit scale radius parameter from the SDSS database by 0.396, which is the
scale of the pixel (devRadr/0.396). The conversion formula to pixels is
(devRadr/0.396) ∗ 15. 8

1.3 Graphical description of a posterior inference using BIE with GALPHAT.
The BIE is a general platform for estimating high-dimensional posterior
distributions using Markov chain Monte Carlo (MCMC) algorithms (left
column) and non-Markov chain samplers based on the «update» feature
of Bayes Theorem, such as sequential algorithms (right column) flow. . . 9

1.4 Illustration of global research approach of the group. 12

2.1 Example of the image and mask of one of the galaxies of our list, that
was created by the pre-processing routines. Mask is removing secondary
objects from the image before processing. 15

2.2 Example of the corner plots. They are the covariance matrices of con-
verged values of each parameter after the chains were cleaned and cut.
These charts are one of the results of the post-processing step (third
step in the pipeline) step on converged galaxies. The left one is for «Sér-
sic+Exponential» (12 parameters) model and the right one is for the
«Sérsic» (7 parameters) model. 16

2.3 Detailed overview of pipeline sequence of execution with information
of used languages. Roughly, the processing pipeline consists of 3 main
stages. Each of the main steps is subdivided into smaller steps. In the
end, we are receiving the cleaned and compressed posterior file (the main
output of pipeline) and the corner plot generated on it. On this figure, we
only present the core steps of the processing, omitting some of the minor
routines that are called in the process. Minor routines will be commented
in Tables 2.1 and 2.2. 18

xi

2.4 The updated figure of the pipeline sequence with already implemented
modifications written in red color. Quick summary: preprocessing was
adapted to Python 3, parallelized, and unified into a single automated
submission system; main parts of post-processing were rewritten from
scratch using Python 3, already with support for SE model and in parallel
form. 22

3.1 Time per image size obtained in the previous study of S17 with ∼1200
galaxies (a subset of our sample). In that research, GALPHAT was in-
stalled using the GCC compiler on Xeon E5 2660 (Helios Cluster). Ex-
trapolating this, we will get bleak predictions on how long it would take
to process our data. With obligatory assumption that we would be able
to achieve the same processing speed as of S17 research, which we did
not achieved at the very beginning. But even being able to achieve the
same performance, looking at sizes of the main portion of the galaxies in
the Figure 1.2 it turns to be practically unviable. 30

3.2 Demonstration of modification of the processing approach on many-core
systems (like Xeon Phi). To be able to use all available core/threads, we
prepared the automated submission system that is capable to split and
distribute the galaxy list equally into smaller lists and start processing on
each of then independently. Processing several galaxies simultaneously is
decreasing drastically processing time of a single galaxy. 31

3.3 htop is an utility that shows the load of the machine. In this figure we
are showing the state of the Pollux during processing of 6 galaxies simul-
taneously. This result corroborates with our previous findings. 33

3.4 Comparison between Helios (GCC) and Pollux (ICC) running 1 galaxy
simultaneously with «Sérsic» model. The data was cleaned from outliers
greater than 2 * Standard Deviation(STD) on both X and Y axis. 34

3.5 In this figure, we are showing the results of processing several galaxies at
the same time. These are compared to the S17 performance. Each line
corresponds to a number of galaxies that are executed simultaneously,
using 40, 80 and 120 GB of RAM and 40, 80 and 120 threads, respectively,
using «Sérsic» model. The data was cleaned from outliers greater than
2 * STD. This shows that when running four simultaneous galaxies, we
were able to surpass results from S17 research. With our final amount
of RAM, after all upgrades of the machine, we ended up settling for six
galaxies at the same time, resulting almost in 2 fold faster than S17 result. 35

xii

3.6 Comparison of time per image size obtained while processing 1800 galax-
ies with «Sérsic» and «SE» models on Santos Dumont. In both tests, we
were using Thin nodes. We submitted two different jobs, for each model.
Each galaxy was using 72 cores for «SE» and 20 cores for «Sérsic» model.
The data was cleaned from outliers greater than 2 * STD. 37

3.7 Demonstration of time consumption per main processing stage for 500
galaxies on Pollux machine. Even though the GALPHAT processing is re-
sponsible for 90% of total time, pre-processing and post-processing could
consume a considerable amount of time when the number of galaxies
comes to thousands. For this reason, optimization and parallelization
needed to be done. 38

3.8 The figure is showing the benefits of compression routine parallelization
in case of the comparison is between usage of 1 thread and maximum
optimal amount on the machine. Even though it has been considerably
faster across the board, the speedup on the Xeon Phi machine is the
most prominent, showing the importance of usage of as many threads as
possible on this processor family. Although the node with the E5-2695v2
processor showed the fastest time. 41

3.9 The figure is showing the comparison between a factor of improvement
that each of the systems had while comparing sequential and parallel ver-
sions of the code for generation of the corner plot. We can see from the
chart that once again, the Pollux machine had more significant improve-
ment across the board. This data was generated by following equation:
factor = sequentilT ime/parallelT ime. 42

4.1 The figure is showing the correlation matrix of the sample of 400 non-
converged galaxies. From the matrix, we can perceive what variables have
higher correlations between them. In our case, we can see that X, Y, q
and PA are having one of the highest values of the of correlation. 47

4.2 Example of the corner plot (cropped) of the galaxy with bimodality in
several parameters. The effect could be seen in two-point distributions in
every plotted parameter. 48

xiii

4.3 The figure shows the example of a complicated case, where in the cen-
ter we have our target galaxy surrounded by other objects which could
interfere during the processing. Green contour lines show the mask that
was created by the pipeline. Pixels inside of the contours are marked as
bad pixels and ignored during processing. It is clear that masked areas
are far bigger than it is necessary and overlap the target galaxy in the
center. 50

4.4 The figure shows the result of manual masking. If we will compare it with
the automatic masking, it is clear that we lose a lot less of space around
the objects. 51

4.5 One of two non-converged galaxies. The figure is showing a practically
impossible case where a much bigger and brighter object is directly on
top of the target galaxy. This creates an impossible condition to decouple
it with the mask without interfering with the target galaxy. Blue contour
- secondary object; Green contour - target galaxy. 52

5.1 Example of the diagnostic system in its early development state with
brief comments of its functionality. 53

5.2 The figure shows the comparison between ways of supplying data to
the end-user, starting with direct connection of database to the Flask
logic. This is the most straightforward way, but it stops working when
one has more than 200 entries. We compare it with native Python and
SQLAlchemy pagination implementation with variable data sets and page
size(number of presented entries for the user). And the third method is to
leave the logic of supplying the information to the DataTables framework
and JavaScript supplementary file. The last method delivers the best
results overall. 57

xiv

5.3 Example of the visualization page in the current state of the development.
The numbers from the figure correspond to: 1. Brief statistics of the
data based on the current JSON dump file. The data is calculated and
stored in the auxiliary file for subsequent usage; 2. Search field that
allows searching the whole list (not just current page) based on any
column criteria (id, size or status); 3. Sorting ribbon. The whole list is
sortable in any order based on any column; 4. Direct links for download
of image and mask for a given galaxy. This facilitates the debugging of
the galaxies that ended up with an error. Usually, a look at the image
would suffice for a basic diagnostic; 5. In case the galaxy is processed
successfully, the system will create buttons for download of compressed
posterior and visualization of a corner plot directly in the browser. If
needed, a corner plot is available for download in the preview window; 6.
Pages for navigation in huge lists of data. Switching is happening almost
instantly when one compares with SQLAlchemy’s native implementation
of pagination; 7. Number of galaxies per page. 59

xv

LIST OF TABLES

Page

1.1 Harold Jeffreys interpretation for the BF. 6

2.1 Refactoring results of main pre-processing scripts. Two main scripts of
this step are catalog.py and query.py (they are described in Figure 2.3)
rest is auxiliary scripts that are being called during the processing. . . . 20

2.2 Unit test implementation results for main pre-processing scripts. 21

3.1 Results of benchmark using 20 and 272 threads on Xeon Phi (Pollux) to
compare the performance and efficiency of GCC and ICC compilers. As
load task was used NAS benchmark with EP (Embarrassingly Parallel)
Kernel and C class. The results were obtained by running each test three
times and getting mean value. The values in the table represent time, in
the format mm:ss,ms (mm - minutes, ss - seconds, ms - milliseconds). . . 26

3.2 Information on environment setup of compilers and main modules. Boost-
Lib and OpenMPI for each compiler were built from source with corre-
spondent compiler and linked during building of GALPHAT via PATH
and LD_LIBRARY_PATH environment variables. All other depen-
dencies were the same. 27

3.3 Results of conducted test with in-built galaxy from GALPHAT installa-
tion directory using GCC and ICC compilers. In each case 16 cores were
used. The values in the table represent time, in the format hh:mm:ss (hh
- hours, mm - minutes, ss - seconds). 27

3.4 Results of conducted test with 15 real galaxies from SPIDER sample us-
ing GCC and ICC compilers. First and second columns show the galaxy’s
id and size in pixels respectively. The size is calculated using the following
formula. Showing mean values for the: size, time and speedup of 15 galax-
ies. The speedup was calculated using geometric mean formula. The time
is given in the format hh:mm:ss (hh - hours, mm - minutes, ss - seconds). 28

3.5 Comparison between Helios using GCC compiler and Pollux using ICC
while running same galaxy with Sérsic model and using 20 threads in each
case. The values in the table represent time, in the format hh:mm:ss (hh
- hours, mm - minutes, ss - seconds). 29

3.6 Table comparing Pollux machine processor with CPU used in S17 re-
search on Helios cluster. 40

xvii

4.1 Table showing the 7 (X and Y count as one, being the center of the
galaxy) parameters of the «Sérsic» model, its prior values and units. Each
of these parameters has its Rhat value that we can look after running
the posterior distribution through Gelman&Ruben algorithm. 46

xviii

LIST OF ABBREVIATIONS

ICC – Intel C compiler
GCC – GNU C compiler
GALPHAT – GALaxy PHotometric ATtributes
SDSS – Sloan Digital Sky Survey
HPC – High-performance computing
GUI – Graphical user interface
JSON – JavaScript Object Notation
CPU – Central Processing Unit
RAM – Random Access Memory (main memory)
ETG – Early Type Galaxy
MPI – Message Passing Interface
POSIX – Portable Operating System Interface
BIE – Bayesian Inference Engine
MCMC – Markov chain Monte Carlo
CLI – Command Line Interface
FITS – Flexible Image Transport System
PyPiGALPHAT – Python Pipelining GALPHAT

xix

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Conceptual context and scientific background 2
1.2 Motivation . 2
1.2.1 Bayes Factor and model comparison foundation 4
1.3 Data considerations . 6
1.4 Main processing tool - GALPHAT . 8
1.5 Main goals . 10
1.6 Context of this research . 11

2 PIPELINE: COMPONENTS, EXECUTION AND OPTIMIZA-
TIONS . 15

2.1 Composition and execution . 17
2.2 Improvements of the pipeline . 19
2.2.1 Rewriting the post processing . 19
2.2.2 Optimization and refactoring . 19
2.2.3 «Sérsic+Exponential» implementation 21
2.3 Summary of achieved results . 21

3 PERFORMANCE OF PIPELINE AND ITS IMPROVEMENTS 25
3.1 Compiler . 25
3.2 Initial general testing . 25
3.2.1 Initial testing with target-application data 26
3.2.2 Comparison between Xeon Phi and Xeon E5 2660 (from S17 research) 29
3.3 Scalability . 30
3.4 «Sérsic+Exponential» performance remarks 36
3.5 Parallelization . 38
3.5.1 Post-processing . 39
3.5.2 Pre-processing . 43
3.6 Summary of the chapter . 43

4 DIAGNOSTICS AND TROUBLESHOOTING 45
4.1 Steps of analysis . 45
4.1.1 Increasing the processing time limit . 45

xxi

4.1.2 Increasing the Markov Chain number 45
4.1.3 Tweaking processing parameters . 46
4.1.4 Processing without Math Kernel Library (MKL) 49
4.1.5 Masking images manually . 49
4.2 Results of the chapter . 52

5 STORAGE AND VISUALIZATION OF PROCESSED DATA . 53
5.1 Database and storage . 53
5.2 User interface and interaction . 54
5.3 Composition . 55
5.3.1 Collection of data and population of data base 55
5.3.2 Connection between database and visual interface 56
5.3.3 Visualization interface . 58

6 CONCLUSIONS . 61
6.1 Future work . 62

REFERENCES . 63

xxii

1 INTRODUCTION

The parametric computational modeling of galaxies is still a process with a high
computational cost and lasting years of CPU time when several thousands of galaxies
have to be processed and specially when the Bayesian approach is used. In the
current scenario, this type of modeling can be performed only on a limited set of
galaxies, hampering more ambitious and complete astrophysical analysis.

