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Extended gravitoelectromagnetism. I. Variational formulation

G.O. Ludwig
National Institute for Space Research, 12227-010 São José dos Campos, SP, Brazil,

National Commission for Nuclear Energy, 22294-900 Rio de Janeiro, RJ, Brazil

(Dated: March, 2018 – June, 2020)

Gravitoelectromagnetic (GEM) field theory is considered in the framework of Hamilton’s principle.
A variational formulation based on this principle describes the dynamics of a fully-relativistic perfect
fluid in the presence of the gravitoelectromagnetic field in flat space, leading to the definition of the
fluid and field energy-momentum tensors. A fully relativistic Cauchy invariant for a compressible
fluid immersed in the gravitoelectromagnetic field is demonstrated. The gravitoelectromagnetic
fluid equations of motion are written in covariant form suited for calculating higher-order relativistic
effects. The integral form of the conservation theorems is presented, as well as the equations that
describe the excitation of gravitoelectromagnetic waves.

I. INTRODUCTION

The history of gravitoelectromagnetism can be divided into the pre- and post-general relativity periods. The pre-
general relativity period is marked by the prediction of the existence of the planet Neptune by Urbain Le Verrier in
1846 [1]. Le Verrier predicted with a precision of 1◦ the position of the then unknow Neptune comparing discrepancies
between the observed orbit of the planet Uranus and his calculations of the perturbations introduced by Jupiter and
Saturn on Uranus’s orbit. This achievement marked the apex of Newton’s theory and validated the field of celestial
mechanics. Nevertheless, by including the perturbations introduced by the outer planets in the orbit of Mercury, Le
Verrier found in 1859 a definitive discrepancy of 38”/century compared with the observed values of the precession of
Mercury’s perihelion [1] (this value was later corrected for small errors in the planetary masses to 43”/century). This
discrepancy remained inexplicable within the Newtonian framework.

Meanwhile, during the second half of the 19th century electromagnetic theory was put on firm footing. The formal
analogy between gravitation and electromagnetism led to the development of gravitoelectromagnetism (GEM). First,
the notion of a gravitoelectric (GE) field arose naturally from the analogy between the Newtonian and Coulomb
potentials, motivating Maxwell to conjecture about the nature of gravitational interactions [2]. Next, it was also
natural to attribute a current and a gravitomagnetic (GM) component to moving masses. This notion was used
by Holzmüller [3] and Tisserand [4] to analyze the motion of a test mass around a central body based on Newton’s
attractive potential corrected for a velocity dependent term. The velocity term was introduced in the force of attraction
according to Weber electrodynamics, resulting in an elliptical precessing orbit. With this theory Tisserand obtained
a precession rate correction for Mercury’s perihelion of about 14”/century. This interesting result is possible worth a
new examination, in the light of relativity, of the correction introduced by Weber’s theory in the Newtonian potential.
Undoubtedly, the most elegant analogy between gravitational and electromagnetic theories was made by Heaviside [5].
This analogy included the possibility of gravitational waves propagating, presumably, at the speed of light.

The year of 1916 marked the post-general relativity period when Einstein explained Mercury’s perihelion shift of
43” per century, corresponding exactly to astronomical observations [6–8]. The first computation of gravitomagnetic
fields produced by rotating masses, according to general relativity, was made by Thirring and Lense [9–11]. The
gravitoelectromagnetic equations, which correspond to a weak field approximation to the general relativity field
equations, were henceforth developed by Thirring [12, 13]. This linear approach to gravitoelectromagnetism was
reviewed by Mashhoon [14] and is extensively adopted in the literature [15, 16]. However, the traditional ansatz for
the metric perturbations, neglecting higher order terms in the speed of light and imposing four gauge-conditions to
the metric tensor in vacuum, leads to analogies between gravity and electromagnetism that hold only for quasi-static
fields, providing no support for gravitational waves. Moreover, the equation of motion for a test particle, derived
according to the traditional gravitomagnetic theory, does not explain the relativistic correction in the perihelion of
Mercury, although this limitation was pointed out in the original work [10]. Some of the weak points of the traditional
approach have been partially removed by using alternative ansatzes and additional tensorial terms in the metric
perturbation [17], but after one century much of the difficulties remain.

Taking a different approach, the present three-parts work is based on an hydrodynamic variational formulation of
the gravitoelectromagnetic equations and the space-time curvature effects in the context of gravitoelectromagnetism.
First, the variational approach leads to a consistent set of dynamic equations describing the interaction between matter
and the gravitoelectromagnetic field in flat space. This result, which is the main topic of the first part of the present
three-parts work, is usually sufficient for describing weak relativistic gravitational phenomena, such as the observed
shape of the galactic rotation curve [18]. The metric tensor perturbations introduced by the field-matter interaction,
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both inside the fluid and in the vacuum region, form the subject of the second part of this series. These metric-tensor
perturbations lead to a geodesic equation which correctly gives the relativistic correction of the perihelion precession
rate of planetary orbits. The application of the geodesic equation to the relativistic correction of Mercury’s perihelion
precession is the subject of the third part article of the entire work.

Following the program outlined in the preceding paragraph, the equations of motion describing the interaction of a
fully-relativistic perfect fluid with the gravitoelectromagnetic field in flat space are derived in Section II. This deriva-
tion uses a variational procedure based on Hamilton’s, or stationary action, principle. The variations are carried out
within the Eulerian framework in Subsection II A. The variation in Lagrangian coordinates is carried out in Subsec-
tion II B, leading to the Hamiltonian density and related energy integral in Subsection II C. A hydrogravitomagnetic
Cauchy invariant is demonstrated in Section III. In Section IV, the gravitoelectromagnetic fluid equations are written
in covariant form. The appropriate forms of the fluid and field energy-momentum tensors are also introduced, as
well as the Lorentz transformation properties of the gravitoelectromagnetic field. The conservation equations are
presented in Section V, both in differential and integral form, emphasizing a general form of the virial theorem. The
excitation of gravitoelectromagnetic waves is discussed in Section VI. Section VII addresses the topics of boundary
conditions at the fluid-vacuum interface and of energy density balance inside the fluid. Finally, Section VIII gives the
conclusions. The development in the present article repeats most of the work performed in a variational formulation
of plasma dynamics [19], due to the analogy between the two problems. Nevertheless, it forms the basis for the second
part article and a complete reference for further work.

II. HAMILTON’S PRINCIPLE AND GRAVITOELECTROMAGNETIC FLUID EQUATIONS

Hamilton’s principle provides an elegant derivation of the equations of motion of a fluid [20–25]. The variational
principle in the Eulerian form is presented in Subsection II A. The variational principle in Lagrangian form is
discussed in Subsection II B, leading to the definition of the Hamiltonian density and its related energy integral in
Subsection II C. The basic formalism of Hamilton’s principle applied to fluid motion is briefly presented next.

In the Eulerian form (fixed frame) Hamilton’s principle states that the fluid equations of motion for generalized

field coordinates ϕ (r, t) can be derived from a Lagrangian density L
(
ϕ,

�
ϕ,∇ϕ, t

)
by the variational principle [26]

δ

∫
d3r dtL = 0. (1)

The virtual displacements are constructed for constant r and t so that Hamilton’s principle and integration by parts
give ∫

d3r dt

[
∂L
∂ϕ
− ∂

∂t

(
∂L
∂

�
ϕ

)
−∇ ·

(
∂L

∂ (∇ϕ)

)]
δϕ = 0. (2)

For arbitrary variation of the field coordinate ϕ, with vanishing variation δϕ at the end points, this leads to the
Euler-Lagrange equation

∂L
∂ϕ

=
∂

∂t

(
∂L
∂

�
ϕ

)
+ ∇ ·

(
∂L

∂ (∇ϕ)

)
. (3)

A. Eulerian variational principle

The Lagrangian density for a relativistic perfect fluid in the gravitoelectromagnetic approximation is taken to be

L = −nmc
2

γ
− p

γA − 1
− ρφg + j ·Ag −

E2
g − c2B2

g

8πG
, (4)

or, in covariant form,

L = −
◦
U + jµA

µ
g +

c2

16πG
FµνF

µν . (5)

The various terms of the Lagrangian density are defined in the following.
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The proper energy density
◦
U , sum of the rest mass and thermal energy densities, is given by

◦
U = −◦nmuµuµ +

p

γA − 1
, (6)

where uµ = γ (c,u) is the fluid four-velocity with uµ = ηµνu
ν = γ (−c,u) and uµu

µ = −c2. The upper circle label
denotes the rest frame. The Minkowski metric tensor is

ηµν =

( −1 0

0 I

)
= ηµν (7)

and the Lorentz factor is γ = 1/
√

1− β2 = 1/
√

1− u2/c2, so that the number density transforms from the rest frame

to the frame moving with the fluid velocity u as n = γ
◦
n. The absolute temperature transforms as T =

◦
T/γ, the

invariant fluid pressure is given by p =
◦
nkB

◦
T = nkBT , and the “adiabatic” coefficient γA is a function of the fluid

temperature [19]. The double over-bar denotes a dyadic.
The term jµA

µ
g corresponds to the interaction energy between the fluid and the gravitoelectromagnetic field

jµA
µ
g = (−ρc, j) ·

(
φg
c
,Ag

)
= −ρφg + j ·Ag, (8)

where ρ = nm = γ
◦
nm is the mass density of the fluid, j = ρu is the mass current density, and Aµg = (φg/c,Ag) is

the gravitoelectromagnetic four-vector potential. The gravitoelectromagnetic field variables Eg and Bg are related to
the potentials φg and Ag by

Eg = −∇φg −
∂Ag

∂t
,

Bg = ∇×Ag.
(9)

These relations lead to the gravitoelectromagnetic Faraday’s law and to the gravitomagnetic Gauss’s law, respectively,

∇×Eg = −∂Bg

∂t
,

∇ ·Bg = 0.
(10)

Note that the potentialAg has been introduced without the factor 1/2 frequently adopted in gravitoelectromagnetism.
The present definition simplifies the comparison with electromagnetic theory.

The free-field Lagrangian is given in terms of the field strengths through the gravitoelectromagnetic field tensor
given by

Fµν =

(
0 Eg/c

−Eg/c ε ·Bg

)
(11)

and

Fµν = ηµρF
ρσησν =

(
0 −Eg/c

Eg/c ε ·Bg

)
, (12)

where ε is the totally antisymmetric Levi-Civita tensor in three dimensions. Noting that (the superscript T denotes
the transposed dyadic) (

ε ·Bg

)
·
(
ε ·Bg

)T
= B2

gI −BgBg,(
ε ·Bg

)
:
(
ε ·Bg

)T
= 2B2

g ,
(13)

the first gravitoelectromagnetic field invariant is

Λg = FµνF
µν =

(
0 −Eg/c

Eg/c ε ·Bg

)
:

(
0 Eg/c

−Eg/c ε ·Bg

)T
= −

2
(
E2
g − c2B2

g

)
c2

. (14)
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The pseudo tensor dual of Fµν is

F ∗µν =
1

2
εµνρσFρσ =

(
0 Bg

−Bg −ε ·Eg/c

)
, (15)

so that

Fµν = −1

2
εµνρσF ∗ρσ. (16)

Using the relation (
ε ·Bg

)
:
(
ε ·Eg

)T
= 2Eg ·Bg, (17)

the second gravitoelectromagnetic field invariant becomes

Mg = FµνF ∗µν = −4 (Eg ·Bg)

c
=⇒ det (Fµν) =

(Eg ·Bg)
2

c2
=

(
Mg

4

)2

. (18)

The free-field Lagrangian can be written in terms of the first gravitoelectromagnetic field invariant Λg as

c2

16πG
FµνF

µν = −
E2
g − c2B2

g

8πG
=

c2Λg
16πG

. (19)

The introduction of terms depending on Mg in the Lagrangian would lead to anisotropy in the fluid-field equations
of motion, but this will be disregarded in the present work.

Note that the Lagrangian density L includes, besides the proper energy of the fluid, the interaction energy between
the fluid and the gravitoelectromagnetic field, and the terms related to the free-field energy. This formulation includes
all the terms that describe the dynamics of a fluid in the context of the special theory of relativity, i.e., in flat-space.
In this form the variational procedure reinstates the equivalence of mass and energy.