Four years ago, our group embarked on a collaboration with Dr. Martin Weinberg
from UMASS (University of Massachusetts Amherst), who developed GALPHAT
(GALaxy PHotometric ATtributes)1, a Bayesian program for galaxy photometry.
In 2017 a Ph.D. thesis was presented at LAC/INPE showing further developments
of this program. Special attention has been given to the modeling of Early-Type
Galaxies (ETGs)(STALDER,).

In recent years, since the characterization of galactic components such as bulge, disk,
central point sources, and others of smaller mass contribution has been shown an
essential diagnosis of physical processes that determine their evolution. In particular,
their dependence on the environment where the galaxy resides.

In this research our focus is to extend even further the line of the previous study,
processing more than 20 times more of the data than the preceding research to
perform the first part of the search on which the model fits better our dataset.
To achieve it, we need to process the same data with two models. In our case,
these models are «Sérsic» and a much more complex and sophisticated «Sérsic +
Exponential». While the part of the pipeline that is responsible for the processing
the «Sérsic» model is fully implemented and functional, the part responsible for
the «Sérsic+Exponential» is far from being ready, in relation to the code and the
testing of the functionality. Therefore, given the context of the massive amount of
data and the possibility to use HPC hardware and software, we aim to conduct
an in-depth study and optimization of GALPHAT and its components to achieve
a viable time while processing on different HPC solutions. At the same time, we
started the development of an interface visualise and analyse the results. Our aim,
in the near future develop it in a platform where the community will access the
products of this processing — having all necessary information without the need of
processing data during months/years. We hope to unify and improve the tools from
various previous studies and integrate them with visualization capabilities for the

1https://bitbucket.org/mdweinberg/bie.git

1

https://bitbucket.org/mdweinberg/bie.git

end-user.

1.1 Conceptual context and scientific background

In astronomy, every year, we witness the appearance of new and more sophisticated
instruments, telescopes and other observational tools that can gather much more
data than previous ones. These data need to be stored and processed for later re-
search. To perform the cycle of «test-result-conclusion» faster, one needs to process
and analyze data in a more timely manner. Not only, but the results also should
represent the full exploitation of the data. To make the situation of data accumu-
lation worse, the current speed of new galactic data generation is much faster than
the growth of the speed of its processing. So, every day, scientists struggle to figure
out how to get more meaningful results in less time. Methods based on Bayesian
Inference may be part of the solution, given the fact that Bayesian Analysis provides
the full posterior distribution of each parameter as an output. However, these tools
are very computationally costly in operation. So, to stay competitive in the world of
always growing requirements, one needs to look for new and creative solutions with
available hardware and software resources, while paying each time more attention
to optimization and price/benefit of the tools available.

Establishing nearly 14 billion years of evolution from observing galaxies as they
are observed today is a task fraught with danger. In this project, we propose an
approach that extends galaxy evolution studies to infrared wavelengths and higher
redshifts (further in the past) to consistently investigate the properties of galaxies
and their environments over a significant cosmic time interval. A crucial step towards
this will be the implementation, optimization and augmentation of the GALPHAT
galaxy photometry program pipeline, which will provide a solid statistical basis for
the analysis of the structural parameters of the components observed in galaxies
(mainly the bulge and the disk).

1.2 Motivation

Galaxies form through the gravitational collapse of density perturbations, produced
during the inflation era. The cosmological model of the Big Bang with a cosmological
constant, known as the ΛCDM model, explains reasonably well quite important
observations as the temperature variations of the cosmic background radiation, the
distribution of large-scale galaxies, nucleosynthesis and the acceleration of universal
expansion (CONSELICE, 2014). An inventory of mass density in the Universe shows
that ∼ 26.8% is in the form of dark matter and dominates the gravitational field on

2

a large scale; the cosmological constant is responsible for ∼ 68.3% and determines
the accelerated expansion of the Universe; and the remaining ∼ 4.9% constitutes the
ordinary matter that forms the planets, stars, and galaxies (AGHANIM et al., 2018;
ABBOTT et al., 2019).

Much of the astrophysical complexity lies precisely in the component of the ordi-
nary matter, and most observations are based on this baryonic component. How
does a galaxy form its stars? What determines the total star content of a galaxy?
Astronomers have devoted considerable effort to answer such questions in recent
decades. Stellar formation starting from a cold gas cloud is an extremely complex
problem and one of the most difficult of modern astrophysics. The problem itself
becomes more complicated by the fact that many galaxies reside in larger structures,
such as groups and clusters of galaxies, where they interact with neighboring sys-
tems. Thus, it becomes imperative to understand separately how internal processes
are distinguished from external processes that determine the stellar content of a
given galaxy in a given environment and for a given redshift. Which processes are
dominant? Barbera et al. (2010) studying a sample of 40000 ETGs defined in SPI-
DER (Spheroids Panchromatic Investigation in Different Environmental Regions),
found a relation between the slope of the IMF (Initial Mass Function) and the ve-
locity dispersion of the ETGs, showing that there is an excess of low mass stars
in high mass elliptical galaxies. Independent dynamic studies reinforce this result
(CAPPELLARI et al., 2009). In addition to the complexity involved in characteriz-
ing the population of these galaxies, environmental effects are present and, in some
cases, are dominant (LAUER et al., 2012). Thus, it is of fundamental importance to
investigate the properties of ETGs (including stellar population) as a function of
the distance to the center of the nearest group/cluster. These properties may vary
depending on the redshift and mass of the galaxy.

The environment manifests itself through three main physical processes: 1) ram
pressure, where a galaxy that is moving through the hot gas of a cluster of galaxies
loses its interstellar medium; 2) «harassment», which is the collective effect of several
high-speed encounters of a galaxy with many others in the cluster and its overall
potential; and 3) «starvation», which refers to the fact that the lifetime of a galaxy
is linked to the availability of gas for a star formation episode. If stars form at a
constant rate, with the value currently observed, then all the gas in a spiral galaxy
would be consumed in less than a Hubble time. Thus, the lifetime of a galaxy
increases if more gas is added to the system more recently. A corollary of this idea
is that a spiral galaxy suffers from starvation when it loses its gas reservoir and

3

becomes a lenticular galaxy (CONSELICE, 2014).

These three mechanisms operate in such a way that the transmutation of a galaxy
from one morphological type to another may depend on the mass of the galaxy,
the mass of the cluster where the galaxy resides (and the gas distribution), and its
distance from the center of the galaxy cluster. The efficiency of these regulatory
mechanisms depends on the ability of the local environment to remove interstellar
gas. Besides, the evolution of the stellar population of a galaxy also depends on the
redshift. In order to better understand how galaxies evolve, it is fundamental to
define a sample of galactic systems present in the most varied environments, from
low galactic density and low-velocity dispersion (field population) to systems with
high density and velocity dispersion (groups/clusters).

In summary, the results of this research will improve our understanding of these ef-
fects by bringing an analysis done with Bayesian Inference tools, whereas previously
only frequentist tools were used. However, to make it happen in a timely fashion
and be presented appropriately, we need not only to improve the already existing
pipeline for processing but also extend it to process different image modeling. Also,
it is of paramount importance in this project the development of a specific database
for the organization of all the information generated by GALPHAT. A user-friendly
interface is being planned and developed as an integral part of this project so that
the community will be able to benefit from our work.

1.2.1 Bayes Factor and model comparison foundation

The key objective and the primary motivation of processing the data with two
models is the fact that we distinguish which is the best modeling through the Bayes
Factor analysis (KASS; RAFTERY, 1995). Following, we will study the main scale
relationships for these systems. Thus, the result, being a compilation and analysis
of the massive amount of early-type galaxies that were processed using the Bayesian
Inference tool is of considerable impact. This approach brings a good amount of new
information and insights that were unavailable to researchers who used frequentist
approach on the same data. This shows the potentiality of Bayesian inference and
the possibility of extending this strategy to a set of several models. We can combine
all observed components in elliptical and spiral galaxies, such as bulge, disc, point
source, bar, lens, rings and similar.

Often it is difficult to know which theoretical model explains better a given galaxy
light profile. This is crucial when different analytical forms describe physically dis-

4

tinct components such as bulges (Sérsic law), discs (exponential) or unresolved
sources associated with active galactic nuclei (point source). The Bayes Factor (BF)
provides a mechanism that evaluates the evidence in favor of each considered model
rather than only test the goodness of the fit. BFs are the preferred method for
model selection, for this reason, the best model will be given by the Bayes Factor
(WAKEFIELD, 2013), which measures the relative statistical significance of the var-
ious probability distributions, and so the choice of the best physical representation
is not made purely based on a Chi-squared statistics test, also known as X2.

Stalder () shows that BF can be derived from applying the Bayes Theorem to a
set of models. The first thing to do is to compute the evidences or marginalizations
P (D|Mi) by marginalizing the equation 1.1:

P (D|Mi) =
∫
dθ P (θ|Mi)P (D|θ,Mi) (1.1)

This quantity is also known as marginal likelihood. Once we have a sample of the
posterior distribution obtained by the Markov Chain Monte Carlo (MCMC) algo-
rithm, the computation of the evidence is a numerical challenge. To select which
model explains better the surface brightness distribution of a given galaxy image,
one can consider individual analytic expressions or combinations of them: a single
«Sérsic» fit (M1) and/or «Sérsic+Exponential» (M2). To determine which of these
two models is a better representation of an observed brightness distribution, we have
to calculate the posterior odds:

P (M1|D)
P (M2|D) = P (D|M1)

P (D|M2)
P (M1)
P (M2) (1.2)

where the ratio P (D|M1) /P (D|M2) is called Bayes Factor, given by:

BF12 ≡
P (M1|D)
P (M2|D) =

(
P (M1)
P (M2)

)(
P (D|M1)
P (D|M2)

)
(1.3)

This ratio assesses the plausibility of the two different modelsM1 andM2. If BF12 =
1, both models are equally supported by the data. However, if BF12 > 1 or BF12 < 1,
the data is in favor of model M1 or M2 respectively. Jeffreys (1998) suggest to scale
BF12 in half-unit steps in log BF12 before interpreting the result.

5

Table 1.1 - Harold Jeffreys interpretation for the BF.

logBF12logBF12logBF12 BF12BF12BF12 Strength of evidenceStrength of evidenceStrength of evidence
< 0 < 1 Negative (supports M2)

0 to 1/2 1 to 3.2 Barely worth mentioning
1/2 to 1 3.2 to 10 Positive
1 to 2 10 to 10 Strong
> 2 100 Very Strong

SOURCE: Jeffreys (1998).

The prerequisite to conduct this analysis is to have the data processed with two or
more models using a tool based on Bayesian Inference (GALPHAT in our case). Dur-
ing this master’s dissertation, we processed the data sample with a «Sérsic» model,
the main obstacle to go further with processing the data with «Sérsic+Exponential»,
is the time and consequent computational challenges to process the data in a timely
manner. We are describing this process here to point the direction in which the work
will be developed after the conclusion of the current research.

1.3 Data considerations

Galaxy analysis is fundamental to understand the evolution of the Universe. The
first step in the galaxy analysis is to study the galaxy scheme. The Hubble Tuning
Fork is one of the basic classification schemes, described by Figure 1.1. This image
shows steps of the galaxy’s formation and classification. We have to notice that there
is a gradual change in these features indicating that it reflects physical proprieties
(KORMENDY; BENDER, 1996).

Our input data are the elliptical galaxies that were photographed by the Sloan
Digital Sky Survey2 2.5-meter wide-angle telescope that has been operational since
2000 (GUNN et al., 2006). This survey has photometric observations of more than 500
million objects, of which 3 million objects have spectrum data, making it one of the
most detailed maps of Universe ever made.

2https://www.sdss.org/

6

https://www.sdss.org/

Figure 1.1 - Hubble Tunning Fork is showing the galactic form variation.

SOURCE: Kormendy e Bender (1996).

Our sample consists of 24309 ETG taken from Sloan Digital Sky Survey (SDSS)
Data Release 7 (DR7)(ABAZAJIAN et al., 2009). This Legacy Survey is a catalog of
the sky from a set of optical and infrared imaging data, comprising 14,000 deg2

of extragalactic sky visible from the northern hemisphere in three optical bands
(g, r, z) and four infrared bands. The total number of galaxies in this catalog is
approximately 1.12 million. From this number, the actual SPIDER sample consists
of 40000 galaxies. However, for our needs, firstly, tiny galaxies (re < 2arcsec) that
would be very unlikely to converge during GALPHAT processing were cut off, so
the smallest galaxies left in the list were not smaller than re = 2arcsec. Secondly,
massive galaxies (kpc > 100) that naturally could not exist in nature also were
cut off. Main reason to remove these galaxies was to minimize debugging and trou-
bleshooting during processing, for this galaxies, being outliers, could introduce a
good amount of complexity. Finally, the resulting list was ordered by according to
the re parameter (smaller to larger).