The gravitoelectromagnetic equations of motion must be obtained from the expression of the Lagrangian density.
The field coordinates are:

φg,Ag − gravitoelectromagnetic field potentials
u − fluid velocity
n − fluid number density
s − proper entropy of a fluid element
r0 − Lagrangian coordinate of a fluid element

(20)

The vector field r0 (r, t) establishes the initial position of the fluid element that occupies the position r at time t.
The above field variables are not completely independent; they must satisfy the following constraints:

�
n+ ∇ · (nu) = 0 − continuity condition

ds/dt = 0 − condition for isentropic flow
dr0/dt = 0 − conservation of the identity of particles

(21)

Here
�
n = ∂n/∂t denotes the partial time derivative of n. It gives the rate of change of the density n at a stationary

point r. The total or convective time derivative d/dt ≡ ∂/∂t + u ·∇, gives the rate of change of a quantity moving
instantaneously with the velocity u. It describes the advection by fluid motion. As for the fluid constraints [19]: (1)
Fluid continuity is a kinematic condition of fluid motion which corresponds to conservation of the number of particles;
(2) The specific entropy s of a perfect fluid is constant in time at any point that moves along with the fluid without
irreversible processes taking place. This condition is equivalent to energy conservation; (3) The last condition above
implies that there is a one-to-one correspondence between Lagrangian and Eulerian coordinates. This constraint was
introduced by C.-C. Lin so that the total set of constraints gives rise to a Herivel-Lin flow [21]. Hence, Hamilton’s
principle can be put in the form

δ

∫
d3r dt

[
L+ am

[
�
n+ ∇ · (nu)

]
+ bnm

ds

dt
+ nmc ·

(
dr0
dt

)]
︸ ︷︷ ︸

L′

= 0, (22)
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where a, b and c constitute a set of Lagrangian multipliers.
Now, φg, Ag, u, n, s and r0 are independent functions of r and t that can be varied. In carrying out the variation

the volume of integration is kept fixed, in the Eulerian sense. Furthermore, in the rest frame the thermodynamic
potentials satisfy the second law

◦
Tds = d

( ◦
U/
◦
n

)
+ pd

(
1/
◦
n
)
. (23)

In a moving frame this relation becomes

γTds = d

(
p

γA − 1

γ

n

)
+ pd

(γ
n

)
. (24)

Taking into account this fundamental thermodynamic relation, only one equation of state is needed to close the system
of fluid equations. For a perfect fluid the equation of state is the ideal gas law p = nkBT , so that

1

kB
ds =

1

kBT
d

(
kBT

γA − 1

)
+

γA
γA − 1

dγ

γ
− dn

n
. (25)

The derivation of the equations of motion from the constrained Lagrangian

L′ = −nmc
2

γ
− nkBT

γA − 1
− nmφg + nmu ·Ag −

E2
g − c2B2

g

8πG

+am
(

�
n+ u ·∇n+ n∇ · u

)
+ bnm

(
�
s+ u ·∇s

)
+nmc ·

(
�
r0 + u ·∇r0

)
,

(26)

can be carried out writing an Euler-Lagrange equation for each field coordinate ϕ = (φg,Ag,u, n, s, r0) as follows:

(i) δφg



∂L′

∂φg
= −nm = −ρ

∂L′

∂
�
φg

= 0

∂L′

∂ (∇φg)
=

∂L′

∂Eg
· ∂Eg
∂ (∇φg)

=
∂L′

∂Eg
·
(
−I
)

= − ∂L
′

∂Eg
=
Eg

4πG

(27)

The Euler-Lagrange equation for φg gives the GE Gauss’ law

∇ ·Eg = −4πGρ. (28)

(ii) δAg



∂L′

∂Ag
= nmu = j

∂L′

∂
�
Ag

=
∂L′

∂Eg
· ∂Eg

∂
�
Ag

= − Eg
4πG

·
(
−I
)

=
Eg

4πG

∂L′

∂ (∇Ag)
=

∂L′

∂Bg
· ∂Bg

∂ (∇Ag)
=
c2Bg

4πG
· ∂ (∇×Ag)

∂ (∇Ag)

=
c2Bg

4πG
·

(
−ε : ∂ (∇Ag)

∂ (∇Ag)

)
= −c

2Bg

4πG
· ε

(29)

Noting that

∇ ·
(
Bg · ε

)
= ∇×Bg, (30)

the Euler-Lagrange equation for Ag gives the GEM Ampère’s law

∇×Bg = −4πG

c2
j +

1

c2
∂Eg
∂t

. (31)
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(iii) δu



∂L′

∂u
=

nmc2

γ2
∂γ

∂u
− n ∂

∂γ

(
kBT

γA − 1

)
n,s

∂γ

∂u
+ nmAg

+am∇n+ bnm∇s+ nm (∇r0) · c
∂L′

∂
�
u

= 0

∂L′

∂ (∇u)
= amn

∂ (∇ · u)

∂ (∇u)
= amnI :

∂ (∇u)

∂ (∇u)
= amnI

(32)

Using

∂γ

∂u
= γ3

u

c2
, ∇ ·

(
amnI

)
= mn∇a+ma∇n, (33)

the Euler-Lagrange equation for u gives the fluid velocity in terms of the vector potential Ag, the scalar potentials a
and s, and the deformations (strains and rotations) in the initial fluid positions r0

γu− γ3 ∂
∂γ

(
kBT

γA − 1

)
n,s

u

mc2
+Ag −∇a+ b∇s+ (∇r0) · c = 0. (34)

Defining a relativistic factor α such that

αu = γ

[
1− γ2

mc2
∂

∂γ

(
kBT

γA − 1

)
n,s

]
u, (35)

the Euler-Lagrange equation (iii) can be written in the compact form

αu+Ag = ∇a− b∇s− c · (∇r0)
T
, (36)

which has the form of a Clebsch representation for the canonical momentum P = m (αu+Ag) of the fluid element.

(iv) δn



∂L′

∂n
= −mc

2

γ
− kBT

γA − 1
− n ∂

∂n

(
kBT

γA − 1

)
γ,s

−mφg +mu ·Ag

+am∇ · u+ bm
ds

dt
+mc ·

(
dr0
dt

)
∂L′

∂
�
n

= am

∂L′

∂ (∇n)
= amu

(37)

Taking into account the constraints

ds

dt
= 0 ,

dr0
dt

= 0, (38)

the Euler-Lagrange equation for n gives

m
da

dt
= −mc

2

γ
− kBT

γA − 1
− n ∂

∂n

(
kBT

γA − 1

)
γ,s

−mφg +mu ·Ag. (39)

(v) δs



∂L′

∂s
= −n ∂

∂s

(
kBT

γA − 1

)
n,γ

∂L′

∂
�
s

= bnm

∂L′

∂ (∇s)
= bnmu

(40)

The Euler-Lagrange equation for s gives

m
db

dt
= − ∂

∂s

(
kBT

γA − 1

)
n,γ

. (41)



7

(vi) δr0



∂L′

∂r0
= 0

∂L′

∂
�
r0

= nmc

∂L′

∂ (∇r0)
= nmuc

(42)

Finally, the Euler-Lagrange equation for r0 gives

dc

dt
= 0. (43)

The Euler-Lagrange equations (iv), (v) and (vi) are equations of motion for the Lagrange multipliers a, b and c.
These equations must be used to eliminate the Lagrange multipliers from equation (iii) in the form (36). With this
objective in mind, consider the following vector and dyadic relations applied to the convective derivatives:

d

dt
(∇a) =

∂

∂t
∇a+ u ·∇∇a

= ∇∂a

∂t
+ ∇ (u ·∇a)−∇u · (∇a) = ∇da

dt
−∇u · (∇a) ,

(44)

d

dt
(b∇s) =

db

dt
(∇s) + b

(
∂

∂t
∇s+ u ·∇∇s

)
= (∇s)

db

dt
+ b

(
∇∂s

∂t
+ ∇ (u ·∇s)−∇u · (∇s)

)
= (∇s)

db

dt
+ b∇ds

dt
−∇u · (b∇s) ,

(45)

d

dt
[(∇r0) · c] = (∇r0) · dc

dt
+

(
∂

∂t
∇r0 + u ·∇∇r0

)
· c

= (∇r0) · dc
dt

+

(
∇∂r0

∂t
+ ∇ (u ·∇r0)

)
· c

− (∇r0) · (∇u) · c− (∇r0)× (∇× u) · c

= (∇r0) · dc
dt

+

(
∇dr0

dt

)
· c

− (∇u) · (∇r0) · c + c× [∇× (u ·∇r0)] .

(46)

Using the constraints ds/dt = dr0/dt = 0 and the Euler-Lagrange equation (vi), that is dc/dt = 0, the above
relations become

d

dt
(∇a) = ∇da

dt
−∇u · (∇a) ,

d

dt
(b∇s) = (∇s)

db

dt
−∇u · (b∇s) ,

d

dt
[(∇r0) · c] = − (∇u) · (∇r0) · c + c× [∇× (u ·∇r0)] .

(47)

Taking into account the constraint dr0/dt = 0 it follows that

dr0
dt

=
∂r0
∂t

+ u ·∇r0 = 0 =⇒ u ·∇r0 = −∂r0
∂t

. (48)

Hence

d

dt
[(∇r0) · c] = − (∇u) · (∇r0) · c− c× ∂

∂t
(∇× r0)︸ ︷︷ ︸

0

= − (∇u) · (∇r0) · c. (49)

The previous relations can be collected in the form:
d

dt
(∇a) = ∇da

dt
−∇u · (∇a)

d

dt
(b∇s) = (∇s)

db

dt
−∇u · (b∇s)

d

dt
[(∇r0) · c] = − (∇u) · (∇r0) · c

(50)
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Now, the total time derivative of the Euler-Lagrange equation (36) gives

d

dt
(αu+Ag) =

d

dt
[∇a− b∇s− (∇r0) · c]

= ∇da

dt
−∇u · (∇a)− (∇s)

db

dt
+ ∇u · (b∇s) + (∇u) · (∇r0) · c,

(51)

and the scalar pre-multiplication by ∇u gives

∇u · (αu+Ag) = ∇u · [∇a− b∇s− (∇r0) · c] . (52)

The addition of these two equations yields

d

dt
(αu+Ag) + ∇u · (αu+Ag) = ∇da

dt
− (∇s)

db

dt
. (53)

Finally, using equations (iv) and (v), the remaining Lagrange multipliers a and b are eliminated from the equation
of specific momentum conservation

d

dt
(αu+Ag) + ∇u · (αu+Ag)

= −∇φg + ∇ (u ·Ag)− c2∇γ−1 −∇
(
kBT/m

γA − 1

)
−∇

[
n
∂

∂n

(
kBT/m

γA − 1

)
γ,s

]
+ (∇s)

∂

∂s

(
kBT/m

γA − 1

)
n,γ

.

(54)

Maxwell’s differential relations can be determined from the second law of thermodynamics (25). Thus

∂

∂n

(
kBT

γA − 1

)
γ,s

=
kBT

n
∂

∂γ

(
kBT

γA − 1

)
n,s

= − γA
γA − 1

kBT

γ
∂

∂s

(
kBT

γA − 1

)
n,γ

= T

(55)

These relations reduce the equation of specific momentum conservation to the form

d

dt
(αu+Ag) + ∇u · (αu+Ag) = −∇φg + ∇ (u ·Ag)− c2∇γ−1

−∇
(
kBT

m

)
+
kBT

m

(
γA

γA − 1

∇γ

γ
− ∇n

n

)
,

(56)

where

α = γ

(
1 +

γA
γA − 1

γkBT

mc2

)
. (57)

Using

∇γ−1 = −γ∇u2

2c2
and ∇γ = γ3

∇u2

2c2
, (58)

the specific momentum conservation equation becomes

d

dt
(αu) = −∇ (nkBT )

nm
−∇φg −

∂Ag

∂t
− (u ·∇)Ag − (∇u) ·Ag + ∇ (u ·Ag) . (59)

Now, the vector and dyadic relations{
(u ·∇)Ag = (∇Ag) · u− u× (∇×Ag)
∇ (u ·Ag) = (∇u) ·Ag + (∇Ag) · u

(60)
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give

d

dt
(αu) = −∇ (nkBT )

mn︸ ︷︷ ︸
−(∇p)/ρ

−∇φg −
∂Ag

∂t︸ ︷︷ ︸
Eg

+ u× (∇×Ag)︸ ︷︷ ︸
Bg

, (61)

where Eg = −∇φg − ∂Ag/∂t and Bg = ∇ ×Ag are the GE and GM field components, respectively. The equation
of specific momentum conservation becomes

d

dt
(αu) = −∇p

ρ
+Eg + u×Bg, (62)

which has the form of a Lorentz acceleration acting on the fluid element. Note that the thermal motion increases the
fluid inertia. The relativistic effects introduced by the coefficient α affect the reconnection process in astrophysical
plasmas [27] and equally affect the evolution of relativistic fluids. Without the inertial effects included in α (taking
α → 1), and neglecting the pressure effects for a fluid element (p → 0), this equation corresponds to the equation of
motion obtained by Thirring in the first approximation to Einstein’s gravity equations [12, 13].