7

Figure 1.2 - Distribution of sizes of images of galaxies in the sample that was used in this
research. The x-axis is showing the half-light radius of the galaxies in pixels.
The value in pixels is computed by dividing the De Vaucouleurs fit scale radius
parameter from the SDSS database by 0.396, which is the scale of the pixel
(devRadr/0.396). The conversion formula to pixels is (devRadr/0.396) ∗ 15.

0 5 10 15 20 25 30 35 40
re (pixels)

0

1500

3000

4500

6000

7500

9000

10500

12000

SOURCE: Author.

1.4 Main processing tool - GALPHAT

In this research, data processing is handled by GALPHAT (WEINBERG et al., 2013),
which is a front-end application of the Bayesian Inference Engine (BIE), a parallel
Markov chain Monte Carlo package. Figure 1.3 shows a graphical depiction of the
GALPHAT execution. The BIE uses standard MPI and POSIX threads and, there-
fore, will run in a broad spectrum of parallel or scalar environments and can be
easily ported to high-performance hardware for production analysis.

8

Figure 1.3 - Graphical description of a posterior inference using BIE with GALPHAT. The
BIE is a general platform for estimating high-dimensional posterior distribu-
tions using Markov chain Monte Carlo (MCMC) algorithms (left column) and
non-Markov chain samplers based on the «update» feature of Bayes Theorem,
such as sequential algorithms (right column) flow.

SOURCE: Stalder et al. (2017).

GALPHAT provides full posterior probability distributions and reliable confidence
intervals for all model parameters. The BIE relies on GALPHAT to compute the
likelihood function (WEINBERG, 2012). GALPHAT generates scale-free cumulative
image tables for the desired model family with precise error control. The interpola-
tion of this table yields accurate pixelated images with any center, scale, and incli-

9

nation angle. GALPHAT then rotates the image by position angle using a Fourier
shift theorem, yielding a high speed and accurate likelihood computation.

Fundamentally, the BIE is a library, but the package provides a command line
interface (CLI) with access to nearly all the import object classes (YOON et al.,
2011).

1.5 Main goals

One of the possible ways to conduct astrophysical research is analyzing photometric
parameters of galaxies to obtain insights into its formation, composition, evolution
and death. As it could be presumed, when one has more analyzed galaxies – more
refined and rich results will be delivered, and thus, more knowledge one will be
able to build on it (STALDER et al., 2017). However, this ever-growing «more» has
limits. Mainly, the problem consists of ever-growing computational time, so one
needs to get more information from less data, or time will be spent just waiting for
a sample to process with no concrete results at the end. Given the Big Data context
of the large databases like SDSS, used in this work, or LSST3, potentially to be
used in future research, it is necessary to present software and hardware solutions to
increase the performance of GALPHAT. So, one of the first goals of this research is
to provide tuning of GALPHAT package installation and configuration to improve
the performance and process data on the hardware available. By this, we conducted
tests with GNU GCC and Intel ICC compilers, on two types of processors that we
have in our disposal, Pollux machine based on Xeon Phi 7250 and a dedicated queue
on Santos Dumont supercomputer with Intel Xeon E5-2695v2.

The main goal and final result of this project is processing our data sample of 24309
galaxies from the SPIDER sample using the «Sérsic» model (SÉRSIC, 1963). After
that, organize the results and information achieved in comprehensive and easy to use
form through the web-based visual system, while continuing working on an analysis
of obtained data. This system and the back-end parts such as database, visual
delivery and architecture are modeled and riped during processing to accommodate
all necessary data and deliver it in an optimized manner. Hoping that the results will
have great value in this field, we believe that this result will trigger several valuable
articles. That being said, we are striving to conduct the analysis of the possibility
to process a significant amount of data using Bayesian Inference tools. Given the
fact of the upcoming extensive surveys (for example, LSST), we need to answer the

3LSST - Large Synoptic Survey Telescope

10

question if it is still possible to conduct in-place processing and analysis of data.

To help ourselves and other researchers who will need to use the same or similar tools
to process their data samples, we continue the work on the improvement processing
pipeline. Initially, the processing pipeline was fragmented and require different skills
and programming language knowledge to be operated. This complexity starts with
the proper setup of the environment, having several languages involved in different
modules until small tweaks for some minor adjustments. It can get complicated and
tedious very rapidly, so one of the simultaneous goals is to improve the routines of
the submission and output analysis. By refactoring and parallelizing, we were able
to achieve faster, cleaner and more modular code. This will come handy when it
is necessary to implement new models. On top of this, we unified several modules
into the submission system to facilitate the usage of GALPHAT and optimize the
research sequence. We hope this will help other teams, if necessary, to have tools of
galaxy processing at their disposal.

1.6 Context of this research

This work is part of a bigger picture of the research with the collaboration of several
teams. For now, in the global context of the research, we have achieved results that
would serve as a basis for continuing the work. We can divide the overall picture into
four steps. The first is the study and analysis of potential data samples (galactic
group or cluster, for example), which has the highest potential for further research (in
our case, it was the study of the SPIDER sample). At the second stage, these data
samples need to be filtered to obtain only the necessary data from the hundreds
of thousands of galaxies. An example of this can be the work of (BARCHI et al.,
2017) and only after this we come to the work presented in this dissertation. Here
we process and store the data for the fourth step, the deep analysis and further
research on it (TORTORA et al., 2016).

11

Figure 1.4 - Illustration of global research approach of the group.

Chapter 2 gives a quick look at our main processing program as well as a detailed de-
scription of processing pipeline execution and its modules. Right after, we present the
optimizations that were already implemented to improve the processing sequence.
The chapter ends with a summary of optimizations.

Chapter 3 describes in detail all the work that we had conducted on testing the pro-
cessing pipeline in search of better execution speed. We describe three areas where
we focused our efforts and include results that were rendered after their implemen-
tations.

Chapter 4 presents the troubleshooting of the non-converged galaxies after the first
execution of the whole list reached its end, the theoretical background of methods
that we used and the results that we have received.

Chapter 5 introduces our visualization interface for data that we received during
processing. The chapter describes problems that we faced and our primary motiva-
tion for developing the interface. The chapter presents results on already functioning
parts and shows the description of implemented functions.

In the conclusion section, we make a summary of all the achievements that we

12

got during the research and present it in condensed form. Our vision of future
development of the work can be found at the end of the chapter as well.

Brief specifications of hardware used in this research

Pollux - Main machine for tests and processing of «Sérsic» model.

Specifications

• CPU - Intel Xeon Phi 7250 68 cores (272 threads) at 1.4 GHz (1.6 GHz in
TurboBoost)

• RAM – 192 GB (Initially 48 GB) of DDR4@2400GHz

• Operating System - Cent OS7, 3.10.0-693.el7.x86-64 kernel version.

Santos Dumont supercomputer (33 Thin nodes) - main machine for tests and
processing of «Sérsic + Exponential» model:

Specifications (each node):

• 2 x CPU Intel Xeon E5-2695v2 Ivy Bridge, 2,4GHZ, 24 cores (12 por CPU),
total of 792 cores

• RAM – 64GB DDR3 RAM

• Full specification could be found at https://sdumont.lncc.br/machine.
php?pg=machine

13

https://sdumont.lncc.br/machine.php?pg=machine
https://sdumont.lncc.br/machine.php?pg=machine

2 PIPELINE: COMPONENTS, EXECUTION AND OPTIMIZATIONS

As we commented earlier, this research uses GALPHAT as main processing tool. To
optimize usage of GALPHAT, especially with long lists of objects, an automated
pipeline was developed, called PyPiGALPHAT. Its task is to analyze galaxy struc-
tural parameters, retrieve images from a given survey, generate configuration files,
detect individual astronomical sources in these images, and finally schedule GAL-
PHAT analyses and manage acquired data from an HPC cluster (STALDER et al.,
2017, Hereafter as S17). Initially, this pipeline had support only for «Sérsic» and
«Sérsic Source Point» models. Also, it is compatible only with the SDSS database.
In the current research, we aimed to optimize, parallelize and rewrite it to permit
extension for new models, especially «Sérsic+Exponential», which is one of our main
goals in the long run.

When the list of galaxies is to be processed, it needs to pass through several steps.
Firstly, data needs to be fetched and prepared in order to be ingested by GALPHAT.

Figure 2.1 - Example of the image and mask of one of the galaxies of our list, that was
created by the pre-processing routines. Mask is removing secondary objects
from the image before processing.

SOURCE: Author.

The program reads two-dimensional galaxy image data from a FITS file, generates a
model image, and then computes the likelihood. This can be achieved with a series
of auxiliary scripts written in Python, which goal is from supplied galaxy’s ID, find,

15

download and prepare a list of files that GALPHAT will use for processing. Figure
2.1 is showing an example of already cropped galaxy stamp and corresponding mask
to exclude secondary objects. This data is stored in the SDSS telescope’s database.

For a few galaxies, this process will not take long, but when the number of galaxies
reaches thousands, pre-processing time may start to become very large. So, it is not
unwise to think about some way of parallelization of this step.

In the next step, prepared scripts and images from the previous step are submitted
for processing to GALPHAT, which depending on the machine, according to our
earlier testing, can take from seconds (Supercomputer) to some days (home PC). For
this reason, we had to spend some time preparing and optimizing the environment
to improve the performance possible on the hardware available. Some insights into
these processes are presented in Chapter 3.

Figure 2.2 - Example of the corner plots. They are the covariance matrices of converged
values of each parameter after the chains were cleaned and cut. These charts
are one of the results of the post-processing step (third step in the pipeline)
step on converged galaxies. The left one is for «Sérsic+Exponential» (12 pa-
rameters) model and the right one is for the «Sérsic» (7 parameters) model.

SOURCE: Author.

16

After processing, we arrive at post-processing routines, which are compressing and
cleaning the output. Right in the sequence, we produce various kinds of graphics
representations from the output and this can tell us some interesting things about
data sample that was processed and processing errors if there are some. Figure 2.2
shows the examples for the corner plots (parameter covariance) for the «Sérsic»
and «Sérsic+Exponential» models. These charts are obtained by plotting posterior
distribution of the parameters. The posterior file is the main output after running
GALPHAT on a galaxy (if it has converged). Same as the pre-processing step, these
routines are not so time-consuming as actual processing, but if the number of galaxies
is high enough, it can get unexpectedly slow. For this purpose, it is also reasonable
to implement parallelism to ensure better performance on scalable hardware. A
summary of these steps is shown in Figure 2.3.

2.1 Composition and execution

As we can see from Figure 2.3, the current pipeline of processing is made up of
several steps, where some of them are subdivided into additional steps. The main
difficulty of this approach consists of complicated setup and consequent usage.

As we can see from Figure 2.3, currently, we have five different languages (Python, C
Shell, C/C++ and R) and six separate steps; each step needs to be executed man-
ually in the terminal to process a given list of galaxies. This brings up a problem of
optimization because when one executes step-by-step manually and, in our scenario,
we are working with thousands of galaxies, it requires a significant amount of unnec-
essary and repetitive work, which we hope to minimize with focused improvements
of the processing pipeline.

Before we can start any of the improvements stated above, some work needs to
be done on already existing pre-processing and post-processing code. This code
was developed as a fast solution for past problems with not much attention to
structure, organization and improvement potential. In the present state, this code is
not suitable to be parallelized or modified. As these routines are poorly documented
and organized, the first step is to refactor and organize them. We strive to make
them clearer and ready to implement unit tests, which will be a handy diagnostics
tool for future modification of code.

17

Figure 2.3 - Detailed overview of pipeline sequence of execution with information of used
languages. Roughly, the processing pipeline consists of 3 main stages. Each of
the main steps is subdivided into smaller steps. In the end, we are receiving
the cleaned and compressed posterior file (the main output of pipeline) and
the corner plot generated on it. On this figure, we only present the core steps
of the processing, omitting some of the minor routines that are called in the
process. Minor routines will be commented in Tables 2.1 and 2.2.

SOURCE: Author.

18

2.2 Improvements of the pipeline

2.2.1 Rewriting the post processing

Having several different languages and steps, it is considered the problem by it-
self. However, this fact makes things more difficult when one needs to unify the
whole pipeline into a single system or even when committing minor changes. Having
in mind that the codebase has several issues, it makes sense to rewrite the post-
processing step from scratch. In this case, our main motivation of rewriting it was
to couple the post-processing with other modules. We opted to start the rewriting
using Python language. Our main goals were modularity, ability to parallelize if
needed and core functions to get started. All the goals were achieved. The paral-
lelization and its advantages are discussed in Chapter 4. Here we will point only to
the fact that unifying all the code base to a single programming language makes all
the consequent work much more comfortable. In our case, we will be working on the
integration of all modules in a single suite.

2.2.2 Optimization and refactoring

As we had commented previously, to be able to commit necessary improvements and
extensions, we needed to invest a good deal of time focused on improving the already
existing codebase. Next in priority line was the need to implement the parallelism to
enable the use of the full potential of the Pollux machine, which has poor single-core
performance while having plenty of the available threads for parallel tasks. Most of
the existing tasks could be classified as embarrassingly parallel (MATLOFF, 2015).
These kinds of tasks are characterized by a great number of independent objects to
work on and consequently it is quite easy to distribute them across available cores.
Before starting the parallelization process, the first thing to do was optimization
and refactoring of our code to prepare it and look for the key spots where we can
introduce the parallelization.