Multiplying by ρ = mn and applying the continuity condition ∂n/∂t = −∇ · (nu) the equation of momentum
conservation yields

∂

∂t
(mnαu) +mαu∇ · (nu) +mnu ·∇ (αu)︸ ︷︷ ︸

∇·(mnαuu)

= −∇p+mn (Eg + u×Bg) . (63)

Therefore, the full equation of momentum density conservation for a relativistic perfect fluid in the presence of a
gravitoelectromagnetic field can be written as

∂

∂t

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
ρu

]
+ ∇ ·

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
ρuu+ pI

]
= ρEg + j ×Bg.

(64)

Using the definition (6) of the fluid energy density in the rest frame, the second law (23) becomes

◦
Tds = d

(
γA

γA − 1

p
◦
n

)
− dp
◦
n
. (65)

Assuming isentropic flow with ds = 0 this leads to the differential equation of state

dp
◦
n

= d

(
γA

γA − 1
kB
◦
T

)
, (66)

where
◦
n = n/γ and

◦
T = γT . Thus

∇p

ρ
=

1

γ
∇
(

γA
γA − 1

γkBT

m

)
(67)

can be used to express the fluid pressure in terms of the temperature:

d

dt

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
u

]
= − 1

γ
∇
(

γA
γA − 1

γkBT

m

)
+Eg + u×Bg. (68)

The acceleration in this equation can be written in compact form in terms of the function α

d

dt
(αu) = −c

2

γ
∇
(
α

γ

)
+Eg + u×Bg. (69)

Scalar multiplication by u and insertion of the Lorentz factor relation du2 = 2c2dγ/γ3 gives

d

dt

(
αc2
)

=
1

γ

∂

∂t

(
αc2

γ

)
+ u ·Eg. (70)
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Multiplication by the mass density nm and use of the continuity condition yields

∂

∂t

(
nmc2α

)
+ ∇ ·

(
nmc2αu

)
=
nmc2

γ

∂

∂t

(
α

γ

)
+ j ·Eg. (71)

Since

d

(
α

γ

)
= d

(
γA

γA − 1

γkBT

mc2

)
=

γdp

nmc2
, (72)

the energy density conservation equation becomes

∂

∂t

(
nmc2α

)
+ ∇ ·

(
nmc2αu

)
=
∂p

∂t
+ j ·Eg. (73)

With some rearrangement the energy density conservation equation is written as

∂

∂t

[
γρc2 +

(
1

γA − 1
+ β2

)
γ2p

]
+ ∇ ·

[(
γρc2 +

γA
γA − 1

γ2p

)
u

]
= j ·Eg. (74)

Summary: The variational procedure demonstrates that fluid flow under the action of a gravitoelectro-
magnetic field in flat space is governed by the specific momentum conservation equation

d

dt

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
u

]
= −∇p

ρ
+Eg + u×Bg, (75)

combined with the equation of continuity (conservation of the number of particles)

∂ρ

∂t
+ ∇ · (ρu) = 0, (76)

and Maxwell’s source equations

∇ ·Eg = −4πGρ GE Gauss’s law

∇×Bg = −4πG

c2
ρu+

1

c2
∂Eg
∂t

GEM Ampère’s law
(77)

The GEM field variables are related to the potentials by

Eg = −∇φg −
∂Ag

∂t
,

Bg = ∇×Ag,
(78)

which leads to the consistency relations

∇×Eg = −∂Bg

∂t
GEM Faraday’s law

∇ ·Bg = 0 GM Gauss’ law
(79)

The pressure p is related to the temperature T according to the isentropic flow condition ds/dt = 0
(conservation of energy). The equation of state for a perfect fluid, p = nkBT , can be used to relate the
density n to the temperature T .

Introducing the weakly relativistic approximation, γ ∼ 1 + u2/2c2, the energy density conservation equation (74)
reduces to

∂

∂t

 nmc2︸ ︷︷ ︸
dominant

+ nm
u2

2
+

p

γA − 1

+ ∇ ·

nmc2u︸ ︷︷ ︸
dominant

+ nm
u2

2
u+

γA
γA − 1

pu


∼= j ·Eg,

(80)
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where the dominant terms (in the expansion in powers of 1/c) cancel due to fluid continuity. Similarly, the equation
of momentum density conservation reduces to

∂

∂t
(nmu) + ∇ ·

(
nmuu+ pI

)
∼= ρEg + j ×Bg. (81)

In the weak relativistic approximation the fluid motion is described by the equations of continuity, specific momentum
conservation (in the equivalent Lorentz acceleration form), the laws of Gauss and Ampère, and the adiabatic equation
of state with γA ∼= 5/3 for a monatomic gas, which is equivalent to the energy conservation equation:

∂ρ

∂t
+ ∇ · (ρu) = 0

du

dt
∼= −∇

(
γA

γA − 1

p

ρ

)
+Eg + u×Bg

∇ ·Eg = −4πGρ

∇×Bg = −4πG

c2
ρu+

1

c2
∂Eg
∂t

p ∝ ργA

(82)

The gravitoelectric and gravitomagnetic fieldsEg andBg are given in terms of the potentials φg andAg, characterizing
a system of 9 equations in 9 unknowns. The equations of motion in the weak relativistic form can be used to describe,
for example, the initial evolution of galactic systems. In particular, a dust distribution is governed by the above set
of equations taking p ∼ 0 [18].