In the case of post-processing, we rewrote the main parts of the routines entirely,
already in a parallel manner. As for pre-processing, instead of explicitly parallelizing
the preparation of input, we opted to leave the distribution of the work across the
cores to the automated submission system. When we are submitting a given list of
galaxies, the workload of preparing is already being distributed between available
hardware. More detailed discussion and results are in Chapter 4. By definition,
refactoring is changing the code’s structure without changes in its functionality. It
was important to firstly understand and then restructure the code to be able to open

19

the way for further improvement. In summary, we achieved satisfactory results in
refactoring, which was the first step that opened a possibility to implement the new
model and other improvements. Table 3.1 shows the result of the code improvement
and the codebase refactory. There we show how the number of functions increased,
together with decrease in lines per functions. This made code more readable and
maintainable.

Table 2.1 - Refactoring results of main pre-processing scripts. Two main scripts of this step
are catalog.py and query.py (they are described in Figure 2.3) rest is auxiliary
scripts that are being called during the processing.

Before After More
Funct.

Less code
p/ funct.

Functions
Lines
p/
funct.

Functions
Lines
p/
funct.

catalog.py 4 27 8 20 +4.0 -7
cutPsf.py 3 20 3 16 +.0 -4
genImg.py 3 99 15 23 +12.0 -76
genScript.py 5 77.2 5 77.2 +.0 0
query.py 1 116 8 13 +7.0 -103
sqlcl.py 5 14.2 5 14.2 +.0 0

SOURCE: Author.

After refactoring, the code became clearer and more understandable, which helped
a lot in understanding of its functionality. Consequently, we implemented basic unit
tests to be able to control and verify all the consequent changes and improvements.
Unit tests are of a great help when one needs to commit some changes to the code,
but is unsure if it will continue to work in the same manner. We used Py.test1

framework to implement tests. Table 2.2 is showing the results of unit test imple-
mentation. Some routines, even after unit test implementation, continued to have
low test coverage. This is due to the fact that they do not have any output that
could be evaluated or compared to test value. Most of the functions are only writing
or reading from a file. These routines have very few functions as well, so having two
of the total three functions writing to the file, renders a poor percentage of the test
coverage.

1https://docs.pytest.org/en/latest/

20

https://docs.pytest.org/en/latest/

Table 2.2 - Unit test implementation results for main pre-processing scripts.

Before After
Test coverage Test coverage

catalog.py 0% 24%
cutPsf.py 0% 28%
generateImages.py 0% 88%
generateScript.py 0% 22%
query.py 0% 94%
sqlcl.py 0% 31%

SOURCE: Author.

2.2.3 «Sérsic+Exponential» implementation

Besides the optional but beneficial improvements like parallelization and optimiza-
tion, we needed to extend the core functionality of the system with the ability to pre-
pare the input scripts for «Sérsic+Exponential» as well as generate post-processing
charts. While «Sérsic» is fully implemented by S17 (Stalder et al. (2017)) and ready
to be used in production, «Sérsic+Exponential» is far from being ready, code and
testing alike. So, one more reason for refactoring and test implementation is that
we need to have clear and comprehensive code to be able to increment new model
functionality.

Having this opportunity, the refactoring that was done with Pre-processing and Post-
processing facilitated new model implementation. Firstly, we needed to perform all
the commented steps above. In the end, we were able to increment the necessary
functions and test the required functionality. As for now, it is being used for the
processing on Santos Dumont supercomputer.

2.3 Summary of achieved results

Summarizing our achievements with improvements in the processing pipeline, we
can conclude that we were able to improve the consistency of the pipeline signifi-
cantly by rewriting the main routines of the post-processing step. At the same time,
pre-processing was refactored and optimized in a way to reduce the complexity of
understanding and facilitate further improvement. Figure 2.4 is showing the parts
that were modified. Everything that had passed through some change is written in
red.

21

Figure 2.4 - The updated figure of the pipeline sequence with already implemented modi-
fications written in red color. Quick summary: preprocessing was adapted to
Python 3, parallelized, and unified into a single automated submission sys-
tem; main parts of post-processing were rewritten from scratch using Python
3, already with support for SE model and in parallel form.

SOURCE: Author.

22

The whole sequence received speedup by either parallelizing or using the automated
submission system. Due to the fact that Python 2 reached its end of the life, we had
refitted the preprocessing steps to run them with Python 3. All the steps, except
post-processing, are already integrated into the automated submission system, which
greatly decreases the hustle of submission of new processing jobs, leaving the bulk
of the work to the automatic scheduler.

23

3 PERFORMANCE OF PIPELINE AND ITS IMPROVEMENTS

The current chapter seeks to show all the work that was done to improve the per-
formance of the processing pipeline and, by this, bring processing time to its mini-
mum, having in mind that the actual processing time was one of our main problems.
Roughly, we can divide our efforts into three separate areas: (1) Compiler and all
the tests and optimizations related to it; (2) implicit parallelization of post- and pre-
processing routines; (3) scaling and adaptation of pipeline to improve performance
on hardware available.

Here we will present in detail the peculiarities of each part and summarize obtained
results at the end. As our starting point, we will use the results from (STALDER et

al., 2017, Hereafter as S17) as a comparison. We describe the state of the codebase
that we received from that research and show the development that was done on
top of it.

3.1 Compiler

3.2 Initial general testing

At the beginning of our research, we started with preliminary tests with NAS bench-
mark1 to verify two things: (i) influence of compilers on GALPHAT performance and
(ii) scaling and performance lose if engaging maximum number of threads on our
newly acquired machine. The reason to expect better performance with Intel’s C
Compiler with GALPHAT on this setup was good results in general benchmark
tests such as those seen in Table 3.1.

The first important detail is that with the usage of a maximum number of threads,
speedup obtained with the ICC compiler grew even more prominent, meaning that
when we are using near the maximum of the machine for galaxy processing, we can
gain even more performance with the Intel compiler.

Another important detail in Table 3.1, we will discuss the same table but slightly
different analysis, to show promising capabilities of the Xeon Phi processor in «em-
barrassingly parallel» tasks. We can see that the Intel compiler gives better results
in case of the efficiency of speedup. Efficiency would be 100% (ideal case) if we would
get speedup proportional to the increase of active threads. In this case, we had 20
in the first test and 272 in the second. It converts to an increase of 13.6 times. If

1https://www.nas.nasa.gov/publications/npb.html#url

25

https://www.nas.nasa.gov/publications/npb.html##url

Table 3.1 - Results of benchmark using 20 and 272 threads on Xeon Phi (Pollux) to com-
pare the performance and efficiency of GCC and ICC compilers. As load task
was used NAS benchmark with EP (Embarrassingly Parallel) Kernel and C
class. The results were obtained by running each test three times and getting
mean value. The values in the table represent time, in the format mm:ss,ms
(mm - minutes, ss - seconds, ms - milliseconds).

NAS benchmark tests with 20 and 272 threads.
20 threads 272 threads Parallelism Speedup

GCC 00:58,01 00:07,73 7,50
ICC 00:30,36 00:03,64 8,34
Compiler Speedup 1,91 2,12

SOURCE: Author.

we had obtained the same speedup, we would be able to say that we can use all
available threads without losing any performance. Nevertheless, due to the fact that
we have only 68 real cores, each capable of running four simultaneous threads, that
is not possible. In our case, we start to lose performance while using ∼ 55% (for the
GCC compiler) and ∼ 61% (for the ICC compiler) of the total number of threads.
While we do not get the ideal case of efficiency when employing all threads, we are
able to use more than half of the machine for our processing. Later in the chapter,
we will comment more on this matter in the context of GALPHAT. After receiving
this information, we proceed to build the environment to test the compilers on the
real target-application data.

3.2.1 Initial testing with target-application data

During the initial setup of the GALPHAT on the Pollux machine at the beginning
of the research, we conducted tests on the comparison between the GNU and ICC
compilers. Received results were surprisingly good (the difference between the com-
pilers was more then 4 times) in favor of the Intel compiler. Due to the fact that we
needed to start as soon as possible the processing of the «Sérsic» model, unfortu-
nately not enough time was dedicated to certifying the correctness of the obtained
results. Later on, when we ended the processing of the whole list of the galaxies
(24309) and the machine became once again available, we got the opportunity to
verify the accuracy of the previous testing. This time we prepared the environment
and main packages thoroughly to ensure the correctness. For the test to compare
the compilers we installed the following versions of the main packages showed in
Table 3.2

26

Table 3.2 - Information on environment setup of compilers and main modules. Boost-
Lib and OpenMPI for each compiler were built from source with corre-
spondent compiler and linked during building of GALPHAT via PATH and
LD_LIBRARY _PATH environment variables. All other dependencies were
the same.

Compiler BoostLib/
OpenMPI Environment Variables

GCC
5.4.0 1.61/4.03

CC="gcc-5", CXX="g++-5",
CFLAGS="-O3", CXXFLAGS="-O3",
F77="gfortran-5", FC="gfortran-5",
F90="gfortran-5"

ICC
19.0.0.117

CC=icc, CXX=icpc,
CFLAGS="-O3 -xHost -ip -no-prec-div -static-intel",
CXXFLAGS="-O3 -xHost -ip -no-prec-div -static-intel",
F77="ifort", FC="ifort", F90="ifort"
CPP="icc -E", CXXCPP="icpc -E"
FFLAGS="-O3 -xHost -ip -no-prec-div -static-intel"

SOURCE: Author.

Using these settings, we run two kinds of tests, first with prototype image (small
galaxy, 48x48 pixels) that comes with GALPHAT installation. Another test was
with 15 galaxies from our sample of varied sizes.

Table 3.3 - Results of conducted test with in-built galaxy from GALPHAT installation
directory using GCC and ICC compilers. In each case 16 cores were used. The
values in the table represent time, in the format hh:mm:ss (hh - hours, mm -
minutes, ss - seconds).

Compiler comparison on Pollux with
Prototype galaxy

Processing time
GCC 00:06:18
ICC 00:04:04
Speedup 1,55

SOURCE: Author.

27

From the comparison Table 3.3, we can see that the Intel compiler still has an edge
in comparison to the GNU, but nothing like the previous results. On a small galaxy,
we had about 50% of speed up with the usage of the ICC compiler. After tests with
prototype galaxy, we proceeded with tests using a list of real varied sized galaxies
from our sample.

Table 3.4 - Results of conducted test with 15 real galaxies from SPIDER sample using
GCC and ICC compilers. First and second columns show the galaxy’s id
and size in pixels respectively. The size is calculated using the following for-
mula. Showing mean values for the: size, time and speedup of 15 galaxies. The
speedup was calculated using geometric mean formula. The time is given in
the format hh:mm:ss (hh - hours, mm - minutes, ss - seconds).

Galaxy ID Size Time GCC Time ICC Speedup
587739706883637600 83 00:32:46 00:25:29 1,28
587739707420836297 97 01:00:18 00:38:14 1,57
587739707420901762 107 00:44:33 00:33:16 1,33
587739706884292961 117 00:35:12 00:27:14 1,29
587739706884030704 127 00:59:45 00:44:23 1,34
587739707420901697 127 01:18:27 01:01:38 1,27
587739706883965152 132 01:11:22 00:50:44 1,40
587739706884489629 137 01:02:00 00:42:17 1,46
587739706884358378 148 01:13:26 00:53:41 1,36
587739707420901732 149 01:09:33 00:54:56 1,26
587739706883899754 158 00:53:42 00:40:22 1,33
587739706883899733 159 01:26:44 01:03:41 1,36
587739706884030676 165 01:04:28 00:49:54 1,29
587739707420901432 177 01:07:26 00:55:04 1,22
587739707420901740 183 01:06:21 00:46:02 1,44

Mean values 138 01:01:44 00:45:48 1,35

SOURCE: Author.

The Table 3.4 shows results while comparing GCC and ICC compilers on Pollux,
using 20 threads for the processing. Using galaxies from our list as testing input,
we had a geometric mean speedup of 1.35, which we can convert in more than two
months of total time economy when processing the whole sample. In conclusion, we
still got a good deal of performance increase by using ICC to justify the switch and
recompilation of the environment.

28

3.2.2 Comparison between Xeon Phi and Xeon E5 2660 (from S17 re-
search)

After preliminary setup and testing, our goal is to compare the performance between
Pollux (Xeon Phi) and setup where S17 obtained his results. This is important to do
to have a starting point to make further comparisons taking into account differences
between hardware.

Figure 3.1 shows the speed of processing of the entire sample of 1200 galaxies used
in that research, which are the subsample of our sample. Basing on this Figure 3.1,
and its regression line with the equation, we can calculate the time that it would
take when using 20 active threads while processing real galaxy with GALPHAT
installed on Helios cluster using GCC. During S17 research, they were using only
GCC. According to the equation, we can compute the time that it took to process
the same galaxy from Table 3.4 of size 132 would take about 30 minutes to process.

In this case, if we compare the result obtained on Pollux with GCC compiler of
the galaxy (587739706883965152), with the estimated time of S17 research, speedup
between the two setups would be about ∼2.39 times (71 min vs. 30 min) in favor
of Helios cluster, all this while using GCC. On the other hand, using the same
setups and input galaxy but changing compiler to ICC on the Pollux, we can see
a significant decrease in the processing time and consequent decrease of speedup.
This shows one clear argument of the importance of usage of the Intel compiler on
the Xeon Phi processor family for GALPHAT.

Table 3.5 - Comparison between Helios using GCC compiler and Pollux using ICC while
running same galaxy with Sérsic model and using 20 threads in each case. The
values in the table represent time, in the format hh:mm:ss (hh - hours, mm -
minutes, ss - seconds).

Compiler comparison on Pollux with ICC and Helios GCC
Real Galaxy(132)

Pollux (ICC) 00:50:44
Helios (GCC) 00:30:00
Speedup 1,69

SOURCE: Author.

29

Figure 3.1 - Time per image size obtained in the previous study of S17 with ∼1200 galaxies
(a subset of our sample). In that research, GALPHAT was installed using the
GCC compiler on Xeon E5 2660 (Helios Cluster). Extrapolating this, we will
get bleak predictions on how long it would take to process our data. With
obligatory assumption that we would be able to achieve the same processing
speed as of S17 research, which we did not achieved at the very beginning. But
even being able to achieve the same performance, looking at sizes of the main
portion of the galaxies in the Figure 1.2 it turns to be practically unviable.

SOURCE: Stalder et al. (2017).

Table 3.5 shows that using ICC improves the performance of the Pollux significantly
and shrinks the Helios edge to only 1.69. Just to be clear, while rebuilding GAL-
PHAT with ICC, we had to build the majority of required libraries with ICC as well
(OpenMPI, BoostLib). Some compilation succeeded after a lot of testing. BoostLib
could be cited as a good example, as we found that only version 1.61 is compatible
with ICC.

3.3 Scalability

Besides raw performance issues, we also have scalability problems. GALPHAT, as
we have mentioned earlier, is already parallelized with MPI and is scalable inside
a single processing node of conventional server CPUs (with core count between 20

30

and 72). However, it lacks scalability on many-core systems like Xeon Phi or clusters
of several nodes containing hundreds or thousands of cores. Currently, one will not
benefit from having a machine with more than 72 cores, which can be employed for
processing of a single galaxy. This is one of the main issues that was being addressed
during this research. In order to solve this, we needed to develop a submission system
which will distribute galaxies through available cores. In Figure 3.2 this can be seen
as the difference between the current and aimed modes of processing for a list of
galaxies with «Sérsic» model (using 20 cores per galaxy).

Figure 3.2 - Demonstration of modification of the processing approach on many-core sys-
tems (like Xeon Phi). To be able to use all available core/threads, we prepared
the automated submission system that is capable to split and distribute the
galaxy list equally into smaller lists and start processing on each of then inde-
pendently. Processing several galaxies simultaneously is decreasing drastically
processing time of a single galaxy.

SOURCE: Author.

In Figure 3.2, we can see the difference between processing approaches. In the be-
ginning, we had a sequential submission of galaxies when each galaxy processed in a
parallel manner. However, a list containing N galaxies will be processed sequentially,
one galaxy after another, no matter how many idle cores are available. Our proposal
consisted of implementing the algorithm to enable smart distribution between avail-

31

able cores. For example, having 80 cores available on a given machine would enable
us to run four galaxies at the same time, in case of the «Sérsic» model2. In the
initial state, this was not possible, but after the implementation of the distribution
system, routines are doing it automatically.

When we started the processing approach, in the middle of this research, we were
manually submitting several lists of galaxies to be processed simultaneously as mul-
tiple instances of the same program. Firstly this was done on Pollux with 272 threads
and then simultaneously testing SE model on Santos Dumont as well. In each case,
we needed to calculate the number of lists and prepare them, running each through
steps shown in Figure 2.3. However, with time, we have invested a significant ef-
fort in developing an automated submission system, which is already functional and
being used on Santos Dumont supercomputer.

The main chunk of the work was done and the system is functional both on Santos
Dumont and Pollux. The only difference is the final step of submission. On the Pol-
lux, it simply submits the specified number of instances of GALPHAT via nohup
command and starts the processing. On the Santos Dumont, the final step is the
generation of the .srm file, which is used to submit the job to the SLURM3 (pro-
cessing manager). On Santos Dumont, we have 33 Thin nodes (each with 24 cores,
totaling 792 core in total) to process the «Sérsic+Exponential» model. Given the
fact that SE uses 72 cores to process one galaxy, this results in the possibility to
process 11 galaxies simultaneously (792/72) with available core count. We have al-
ready prepared the environment and the automated submission system is functional
on Santos Dumont supercomputer, where we have initiated the processing of the
«Sérsic+Exponential» model.4

This seemingly simple tweak drastically improved the performance of the Pollux
machine, enabling the usage of the more significant portion of resources available on
the machine during processing and by this, bringing Xeon Phi machine’s performance
on par with results obtained during previous research. The only caveat, in this case,
is much higher usage of RAM on Pollux, because if processing one galaxy roughly
consumes 20 GB of RAM, processing four will require 80 GB and running six galaxies
at the same time will need 120 GB of available RAM. In our case, in the beginning
we started with 48 GB on Pollux, being able to run two galaxies at most. During

2«Sérsic» requires 20 threads and 20 GB of RAM
3https://slurm.schedmd.com/documentation.html
4The code is available on : https://bitbucket.org/galileo13/

sistema-de-submissao-automatica.git

32

https://slurm.schedmd.com/documentation.html
https://bitbucket.org/galileo13/sistema-de-submissao-automatica.git
https://bitbucket.org/galileo13/sistema-de-submissao-automatica.git

the research, we gradually upgraded to 96 and then to 192 GB, being able to test
running ten galaxies at the same time with «Sérsic» model . While it could seem
like a good idea to run ten galaxies at the same time, using 200 threads and 200
GB of memory, we cannot forget that Pollux has 68 real cores, each supporting up
to four threads, resulting to 272 threads that could run simultaneously. However, it
does not mean that these threads have the same performance as the real core. It
is merely due to CPU scheduler, by smart planning, enables us to run more than
one task on the same core. This technology is called Intel HyperThreding (STOKES,
2002). During the tests, we saw that when one uses more than 120 active threads,
performance starts to suffer penalties of over saturation of processors queues and the
time of processing starts to grow, detrimental to the gains. This result corroborates
our previous findings during testing with NAS benchmark in section 3.2. Through
the testing, we found that an optimal number of galaxies to be run simultaneously
on this machine is six, using 120 active threads. This could be seen in htop, showing
that, while processing six galaxies, we are near the limit of the actual capacity of
the machine, as one can see in Figure 3.3.

Figure 3.3 - htop is an utility that shows the load of the machine. In this figure we are
showing the state of the Pollux during processing of 6 galaxies simultaneously.
This result corroborates with our previous findings.

SOURCE: Author.

Nevertheless, we are gaining a tremendous amount of performance, while running
more than one galaxy on the Pollux. Because when submitting up to 6 galaxies,
we are receiving practically linear speedup. As we finished processing the «Sérsic»
model, we have 19000 galaxies processed on Pollux using GALPHAT built with ICC.
Most of the processing was done running four galaxies simultaneously, and in the
end, we gained a RAM upgrade, going from 80 GB to 192 GB. This enabled the
possibility to run six galaxies simultaneously. Firstly, we are comparing in the case
of running just one galaxy at the same time on Pollux with results obtained from

33

S17 research. The Figure 3.4 is showing the comparison between the processing of
a single galaxy at the same time on Pollux and Helios.

Figure 3.4 - Comparison between Helios (GCC) and Pollux (ICC) running 1 galaxy simul-
taneously with «Sérsic» model. The data was cleaned from outliers greater
than 2 * Standard Deviation(STD) on both X and Y axis.

SOURCE: Author.

From the Figure 3.4, it can be seen that more powerful cores of Xeon E5 2660 cluster
is almost twice faster than the Pollux machine. This was the primary problem since
the beginning. Intel compiler helped to mitigate it in some way, but still we were far
behind of the performance of S17 research. Which in consequence was making the
processing time of our dataset unfeasible. Now, if we look at the Figure 3.5, where
we are showing the case of several galaxies being processed simultaneously, bringing
the time of a single galaxy divided by the number of running galaxies at a given
batch.

34

Figure 3.5 - In this figure, we are showing the results of processing several galaxies at the
same time. These are compared to the S17 performance. Each line corresponds
to a number of galaxies that are executed simultaneously, using 40, 80 and
120 GB of RAM and 40, 80 and 120 threads, respectively, using «Sérsic»
model. The data was cleaned from outliers greater than 2 * STD. This shows
that when running four simultaneous galaxies, we were able to surpass results
from S17 research. With our final amount of RAM, after all upgrades of the
machine, we ended up settling for six galaxies at the same time, resulting
almost in 2 fold faster than S17 result.

SOURCE: Author.

Figure 3.5 is our definitive comparison of performance between Pollux and Helios. As
it could be seen, while wasting performance when processing just one galaxy, we were
able to significantly improve the results if one will process two, four, or six galaxies
at the same time. Following the principle described in Figure 3.2, instead of running
one galaxy after another, we split the input list in several smaller lists and create one
processing instance of GALPHAT for each of the smaller lists. Precisely for these
cases, we had developed the automated submission system that helps to distribute
and prepare several galaxies into the processing. The automated submission system
permits to do it much faster and in automatic manner, without the need to run
through each step depicted in Figure 2.3

35

In conclusion, to get the best performance with GALPHAT it is better to choose
a smaller number of high-frequency cores instead of many low-frequency cores (like
Xeon Phi) or, in case of Pollux, it is necessary to have higher amounts of RAM
to compensate low frequency by running several galaxies at the same time. As for
RAM, it is easy to follow a rule of 1 Monte Carlo Chain (mchain) = 1 thread = 1 GB
of RAM. It means that if one will process galaxy with «Sérsic» model, which uses
20 mchains, for the best performance, he would need to have 20 available threads
and for each chain/core 1 GB of free RAM.

In the case of SE model, we are using 72 threads to run 72 mchains, following the
same requirement of 1 GB per mchain. Potentially, the SE model could be run with
fewer mchains, but this will result in less convergence chances, as some mchains are
dropped during the processing due to the overfitting, which causes individual chains
to become blocked and no longer achieve progress in the processing.

3.4 «Sérsic+Exponential» performance remarks

Our initial tests with SE on Pollux had shown that it is entirely unfeasible to use this
machine for this model. In some cases, the difference in time was reaching 10 fold or
more to process the same galaxy with SE, getting nearly one day of processing time
for a single galaxy. Moreover, to make the case worse, we would be able to process
only two galaxies simultaneously, because, as we already commented, it is needed 72
threads to process a single galaxy and we are bound by about 120-140 active threads
due to the decline of the performance if employing more then this number as it was
shown in section 3.2. As a consequence, we decided to proceed with the processing
of the SE model on the Santos Dumont, where, at the time, we received access to
the dedicated queue. Although we are at fairly early stages of processing of the
«Sérsic+Exponential» model, it is possible to use already processed data to analyze
the difference in processing requirements for our models. Starting with more then
triple5 of resources required to process a single galaxy, and the comparison given
in Figure 3.6, we can see that processing our data sample with SE model will be a
much more difficult task than it was with «Sérsic». In future work, to improve this
result even further, it could be needed to study the possibility of porting parts of
highly CPU intensive code to GPU.

520 CPUs for «Sérsic» against 72 CPUs for SE

36

Figure 3.6 - Comparison of time per image size obtained while processing 1800 galaxies
with «Sérsic» and «SE» models on Santos Dumont. In both tests, we were
using Thin nodes. We submitted two different jobs, for each model. Each
galaxy was using 72 cores for «SE» and 20 cores for «Sérsic» model. The data
was cleaned from outliers greater than 2 * STD.

SOURCE: Author.

Figure 3.6 shows the comparison of processing of the list of 1800 galaxies with
«Sérsic» and «SE» on Santos Dumont using the ICC compiler. In Figure 3.6 we can
see much more promising results: while still consuming more time, the results are
inside of the expected margins. Given the fact that we have our dedicated queue with
33 nodes on Santos Dumont, we can run 11 galaxies using SE model simultaneously.
Our automated submission system prepares all required setup of the processing and
processing could be run almost without interruption.

37

3.5 Parallelization

Another problem linked with performance is the time consumed for the preparation
and analysis of results. As we saw in Figure 2.3, the processing pipeline roughly
consists of 3 main steps: Pre-processing, Processing and Post-processing. Figure 3.7
is showing the proportion of time used by each of the steps to process a list of 500
galaxies with «Sérsic» model in the current condition.