B. Lagrangian variational principle

In this subsection the equations of fluid motion are considered within the Lagrangian approach. Changing from
Eulerian (r, t) to Lagrangian (r0, τ) coordinates, Hamilton’s principle becomes

δ

∫
d3r0dτ J

(
−nmc

2

γ
− nkBT

γA − 1
− nmφg + nmAg ·

∂ξ

∂τ
−
E2
g − c2B2

g

8πG

)
= 0. (83)

J is the Jacobian dyadic

J = ∇0r = ∇0 (r0 + ξ) = I + ∇0ξ, (84)

and J =
∣∣∣J∣∣∣ its determinant. In this variational principle the integration extends over the fixed initial positions and

the field variables are considered as functions of r0 and τ (these coordinates may be considered as fixed on the fluid
element). The velocity of a fluid element is given in terms of the Lagrangian displacement ξ = r − r0 by u = ∂ξ/∂τ
(the velocity is defined at the position of the fluid element, which may be considered as a particle) and the Lagrangian
form of the equation of continuity is (J represents the dilatation of an infinitesimal fluid volume as it follows the
motion [19])

nJ = n0 (r0, τ = 0) . (85)

The equation of conservation of entropy becomes

∂s/∂τ = 0. (86)

Introducing the Lagrange multipliers aL and bL:

δ

∫
d3r0dτ

{
J

[
−nmc

2

γ
− nkBT

γA − 1
− nmφg + nmAg ·

∂ξ

∂τ
−
E2
g − c2B2

g

8πG

]
+

[
aL (nJ − n0) + bL

∂s

∂τ

]}
= 0.

(87)
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The Euler-Lagrange equations for the field variables ϕ = (φg,Ag, ξ, n, s) are:

(i) δφg



∂L′0
∂φg

= −Jnm = −n0m = −ρ0
∂L′0

∂ (∂φg/∂τ)
= 0

∂L′0
∂ (∇0φg)

=
Eg

4πG

(88)

The Euler-Lagrange equation for φg gives the GE Gauss’ law in Lagrangian coordinates

∇0 ·Eg = −4πGρ0. (89)

(ii) δAg



∂L′0
∂Ag

= Jnm
∂ξ

∂τ
= n0m

∂ξ

∂τ
= j0

∂L′0
∂ (∂Ag/∂τ)

=
Eg

4πG
∂L′0

∂ (∇0Ag)
= −c

2Bg

4πG
· ε

(90)

The Euler-Lagrange equation for Ag gives the GEM Ampère’s law in Lagrangian coordinates

∇0 ×Bg = −4πG

c2
j0 +

1

c2
∂Eg
∂τ

. (91)

(iii) δξ



∂L′0
∂ξ

= Jnm

[
−∂φg
∂ξ

+

(
∂Ag

∂ξ

)
· ∂ξ
∂τ

]
= Jnm

[
−∇φg + (∇Ag) ·

∂ξ

∂τ

]
(δξ = δr for fixed r0)

∂L′0
∂ (∂ξ/∂τ)

= J

[
nγmc2 − nγ3 ∂

∂γ

(
kBT

γA − 1

)
n,s

]
1

c2
∂ξ

∂τ
+ JnmAg

∂L′0
∂ (∇0ξ)

=
∂J

∂ (∇0r)

(
−nmc

2

γ
− nkBT

γA − 1

−nmφg + nmAg ·
∂ξ

∂τ
+ aLn

)
(92)

The Euler-Lagrange equation for ξ gives

Jnm

[
−∂φg
∂ξ

+

(
∂Ag

∂ξ

)
· ∂ξ
∂τ

]
=

∂

∂τ

{
J

[
nγmc2 − nγ3 ∂

∂γ

(
kBT

γA − 1

)
n,s

]
1

c2
∂ξ

∂τ
+ JnmAg

}
+∇0 ·

[
∂J

∂ (∇0r)

(
−nmc

2

γ
− nkBT

γA − 1
− nmφg + nmAg ·

∂ξ

∂τ
+ aLn

)]
.

(93)

(iv) δn



∂L′0
∂n

= J

[
−mc

2

γ
− kBT

γA − 1
− n ∂

∂n

(
kBT

γA − 1

)
γ,s

−mφg +mAg ·
∂ξ

∂τ
+ a

]
∂L′0

∂ (∂n/∂τ)
= 0

∂L′0
∂ (∇0n)

= 0

(94)

The Euler-Lagrange equation for n gives the value of the Lagrange multiplier aL (J must be different from zero so
that the transformation r0 � r is one-to-one)

aL =
mc2

γ
+

kBT

γA − 1
+ n

∂

∂n

(
kBT

γA − 1

)
γ,s

+mφg −mAg ·
∂ξ

∂τ
. (95)
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Finally, the Euler-Lagrange equation for s gives

∂bL
∂τ

= −Jn ∂
∂s

(
kBT

γA − 1

)
n,γ

. (96)

Now, the expression (iv) for aL can be substituted in the Euler-Lagrange equation (iii) for ξ,

∂

∂τ

{
J

[
nγmc2 − nγ3 ∂

∂γ

(
kBT

γA − 1

)
n,s

]
1

c2
∂ξ

∂τ
+ JnmAg

}

+∇0 ·

[
∂J

∂ (∇0r)
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

]
= Jnm

[
−∂φg
∂ξ

+

(
∂Ag

∂ξ

)
· ∂ξ
∂τ

]
.

(97)

The derivative of the determinant of a second-order tensor gives

∂J

∂ (∇0r)
=

∂

∂ (∇0r)
|∇0r| = C = J

[
(∇0r)

−1
]T
, (98)

where J = |∇0r| is the determinant of ∇0r and C is the dyadic of the cofactors of the elements of ∇0r. Moreover,
the transformation from Eulerian to Lagrangian coordinates gives

∇0 ≡ (∇0r) ·∇ ≡ J ·∇ and ∇ ≡ (∇r0) ·∇0 ≡ J
−1
·∇0 ⇒ ∇r0 = (∇0r)

−1
. (99)

Note the identities

J ·C
T

= C · J
T

= JI and C = J

(
J
−1
)T

. (100)

Thus

∂J

∂ (∇0r)
= J (∇r0)

T
. (101)

It follows that

∇0 ·

[
J (∇r0)

T
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

]

= ∇0 ·
[
J (∇r0)

T
]
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

+ J (∇r0) ·∇0

[
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

]
.

(102)

But the first term on the right-hand side vanishes, since

∇0 ·
[
J (∇r0)

T
]

= ∇0 ·C = 0, (103)

and the second term can be written as

J (∇r0) ·∇0

[
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

]
= J∇

[
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

]
, (104)

so that the Euler-Lagrange equation (97) for ξ becomes

∂

∂τ

{
J

[
nγmc2 − nγ3 ∂

∂γ

(
kBT

γA − 1

)
n,s

]
1

c2
∂ξ

∂τ
+ JnmAg

}

+J∇
[
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

]
= Jnm

[
−∇φg + (∇Ag) ·

∂ξ

∂τ

]
.