Figure 3.7 - Demonstration of time consumption per main processing stage for 500 galaxies
on Pollux machine. Even though the GALPHAT processing is responsible
for 90% of total time, pre-processing and post-processing could consume a
considerable amount of time when the number of galaxies comes to thousands.
For this reason, optimization and parallelization needed to be done.

SOURCE: Author.

As could be seen from Figure 3.7, pre-processing and post-processing used an al-
most insignificant amount of time if compared with actual processing. However, in

38

absolute terms, especially when the number of galaxies in the submitted list gets
near to the thousands, even this time needs to be taken into account. Given that
data (list of galaxies) is an array of independent objects, we can take advantage of
many-core systems (like Xeon Phi) at our disposal to distribute this task between
idle cores and gain almost linear speedup.

Before we can start any of the improvements stated above, some work needed to
be done on already existing pre-processing and post-processing code. As we had
commented earlier, this code is not suitable to be parallelized or improved right
away. As these routines are poorly commented and organized, the first step, as it
was described earlier, was to refactor and organize them. We strove to make them
clearer and more flexible to be able to introduce some level of parallelization. We
acquired good progress with refactoring on the main pre-processing scripts while the
post-processing routines were rewritten completely in Python, to be more coherent
with all codebase.

3.5.1 Post-processing

The first place where we started to work was the routine responsible for the com-
pression of the posterior file (right after end of processing with GALPHAT). The
problem is that the output of GALPHAT (posterior file containing the probability
distribution of the parameters) is in uncompressed form that takes about 40 MB per
galaxy. In our case, having a sample of 24309 galaxies that ought to be processed
twice, once for «Sérsic» and once for «Sérsic+Exponential», puts us at 2 TB for the
total amount. It is not that much, but moving, storing or analyzing that amount of
data across the systems is tedious and ineffective. To make things better, a simple
and effective way is to convert posterior files to the Flexible Image Transport System
(FITS). This format generally is ten times smaller in size than an uncompressed file
and does not need to be converted for further work on it because the astropy mod-
ule in Python reads and writes it perfectly well. For the compression task we have
developed a standalone script that looks to a given folder in search of uncompressed
posterior files and compresses them to FITS format. It is completely parallel and
scales on any number of cores. It is only being limited by the storage device speed.
It has an option of deleting or leaving the original file after compression as well with
automatic skipping in case of the presence of the compressed file in the folder.

In the next step, after converting the posterior distribution, the task consists in the
generation of corner plot graph – the primary tool at the beginning of the elemental
analysis of output. The script for this task was written from scratch as well and it

39

Table 3.6 - Table comparing Pollux machine processor with CPU used in S17 research on
Helios cluster.

Compare Intel R© Products
Xeon R© E5-2660 v2 Xeon PhiTM 7250

of Cores 10 68
of Threads 20 272
Processor Base Frequency 2.20 GHz 1.40 GHz
Max Turbo Frequency 3.00 GHz 1.60 GHz
Cache 25 MB Intel R© Smart Cache 34 MB L2 Cache
TDP 95 W 215 W
Max Memory Size 768 GB 384 GB
Memory Types DDR3 1333/1600/1866 DDR4-2400
Max # of Memory Channels 4 6
Max Memory Bandwidth 59.7 GB/s 115.2 GB/s
Advanced Technologies
Intel R© 64 ‡ Yes Yes
Instruction Set 64-bit 64-bit
Instruction Set Extensions Intel R© AVX Intel R© AVX-512

SOURCE: Intel (2020)9.

is also fully parallelized and scalable.

Again, nothing of this would be a problem if not the size of the sample. The Figure
3.8 is showing time consumption for converting and then generating corner plots for
500 galaxies at Pollux in a sequential and parallel manner.

Our choice of parallelization tool for both implementations was the joblib6 library.
By default joblib.Parallel uses the «loky» back-end module to start separate Python
worker processes to execute tasks concurrently on separate CPUs. This is a reason-
able default for generic Python programs but can induce a significant overhead as the
input and output data need to be serialized in a queue for communication with the
worker processes (VAROQUAUX; GRISEL,). This library enables simple and logical
parallelization of embarrassingly parallel tasks. Rewriting our sequential implemen-
tations of the toASCII.py converter and corner plot generator rendered tremendous
speedup on the Xeon Phi machine. As we were saying earlier, the «price» that Intel
had to pay for such high core count was the strength of the individual cores. Brief
comparison of the CPUs is shown in the Table 3.6

6https://joblib.readthedocs.io/en/latest/

40

https://joblib.readthedocs.io/en/latest/

Figure 3.8 - The figure is showing the benefits of compression routine parallelization in
case of the comparison is between usage of 1 thread and maximum optimal
amount on the machine. Even though it has been considerably faster across the
board, the speedup on the Xeon Phi machine is the most prominent, showing
the importance of usage of as many threads as possible on this processor
family. Although the node with the E5-2695v2 processor showed the fastest
time.

SOURCE: Author.

So, having 1.4 GHz (1.6 GHz in TurboBoost) is quite apparent the weakness of single-
core performance of Pollux even in comparison with 8th generation of energy-efficient
U line for notebooks (Intel i5-8350u (4 cores/8 threads@1.8GHz; 3.6GHz in Turbo-
Boost)) and second generation or AMD Ryzen 2700X (8 cores/16 threads@3,7GHz;
4.3GHz in TurboBoost). However, when we switch to parallel versions of the script
and run it with high enough core count, the Pollux comes out as a clear winner in
relation to the speedup. The Figure 3.8 is showing a comparison of the compression

41

of the posterior files by the mentioned machines. One more time, we need to point
out that during this operation, Pollux was consuming considerably more (propor-
tional to increase of threads used) of RAM, which is significantly more than its
counterparts.

The parallel version of the corner plot generation showed similar speedup for Pollux,
while also being higher even on RAM consumption.

Figure 3.9 - The figure is showing the comparison between a factor of improvement
that each of the systems had while comparing sequential and parallel ver-
sions of the code for generation of the corner plot. We can see from the
chart that once again, the Pollux machine had more significant improve-
ment across the board. This data was generated by following equation:
factor = sequentilT ime/parallelT ime.

SOURCE: Author.

42

In summary, parallelizing these two phases decreased the time of post-processing
steps significantly. As a pleasant bonus, the new codebase of post-processing is highly
scalable, so if it is necessary to integrate new functionality (a new type of chart), it
could be done effortlessly and already in a parallel manner.

3.5.2 Pre-processing

Post-processing routines were written from scratch. It enabled more natural imple-
mentation of parallelization and preparation for the SE model integration into the
processing system. In the case of pre-processing, we only have done refactoring and
extensions, which did not open a clear way to parallelize them. Having this in mind,
we decided that the integration of pre-processing routines into the automated sub-
mission system would do the trick. It is impossible to run a consistent benchmark,
for the reason that this step is hugely dependent on the network speed and SDSS
database server load, so, in this case, we will use a logical assumption that if the job
is divided between several processors, it will be completed much faster.

3.6 Summary of the chapter

From the discussion above, we can see that we were able to improve the perfor-
mance and usability of GALPHAT’s pipeline significantly; making it more auto-
mated, faster on Xeon Phi processors family and multi-core platforms. We were able
to extend its functionality with the SE model and modularize it to facilitate future
extensions. A significant part of the pipeline was unified in the single system and
comes with requirements.txt from pip freeze to a fast setup of a virtual python envi-
ronment with all necessary packages of corresponding versions. We have gathered as
well the list fo dependencies and simple instructions for building GALPHAT with
GCC and ICC compilers.

43

4 DIAGNOSTICS AND TROUBLESHOOTING

The main goal of whole research was to process our data sample of 24309 galaxies
with Sersic model. Having reached the end of the list of the galaxies to be processed
with «Sérsic» model, from the total 24309 galaxies, we had about 21000 galaxies that
converged and about 3309 that ended up with some problems during the processing,
i. e. non-converged. To complete the processing up to the maximum amount of
processed galaxies, it was necessary to investigate these galaxies to find out what
went wrong and what could be done to minimize, or ideally, completely correct the
galaxies that did not converge.

4.1 Steps of analysis

To remedy this situation of non-convergence, there are several actions that we can
take on. We started from the least troublesome and kept going to most complex if
there were still galaxies that did not converge.

4.1.1 Increasing the processing time limit

The first and the easiest thing to implement was to increase the time limit for
processing that every galaxy has. The reason why we had imposed the limit is that
some galaxies will not converge, no matter how long one will give them to process.
This could negatively impact our processing time overall during the whole processing
of the list with the «Sérsic» model. So, to optimize this point, we conducted several
tests before starting the main project, to find the optimal time limitation for a given
galaxy to process. We ended up with 2 hours time limit for the processing on the
Pollux. It means that if the galaxy does not converge in this time amount, its job
will be canceled, and the list moves on to the next one. As we reached the end of
the list and had the idle machine, the first thing to do was to submit to reprocessing
these galaxies with a much longer time limit. This measure resulted in dropping the
non-converged galaxies number down to 800.

4.1.2 Increasing the Markov Chain number

The next step was to increase the number of Markov Chain Monte Carlo (MCMC).
Typically, for «Sérsic» model, we settled upon 20 mchains per galaxy. This consid-
ered an optimal number, given the fact that each chain needs 1 CPU thread and
about 1 GB of free RAM on our machine, so we would be able to run the optimal
number of galaxies simultaneously. The general rule of thumb is that more mchains
would provide better results while processing and potentially faster processing time

45

for each galaxy, but not by a drastic amount. During processing, overfitting tends to
cause some individual chains to get halted, and they are eventually dropped from the
final analysis. This effect becomes even more pronounced with increased dimension-
ality, for example, «Sérsic+Exponential» model, which has 12 parameters, against
7 of «Sérsic». However, using more chains will require more CPU threads, which we
do not have available. So, the main chunk of processing was done with 20 mchains
and galaxies that did not converge were rerun with 48 mchains. By doing this, we
were able to decrease to almost one half the non-converged galaxies number.

4.1.3 Tweaking processing parameters

The next option that we tried was adjustments to the internal setup of the processing
algorithm. There are two parameters that can be adjusted which can provide more
convergence chances, depending on the galaxy.

Our main factor in determining the convergence is the Rhat parameter. We generate
an analysis file that contains this information after execution of the GRAnalyze rou-
tine based on the Gelman & Rubin (GELMAN; RUBIN, 1992) convergence diagnostic
on the output posterior file. The result is, in case of convergence, trimmed posterior
file with faulty chains and values being discarded and analysis file, which contains
Rhat values for each of the parameters of the model. For «Sérsic», there are seven
such parameters. Table 4.1 is describing them in more detail.

Table 4.1 - Table showing the 7 (X and Y count as one, being the center of the galaxy)
parameters of the «Sérsic» model, its prior values and units. Each of these
parameters has its Rhat value that we can look after running the posterior
distribution through Gelman&Ruben algorithm.

Parameters Min Max Distribution Units
X -3.0 +3.0 Normal (µ = 0.0, σ = 1.5) pixelsY
Mag -1 +1 Normal (µ = 0.0, σ = 0.2)
Re 0.1 10 Weibul (κ = 1.21, Λ = 2.5) pixels
n 0.5 14 Normal (µ = 6.0, σ = 6.0)
q 0.09 0.99 Uniform
PA -1.57 +1.57 Normal (µ = 0.0, σ = 0.69) radians
Sky 0.97 1.03 Normal (µ = 1.0, σ = 0.01) counts

SOURCE: Author.

46

This indicator is (up to an order-unity factor) the square root of the between-chains
and within-chain variance. Rhat=1 implies that it is of little difference in the poste-
rior distribution between any of the chains, a necessary condition for convergence.
Meanwhile, values that grow further from 1 are indicating a non-converging pa-
rameter. Gelman & Rubin recommend that max (Rhat)<1.2 be used to indicate
convergence (where max (Rhat) is the maximum value of Rhat for any parameter).
That said, using this information, we can find out which values are dominating max
(Rhat). For this, we develop a set of routines that collect the data from the anal-
ysis files and compose a covariance matrix to help identify the culprit parameter.
Below we can see the example of this matrix for the set of 400 galaxies that did not
converge.

Figure 4.1 - The figure is showing the correlation matrix of the sample of 400 non-
converged galaxies. From the matrix, we can perceive what variables have
higher correlations between them. In our case, we can see that X, Y, q and
PA are having one of the highest values of the of correlation.

SOURCE: Author.

47

From the matrix, we concluded that it could be a good idea to look at the variance
of X and Y and perhaps the posterior marginals (corner plots) and even parameter
traces for a few of these galaxies. It is possible that X and Y are not mixing well for
each chain. In this case, one might decrease the gamma value (the tunable parameter
for the transition probability kernel). However, making gamma too small will also
slow convergence. As a result, setting NewGamma parameter to half of its past value
rendered in convergence of about 20% of the galaxies.

Figure 4.2 - Example of the corner plot (cropped) of the galaxy with bimodality in sev-
eral parameters. The effect could be seen in two-point distributions in every
plotted parameter.

SOURCE: Author.

As we commented above, to further diagnose these galaxies, we can plot the corner
plot of the posterior file, even if there was no convergence. Doing this, we found
another problem, which was bimodality. Moreover, it is probably responsible for the

48

large Rhat values. To attempt to improve the convergence rate, we can experiment
with a parameter for adjusting the frequency of attempts to jump between modes,
SetJumpFreq. The default value is set to 10. That is, every ten steps, it proposes a
transition, which is the full difference between two chains, rather than gamma times
the difference between two chains (currently our gamma was set to 0.06). One could
try making this smaller (e.g., 5). More generally, multimodality (in this case, very
well separated modes) does increase the convergence time. It is hard to get around
that. There is a chance that a Hamiltonian MCMC algorithm would work better for
this, but it is not implemented yet.

These tweaks helped to converge about 40% of the remaining and brought the num-
ber of non-converged down to about 200.

4.1.4 Processing without Math Kernel Library (MKL)

As an auxiliary option, we had our processing queue on the Santos Dumont super-
computer. The main difference is that GALPHAT on Pollux was built with MKL
flags, which potentially could influence some internal operations while processing.
Santos Dumont’s installation was done without them. It helped a lot to process the
rest of the galaxies there. This step had the most significant impact and decreased
the number of non-converged galaxies to just 2.

4.1.5 Masking images manually

As a last resort, for the galaxies that ended up not converging even after all the cited
steps, we can look at the actual galaxy image and try to understand what could be
wrong. Sometimes, a galaxy is located in a really «crowded» area, an image of which
presents several of the other objects. The problem of the «crowded» image is that
our pre-processing routines could have trouble to create a precise mask for a given
image. SExtractor (BERTIN; ARNOUTS, 1996) is the program that we are using to
detect the areas of the image that are not the target image and generate preliminary
photometric parameters. Figure 4.3 is showing a particularly tricky case.

49

Figure 4.3 - The figure shows the example of a complicated case, where in the center
we have our target galaxy surrounded by other objects which could interfere
during the processing. Green contour lines show the mask that was created
by the pipeline. Pixels inside of the contours are marked as bad pixels and
ignored during processing. It is clear that masked areas are far bigger than it
is necessary and overlap the target galaxy in the center.

SOURCE: Author.

As we can see from Figure 4.3, the pre-processing routines created the mask that is
covering much more area then it ought to. This is putting the GALPHAT through
a lot of difficulties during the processing.

One of the possible solutions, in this case, is to create a manual mask for the image.
For this, we are using the Ds91 program to create contours around all of the polluting
objects and then pass this file to the little routine2 that will create the mask. An

1http://ds9.si.edu/site/Home.html
2https://www.public.asu.edu/~rjansen/linux/mkmask_hlp.html

50

http://ds9.si.edu/site/Home.html
https://www.public.asu.edu/~rjansen/linux/mkmask_hlp.html

example of the calling command is below:

mkmask outputMaskFile.fits ncols=NUMBER_X nrows=NUMBER_Y regionsfile.reg

This is a short example of the command to call mkmask routine. It takes four argu-
ments in our case: outputMaskFile.fits is the output file name, ncols and nrows are
the sizes of the output file (must be the same as the original image) and regionsfile.reg
is the input contours file.

As a result, we can create an extremely precise masking image that will make pro-
cessing of the galaxy converge. The Figure 4.4 is showing the difference between the
mask in case of the manual and automatic manner of generation.

Figure 4.4 - The figure shows the result of manual masking. If we will compare it with
the automatic masking, it is clear that we lose a lot less of space around the
objects.

SOURCE: Author.

51

4.2 Results of the chapter

The conclusion of all these tweaking steps is that we ended up dropping the total
number of the non-converged galaxies to just 2, having practically our entire sample
being processed. One of the two galaxies that have been left is a pathological case,
where the much bigger and brighter object is directly above the target galaxy. The
Figure 4.5 is showing the case.

Figure 4.5 - One of two non-converged galaxies. The figure is showing a practically im-
possible case where a much bigger and brighter object is directly on top of
the target galaxy. This creates an impossible condition to decouple it with
the mask without interfering with the target galaxy. Blue contour - secondary
object; Green contour - target galaxy.

SOURCE: Author.

Thus, it is not possible to mask it without interfering with the galaxy. The diagnos-
tics on another galaxy are in progress with further attempts to make it converge.

52

5 STORAGE AND VISUALIZATION OF PROCESSED DATA

Having a high volume of data to be processed implies not only the problem of pro-
cessing time but the output data organization, storage and delivery to the end-user.
It could be possible to limit oneself with some rudimentary tools by the command
line when one has dozens or even hundreds of entries, but this becomes rapidly over-
whelming when the count goes to dozens of thousands, separated in a multitude of
folders and having relevant information all over the place. So, one could lose valuable
time just for finding all essential bits, even before starting the actual research. To
solve this issue, a solution was implemented in the form of a database populated
with main processing results and a graphical visualization tool connected to it for
easier consumption, which includes visualization and analysis

5.1 Database and storage

As stated above, initially, all our data was stored in processing folders for each
galaxy, text files, logs, .fits images and posterior distributions. All this was indexed
in a rudimentary way by the monitoring system that we had implemented at the
very beginning of the research as a basic diagnostic tool.

Figure 5.1 - Example of the diagnostic system in its early development state with brief
comments of its functionality.

SOURCE: Author.

53

With its help, it was possible to rapidly access and consult non-converged galaxies,
input and output files. Figure 5.1 shows the screenshot of the diagnostic system in
its early development state. Undoubtedly it was of great help during testing and
early usage of GALPHAT on Pollux. The problem was that each time a query was
made, it would run through all the folders of the processing galaxies, trimming,
searching and indexing them for the visual interface. As the number of galaxies was
growing up, the time of access and page loading was growing as well, becoming too
long to render page unuseful. However, the time of access was not our only problem.
We have a high volume of data and to be able to present only necessary bits of it
we need to have an organized database where it is all stored. It greatly facilitates
the necessary modifications to the visualization tool. Instead of writing several new
functions to search for a given file, trim it, format the information and present it,
it is easier to add one more column to the database query. Having in mind these
points, we already started to model the database to store all of our data, which we
plan to present as a solution and continue to work on its improvement.

5.2 User interface and interaction

We cannot underestimate the value of data that we will receive at the end of process-
ing our sample. So, to make this achievement available to the scientific community,
we need to implement an graphics user interface (GUI) where we can present results
in a user-friendly and comprehensive manner. To address this matter, we are devel-
oping a web-based interface that will be connected with a database containing data
from processing results.

An essential aspect of this project consists in the fact that we are aiming to publish
processing results to the interested community of scientists who do not have time or
resources to process this amount of raw data. In our case, as stated above, we used
and are still using different tools, hardware and software techniques to be able to
process the SPIDER sample as fast as possible. By releasing the processing results,
we want to permit that everyone have access and be able to conduct its study. It
could be considered as the most significant achievement of this research at the very
end.

As the starting point of development of the platform, we took the diagnostics tool
that was developed earlier during this project. By incrementing the visual aspect
of the interface, we were able to achieve a good deal of progress in implementing
useful functions to the visualization tool and to build easy-to-use and user-friendly
system to deliver necessary data to the community. As for the next step, we will

54

improve our interface with functionality similar to that found on SkyServer Object
Explorer1, where each galaxy has its page with relevant information. In our case,
we will enhance the page with our results and preliminary analysis tools, integrated
into the user interface.

5.3 Composition

This user interface consists mainly of three parts: 1. Routine to collect data and
populate the database. 2. Routine to make a bridge between the database and the
visual interface. 3. The visual interface itself with all the necessary features.

5.3.1 Collection of data and population of data base

Having a high volume of data makes every operation on it become time-consuming.
In this case, we need to swoop through the folders of processed galaxies, cut necessary
bits of files and move post-processing data to destination folders. To perform these
tasks, we developed routines in Python 3, which gives excellent compatibility with
the rest of our system and has a number of ready-to-go functions to begin with.

To understand its functionality, firstly, we need to show how exactly we were process-
ing our data. As it is already noted, our main machine for processing the «Sérsic»
model is Pollux. On it we started to test the processing of several galaxies simulta-
neously. To keep things reasonably organized, we were submitting lists of 300-500
galaxies per instance. However, even in this case, we faced several blackouts and lag-
ging, which interrupted the processing, forcing us to recreate whole pre-processing
of the interrupted lists all over again. In the end, this resulted in more than 100
directories that contained output files of each galaxy in its due directory. So, having
this in mind, collection routing needed to be able to traverse through all the direc-
tories and get the files. The routines are not parallel, and the task is limited by the
speed of hard-drive operation, which was discovered during one of the diagnostics.

At the end of the traverse, the script creates pandas DataFrame with all required
information from the directory that was scanned and moves necessary files to the
target location. It is connected to the SQLite2 database using a SQLAlchemy wrap-
per (MYERS; COPELAND, 2015). That is being updated with the new entries. If, in
case of reprocessing, some galaxies converged, we can scan the directory again and
edit the entries of galaxies that contained unconverged data.

1http://skyserver.sdss.org/dr7/en/tools/explore/obj.asp?id=588848899897753865
2https://www.sqlite.org/index.html

55

http://skyserver.sdss.org/dr7/en/tools/explore/obj.asp?id=588848899897753865
https://www.sqlite.org/index.html

The choice of such simple database implementation is explained by the early stage
of development, with several tests and experiments. As the system becomes more
mature, we will be able to switch to something more robust, given the ease of
SQLAlchemy.

5.3.2 Connection between database and visual interface

We cannot stress enough how influential in our case is the volume of the data and the
problems that it is generating. In the case of visualization, it is highly troublesome
to present to a remote user all data in a manner that it will not take 20-30 minutes
to load in a browser. Moreover, the presentation page must have some useful features
like sorting, search and fast access to crucial bits of processed data. All this imposes
a list of requirements to be implemented by a system. This section treats about the
speed of access to data.

The central dilemma consists in the following: we need to present to the user all
of the information without overwhelming him, but at the same time giving the
possibility to see all if he so wishes. In the case of an organization, pagination is the
most logical choice; doing so, we offer the option to access all data by navigating
pages.

Having pagination is good, but when we connect the database directly to visual-
ization, it will load all of the entries and then split them into pages, giving no real
speedup. To remedy this problem, we used the DataTables3 framework, which per-
mits to use JSON files as input and then paginates the entries in a way that next
page is loaded only when the user accesses it. This gave a tremendous speedup and
ease of use. The trade-off was that we needed to transfer our logic of page loading
and apparel to the JavaScript and deal with some compatibility issues, which would
not occur if pure Python were used. Below we can see the comparison between these
implementation methods.

3https://datatables.net

56

https://datatables.net

Figure 5.2 - The figure shows the comparison between ways of supplying data to the end-
user, starting with direct connection of database to the Flask logic. This is
the most straightforward way, but it stops working when one has more than
200 entries. We compare it with native Python and SQLAlchemy pagination
implementation with variable data sets and page size(number of presented
entries for the user). And the third method is to leave the logic of supplying
the information to the DataTables framework and JavaScript supplementary
file. The last method delivers the best results overall.

SOURCE: Author.

To make this function, we needed to implement a routine that creates JSON file
each time when the database is updated or when a user wishes so. This routine is
written in Python 3 as well. Its sole purpose is to convert the content of the database
to the JSON dump file and auxiliary statistics file (to save the time and just read

57

the parameters such as mean time of processing, or mean size of the galaxies, from
the file and not to calculate them each time the user updates the page). Then it
stores the newly created file in the directory where the main page will look for the
database entry. It could be said that we could settle on the pagination method with
smaller page size and it would work. We had two reasons why not to do it. Firstly,
when a user would like to use functionality such as sorting or searching for the
desired galaxy, the operation would be limited to the page presented; the next page
is still in the database and not in the browser memory. This hugely hampers the
utility of such functions and the system itself. The second reason is the fact that,
while it has not the worst time of loading, it still losses greatly to the snappiness of
the JSON method. With this, we can conclude that the current state of connection
between the database and web logic will be able to handle the addition of the
«Sérsic+Exponential» model, which is on its way and will double the number of
entries.

5.3.3 Visualization interface

Last but not least, we have the visual interface itself. As the tool is still in devel-
opment, our main focuses for the initial versions were simplicity and core functions.
In Figure 5.3, we can see the current state of the interface.