(105)
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The quantity nJ = n0 is independent of τ , therefore

∂

∂τ

[
γ
∂ξ

∂τ
− γ3

mc2
∂

∂γ

(
kBT

γA − 1

)
n,s

∂ξ

∂τ
+Ag

]

= − 1

nm
∇
[
n2

∂

∂n

(
kBT

γA − 1

)
γ,s

]
−∇φg + (∇Ag) ·

∂ξ

∂τ
.

(106)

Using the thermodynamic relations (55) the time rate of change of the specific canonical momentum of the fluid
element is obtained:

∂

∂τ

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
∂ξ

∂τ
+Ag

]
= −∇p

ρ
−∇φg + (∇Ag) ·

∂ξ

∂τ
. (107)

The transformation back to Eulerian coordinates is carried out by means of the relations

∂

∂τ
≡ ∂

∂t
+ u ·∇ and

∂ξ

∂τ
= u. (108)

Hence (
∂

∂t
+ u ·∇

)[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
u

]
= −∇p

ρ
−∇φg −

�
Ag − u ·∇Ag + (∇Ag) · u.

(109)

Multiplying by nm and using the equation of continuity, this equation becomes

∂

∂t

(
nγmu+

γA
γA − 1

nγ2kBT
u

c2

)
+∇ ·

[
nγmuu+ nkBTI +

γA
γA − 1

nγ2kBT
uu

c2

]
= −nm∇φg − nm

�
Ag + nmu× (∇×Ag) ,

(110)

which is again the equation of motion in Eulerian form. This can be easily verified using the definitions ρ = nm,
j = nmu, Eg = −∇φg − ∂Ag/∂t and Bg = ∇ ×Ag, and the equation of state p = nkBT , which returns equation
(64)

∂

∂t

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
ρu

]
+ ∇ ·

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
ρuu+ pI

]
= ρEg + j ×Bg.

(111)

C. Hamiltonian density and energy integral

The momentum densities π = ∂L/∂ �
ϕ canonically conjugate to the Lagrangian field coordinates φg, Ag, ξ, n and s

are 

πφg
= 0

πAg =
Eg

4πG

πξ = n0γm

(
1 +

γA
γA − 1

γkBT

mc2

)
∂ξ

∂τ
+ n0mAg

πn = 0
πs = b

(112)

Using the Lagragian density

L0 = −n0mc
2

γ
− n0kBT

γA − 1
− n0mφg + n0mAg ·

∂ξ

∂τ
−
E2
g − c2B2

g

8πG
, (113)
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the Hamiltonian density in Lagrangian coordinates can be easily calculated:

H0 =
∑
α
πα
∂ϕα
∂τ
− L0

=
Eg

4πG
· ∂Ag

∂τ
+ n0γm

(
1 +

γA
γA − 1

γkBT

mc2

)(
∂ξ

∂τ

)2

+ n0mAg ·
∂ξ

∂τ

−

(
−n0mc

2

γ
− n0kBT

γA − 1
− n0mφg + n0mAg ·

∂ξ

∂τ
−
E2
g − c2B2

g

8πG

)
.

(114)

Hence

H0 = n0γmc
2 +

(
1 +

γAβ
2

1− β2

)
n0kBT

γA − 1
+ n0mφg +

Eg
4πG

· ∂Ag

∂τ
+
E2
g − c2B2

g

8πG
. (115)

Recalling that n0 = nJ , the Hamiltonian density can be defined in the Eulerian sense by

H = γρc2 +

(
1 +

γAβ
2

1− β2

)
p

γA − 1
+ ρφg +

Eg
4πG

·
�
Ag +

E2
g − c2B2

g

8πG
, (116)

so that

H =

∫
d3r0 JH0 =

∫
d3rH. (117)

Note that, although the same graphical symbol was used, the gravitoelectromagnetic field variables in Eulerian and
Lagrangian coordinates correspond to energy densities related by the ratio n/n0. The gravitoelectromagnetic field
Hamiltonian density can also be written in the form

Eg
4πG

·
�
Ag +

E2
g − c2B2

g

8πG
= −Eg ·∇φg

4πG
−
E2
g + c2B2

g

8πG
. (118)

Hence, using the GE Gauss’s law

H = γρc2 +

(
1 +

γAβ
2

1− β2

)
p

γA − 1
− 1

4πG
∇ · (Egφg)−

E2
g + c2B2

g

8πG
. (119)

If F is the volume integral of a density function F (πα, ϕα,∇ϕα), its time derivative is given by

dF

dt
=
∂F

∂t
+
∑
α

∫
{F ,H}α d

3r, (120)

where

{F ,H}α =
δF
δϕα

δH
δπα
− δF
δπα

δH
δϕα

(121)

is the classical Poisson bracket for F and H and the functional derivative notation indicates the variation of H for
small differences δϕα in the path followed by the field variable ϕα:

δH
δϕα

=
∂H
∂ϕα

−∇ ·
(

∂H
∂ (∇ϕα)

)
. (122)

The relation involving the Poisson bracket constitutes the noncanonical Hamiltonian representation of a system. In
particular, taking F = H leads to the energy integral

dH

dt
=

d

dt

∫
H d3r = 0. (123)

Hence

dH

dt
=

d

dt

∫ [
γρc2 +

(
1 +

γAβ
2

1− β2

)
p

γA − 1
−
E2
g + c2B2

g

8πG

]
d3r

− d

dt

∮ (
φgEg
4πG

)
· d2r = 0.

(124)

The stability of the fluid mass distribution in the gravitoelectromagnetic field can be investigated introducing a
Lagrangian perturbation ξ in the energy integral, which can be reduced to an energy principle.
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III. A HYDROGRAVITOMAGNETIC CAUCHY INVARIANT

Making use of the vector relation

(A ·∇)A = (∇×A)×A+
1

2
∇ (A ·A) (125)

applied to the vector αu, the fluid acceleration can be written in the form

d

dt
(αu) =

∂

∂t
(αu) + u ·∇ (αu) =

∂

∂t
(αu) + (∇× αu)× u+

∇ (αu)
2

2α
, (126)

and the curl gives, using the continuity equation,

∇×
(
d

dt
(αu)

)
=

=
∂

∂t
[∇× (αu)] + ∇× [(∇× αu)× u] +

(
∇u2

2

)
×∇α

=
d

dt
[∇× (αu)]− (∇× αu)

ρ

dρ

dt
− [(∇× αu) ·∇]u+

(
∇u2

2

)
×∇α.