This interface was developed using Flask (Python 3) which is a lightweight WSGI
(Web Server Gateway Interface) web application framework. It is designed to make
getting started quick and easy, with the ability to scale up to complex applications.
It began as a simple wrapper around Werkzeug4 and Jinja5 and has become one of
the most popular Python web application frameworks (GRINBERG, 2018). DataTa-
bles framework was used for the back-end and Bootstrap framework for front-end.
Using JavaScript and DataTables gives almost painless possibility to implement our
priority features like sorting, searching and pagination. All of the above are already
working. As Figure 5.3 is showing, we have direct links for download of posterior
distribution file or corner plot, giving the results with a simple click. Currently, we
are developing new functionality for our future usage scenarios. The next step is to
have the possibility to select several entries for further processing.

4https://www.palletsprojects.com/p/werkzeug/
5https://jinja.palletsprojects.com/en/2.11.x/

58

https://www.palletsprojects.com/p/werkzeug/
https://jinja.palletsprojects.com/en/2.11.x/

Figure 5.3 - Example of the visualization page in the current state of the development.
The numbers from the figure correspond to: 1. Brief statistics of the data
based on the current JSON dump file. The data is calculated and stored in
the auxiliary file for subsequent usage; 2. Search field that allows searching
the whole list (not just current page) based on any column criteria (id, size or
status); 3. Sorting ribbon. The whole list is sortable in any order based on any
column; 4. Direct links for download of image and mask for a given galaxy.
This facilitates the debugging of the galaxies that ended up with an error.
Usually, a look at the image would suffice for a basic diagnostic; 5. In case the
galaxy is processed successfully, the system will create buttons for download of
compressed posterior and visualization of a corner plot directly in the browser.
If needed, a corner plot is available for download in the preview window; 6.
Pages for navigation in huge lists of data. Switching is happening almost
instantly when one compares with SQLAlchemy’s native implementation of
pagination; 7. Number of galaxies per page.

SOURCE: Author.

59

6 CONCLUSIONS

We started the development of the two auxiliary systems, automation of submission
process and organization via implementation and consequent visualization of gener-
ated data. Both of these systems have potential to facilitate and improve the work
that will be done in the future on the processed data. For this, we need to finish
the processing of the data with the «Sérsic» model (only non-converged galaxies
left, they are currently in diagnostic or reprocessing) and do the same for the «Sér-
sic»+Exponential». The second model, as we could see from our comments in this
document, is much more complex and sophisticated, which leads to more compli-
cated and much more time-consuming processing. That processing might possibly
require usage of GPU or field-programmable gate array (FPGA) to improve the
processing time of this model.

We started where the previous work was done. Stalder et al. (2017, Hereafter as S17),
during the Ph.D. program, performed the initial study and performance analysis of
GALPHAT, starting the implementation of the automatic submission pipeline. We
continued and built on that progress by improving and extending the pipeline and
its modules.

Answering one of the questions of this research, is it still possible/viable to process
a large amount of data locally with Bayesian Inference tools, we can give a partial
and not very positive answer. Surely, having several thousands of galaxies will not
make much of trouble, but as soon as a number of objects start to climb to dozens
of thousands, the problem of time will take a more stark appearance. The problem
will deteriorate even further if complex models (such as Sersic + Exponential) will
be used. In summary, if given research does not have strict time constraints, it is
possible to engage in processing large amounts of data. However, if it is necessary
to show results urgently, it is advisable to look for alternatives, smaller datasets, or
use a large partition of a supercomputer.

To summarize, the work conducted in this research puts us on a path to develop
the automated submission system to facilitate the usage of the processing pipeline.
This system is built upon the refactored, optimized, and extended code base that
we inherited from S17 research. At the same time, the volume of the resulting data
requires organization and a tool for its visualization, so we started to implement the
first simple diagnostic and monitoring systems that evolved into the visualization
and preliminary analysis tool for our data. All this together gives a complete image
of the direction of our efforts.

61

6.1 Future work

For the future work, we have the goal of finishing the processing of the «Sér-
sic+Exponential» model, gather and organize all the data and start the analysis
of the results, focusing on the comparison of Bayes Factor of the two models. How-
ever, before that, one ought to continue the implementation of the improvements
and polishment of the processing pipeline up until the end of the processing. This
will conclude the first phase of the research. Next phase will consist in detailed
analysis of data and building the astronomical knowledge on it. We hope that with
data acquired during the first phase we will be able to get some insights on galaxy
formation and evolution inside the clusters. The tools that were developed during
this research should facilitate greatly the process of analysis. As parallel task, we
will invest time into improvig the GUI tools. The main chunk of these efforts must
be directed to the implementation of the new functionality to our visualization sys-
tem, with the hope to implement a suite of essential posterior analysis tools before
delivering it to the community.

62

REFERENCES

ABAZAJIAN, K. N.; ADELMAN-MCCARTHY, J. K.; AGÜEROS, M. A.;
ALLAM, S. S.; PRIETO, C. A.; AN, D.; ANDERSON, K. S.; ANDERSON, S. F.;
ANNIS, J.; BAHCALL, N. A. The seventh data release of the sloan digital sky
survey. The Astrophysical Journal Supplement Series, v. 182, n. 2, p. 543,
2009. 7

ABBOTT, T.; ALLAM, S.; ANDERSEN, P.; ANGUS, C.; ASOREY, J.;
AVELINO, A.; AVILA, S.; BASSETT, B.; BECHTOL, K.; BERNSTEIN, G. First
cosmology results using type ia supernovae from the dark energy survey:
constraints on cosmological parameters. The Astrophysical Journal Letters,
v. 872, n. 2, p. L30, 2019. 3

AGHANIM, N.; AKRAMI, Y.; ASHDOWN, M.; AUMONT, J.; BACCIGALUPI,
C.; BALLARDINI, M.; BANDAY, A.; BARREIRO, R.; BARTOLO, N.; BASAK,
S. Planck 2018 results. vi. cosmological parameters. arXiv preprint
arXiv:1807.06209, 2018. 3

BARBERA, F. L.; CARVALHO, R. D.; ROSA, I. de L.; LOPES, P.;
KOHL-MOREIRA, J.; CAPELATO, H. Spider–i. sample and galaxy parameters in
the grizyjhk wavebands. Monthly Notices of the Royal Astronomical
Society, v. 408, n. 3, p. 1313–1334, 2010. 3

BARCHI, P.; COSTA, F. da; SAUTTER, R.; MOURA, T.; STALDER, D.; ROSA,
R.; CARVALHO, R. de. Improving galaxy morphology with machine learning.
arXiv preprint arXiv:1705.06818, 2017. 11

BERTIN, E.; ARNOUTS, S. Sextractor: software for source extraction.
Astronomy and Astrophysics Supplement Series, v. 117, n. 2, p. 393–404,
1996. 49

CAPPELLARI, M.; ALIGHIERI, S. di S.; CIMATTI, A.; DADDI, E.; RENZINI,
A.; KURK, J.; CASSATA, P.; DICKINSON, M.; FRANCESCHINI, A.;
MIGNOLI, M. Dynamical masses of early-type galaxies at z 2: are they truly
superdense? The Astrophysical Journal Letters, v. 704, n. 1, p. L34, 2009. 3

CONSELICE, C. J. The evolution of galaxy structure over cosmic time. Annual
Review of Astronomy and Astrophysics, v. 52, p. 291–337, 2014. 2, 4

63

GELMAN, A.; RUBIN, D. B. Inference from iterative simulation using multiple
sequences. Statistical Science, v. 7, n. 4, p. 457–472, 1992. 46

GRINBERG, M. Flask web development: developing web applications
with python. [S.l.: s.n.], 2018. 58

GUNN, J. E.; SIEGMUND, W. A.; MANNERY, E. J.; OWEN, R. E.; HULL,
C. L.; LEGER, R. F.; CAREY, L. N.; KNAPP, G. R.; YORK, D. G.; BOROSKI,
W. N. The 2.5 m telescope of the sloan digital sky survey. The Astronomical
Journal, v. 131, n. 4, p. 2332, 2006. 6

JEFFREYS, H. The theory of probability. [S.l.: s.n.], 1998. 5, 6

KASS, R. E.; RAFTERY, A. E. Bayes factors. Journal of the American
Statistical Association, v. 90, n. 430, p. 773–795, 1995. 4

KORMENDY, J.; BENDER, R. A proposed revision of the hubble sequence for
elliptical galaxies. The Astrophysical Journal Letters, v. 464, n. 2, p. L119,
1996. 6, 7

LAUER, T. R.; BENDER, R.; KORMENDY, J.; ROSENFIELD, P.; GREEN,
R. F. The cluster of blue stars surrounding the m31 nuclear black hole. The
Astrophysical Journal, v. 745, n. 2, p. 121, 2012. 3

MATLOFF, N. Parallel computing for data science: with examples in R,
C++ and CUDA. [S.l.: s.n.], 2015. 19

MYERS, J.; COPELAND, R. Essential SQLAlchemy: mapping Python to
databases. [S.l.: s.n.], 2015. 55

SÉRSIC, J. Influence of the atmospheric and instrumental dispersion on the
brightness distribution in a galaxy. Boletin de la Asociacion Argentina de
Astronomia La Plata Argentina, v. 6, p. 41, 1963. 10

STALDER, D. Applied computing to study structural and environmental
properties of SDSS’s galaxies. Tese (Doutorado em Computação Aplicada) -
Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2017. Available
from: http://urlib.net/rep/8JMKD3MGP3W34P/3NQHRKL. 1, 5

STALDER, D.; CARVALHO, R. R. de; WEINBERG, M. D.; REMBOLD, S. B.;
MOURA, T. C.; ROSA, R. R.; KATZ, N. Bayesian surface photometry analysis for
early-type galaxies. arXiv preprint arXiv:1711.02188, 2017. 9, 10, 15, 21, 25,
30, 61

64

http://urlib.net/rep/8JMKD3MGP3W34P/3NQHRKL

STOKES, J. Introduction to multithreading, superthreading and hyperthreading.
ArsTechnica. com, 2002. 33

TORTORA, C.; BARBERA, F. L.; NAPOLITANO, N.; ROMANOWSKY, A.;
FERRERAS, I.; CARVALHO, R. de. Systematic variation of central mass density
slope in early-type galaxies. In: NAPOLITANO N. R.; LONGO, G. M. M. P. M. I.
E. E. (Ed.). The universe of digital sky surveys. [S.l.: s.n.], 2016. p. 215–218.
11

VAROQUAUX, G.; GRISEL, O. Joblib: running python function as pipeline jobs.
2009. Available from https://pypi.python.org/pypi/joblib#downloads. 40

WAKEFIELD, J. Bayesian and frequentist regression methods. [S.l.: s.n.],
2013. 5

WEINBERG, M. D. Computing the bayes factor from a Markov Chain Monte
Carlo simulation of the posterior distribution. Bayesian Analysis, v. 7, n. 3, p.
737–770, 2012. 9

WEINBERG, M. D.; YOON, I.; KATZ, N. A remarkably simple and accurate
method for computing the bayes factor from a Markov Chain Monte Carlo
simulation of the posterior distribution in high dimension. arXiv preprint
arXiv:1301.3156, 2013. 8

YOON, I.; WEINBERG, M. D.; KATZ, N. New insights into galaxy structure
from galphat–i. motivation, methodology and benchmarks for sérsic models.
Monthly Notices of the Royal Astronomical Society, v. 414, n. 2, p.
1625–1655, 2011. 10

65

https://pypi.python.org/pypi/joblib##downloads

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Conceptual context and scientific background
	1.2 Motivation
	1.2.1 Bayes Factor and model comparison foundation

	1.3 Data considerations
	1.4 Main processing tool - GALPHAT
	1.5 Main goals
	1.6 Context of this research

	2 PIPELINE: COMPONENTS, EXECUTION AND OPTIMIZATIONS
	2.1 Composition and execution
	2.2 Improvements of the pipeline
	2.2.1 Rewriting the post processing
	2.2.2 Optimization and refactoring
	2.2.3 «Sérsic+Exponential» implementation

	2.3 Summary of achieved results

	3 PERFORMANCE OF PIPELINE AND ITS IMPROVEMENTS
	3.1 Compiler
	3.2 Initial general testing
	3.2.1 Initial testing with target-application data
	3.2.2 Comparison between Xeon Phi and Xeon E5 2660 (from S17 research)

	3.3 Scalability
	3.4 «Sérsic+Exponential» performance remarks
	3.5 Parallelization
	3.5.1 Post-processing
	3.5.2 Pre-processing

	3.6 Summary of the chapter

	4 DIAGNOSTICS AND TROUBLESHOOTING
	4.1 Steps of analysis
	4.1.1 Increasing the processing time limit
	4.1.2 Increasing the Markov Chain number
	4.1.3 Tweaking processing parameters
	4.1.4 Processing without Math Kernel Library (MKL)
	4.1.5 Masking images manually

	4.2 Results of the chapter

	5 STORAGE AND VISUALIZATION OF PROCESSED DATA
	5.1 Database and storage
	5.2 User interface and interaction
	5.3 Composition
	5.3.1 Collection of data and population of data base
	5.3.2 Connection between database and visual interface
	5.3.3 Visualization interface

	6 CONCLUSIONS
	6.1 Future work

	REFERENCES