(127)

Thus

d

dt

(
∇× (αu)

ρ

)
=

(
∇× (αu)

ρ
·∇
)
u+

1

ρ
∇×

(
d

dt
(αu)

)
−
(
∇u2

)
×∇α

2ρ
. (128)

Using the expression of the relativistic inertia factor

α = γ

(
1 +

γA
γA − 1

γkBT

mc2

)
, (129)

one obtains

∇α =
∂α

∂u
∇u+

∂α

∂T
∇T, (130)

where 
∂α

∂u
=

(
1 +

γA
γA − 1

2γkBT

mc2

)
dγ

du
∂α

∂T
=

γA
γA − 1

γ2kBT

mc2

(
1

T
− dγA/dT

γA (γA − 1)

) (131)

Taking into account the transformation of the absolute temperature T =
◦
T/γ from the frame moving with the fluid

velocity u to the rest frame temperature
◦
T , the above expression for ∇α becomes

∇α =

(
∂α

∂u
− ∂α

∂T

γ2vT

c2

)
∇u =⇒ ∇u×∇α = 0. (132)

This leads to a diffusion equation for the vorticity

d

dt

(
∇× (αu)

ρ

)
=

(
∇× (αu)

ρ
·∇
)
u+

1

ρ
∇×

(
d

dt
(αu)

)
. (133)

Now, the equation of specific momentum conservation

d

dt
(αu) = −∇p

ρ
+Eg + u×Bg (134)

gives

∇×
(
d

dt
(αu)

)
= −∇p×∇ρ

ρ2
+ ∇×Eg −Bg (∇ · u) + (Bg ·∇)u− (u ·∇)Bg. (135)
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With the help of the continuity equation and Faraday’s law:

∇×
(
d

dt
(αu)

)
= −∇p×∇ρ

ρ2
− dBg

dt
+
Bg

ρ

dρ

dt
+ (Bg ·∇)u. (136)

Substituting in the vorticity diffusion equation

d

dt

(
∇× (αu) +Bg

ρ

)
=

(
∇× (αu) +Bg

ρ
·∇
)
u− ∇p×∇ρ

ρ3
. (137)

The perfect fluid flow is barotropic (in which the pressure p and the mass density ρ are directly related), so that the
last term in the right-hand side vanishes. Now, a canonical vorticity Ω can be defined by

Ω = ∇× P , (138)

where

P = m (αu+Ag) (139)

is the canonical momentum of the fluid element defined in Subsection II A (the specific canonical momentum is given
by the Clebsch representation (36)). The diffusion equation for the canonical vorticity becomes

d

dt

(
Ω

ρ

)
=

(
Ω

ρ
·∇
)
u. (140)

Introducing a change in the dependent variables such that [21]

Ω

ρ
= C ·∇0r, (141)

the diffusion equation for Ω/ρ becomes

d

dt
(C ·∇0r) = [(C ·∇0r) ·∇]u. (142)

Here ∇0r = ∂r/∂r0 = J is the Jacobian dyadic of the transformation r = r (r0, t) from the Lagrangian r0 to the

Eulerian r coordinates (
∣∣∣J ∣∣∣ 6= 0 and ∇0 ≡ J ·∇). The transformation r = r (r0, t) specifies the trajectory of a fluid

element. For fixed t, it determines the transformation of the element from the initial position r0 to the position r at
time t (Lagrangian map). Since

d

dt
(C ·∇0r) =

dC

dt
·∇0r +C ·∇0u

=
dC

dt
·∇0r +C · J ·∇u

=
dC

dt
·∇0r + (C ·∇0r) ·∇u,

(143)

the diffusion equation for the canonical vorticity divided by the mass density reduces to

dC

dt
·∇0r = 0 =⇒ dC

dt
= 0 =⇒ C = C (r0) . (144)

Thus

Ω

ρ
= C (r0) ·∇0r. (145)

Setting t = 0

Ω

ρ
=

Ω0

ρ0
·∇0r. (146)

This result was obtained, for an incompressible fluid in the non relativistic limit, and without the gravitomagnetic
field, by Cauchy in 1815 [28, 29]. Cauchy demonstrated that a fluid element that is initially in irrotational motion
remains in this condition throughout the flow. However, the hydrogravitomagnetic Cauchy invariant shows that the
gravitomagnetic field may introduce flow vorticity in an otherwise irrotational motion. This has important implications
in the rotation curve of galaxies [18] and in the mass accretion of astrophysical systems.
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IV. COVARIANT FORM OF THE GRAVITOELECTROMAGNETIC FLUID EQUATIONS

In this section the gravitoelectromagnetic fluid equations of motion are written in covariant form according to the
notation briefly presented in the next subsection.

A. Preliminary remarks [30]

The contravariant coordinates four-vector is

xµ = (ct, r) , (147)

with the corresponding covariant form

xµ = ηµνx
ν = (−ct, r) , (148)

where

ηµν =

( −1 0

0 I

)
= ηµν (149)

is the Minkowski (flat-space metric) tensor. Note that

ηµρηνρ =

(
1 0

0 I

)
= δµν (150)

is the Kronecker mixed tensor. Also,

ηµνηµν = 4. (151)

The covariant gradient four-vector is

∂µ ≡
∂

∂xµ
≡
(

1

c

∂

∂t
,∇
)
, (152)

with the corresponding contravariant form

∂µ ≡ ηµν∂ν ≡
(
−1

c

∂

∂t
,∇
)
. (153)

In general, the invariant scalar product of two four-vectors is

aµb
µ = a0b

0 + a · b = −a0b0 + a · b. (154)

In particular,

x2 = xµx
µ = −c2t2 + r2. (155)

The scalar product of ∂µ with itself gives the d’Alembertian operator

�2 ≡ ∂µ∂µ ≡ ηµν
∂

∂xµ
∂

∂xν
≡ − 1

c2
∂2

∂t2
+ ∇2, (156)

which is also invariant. The proper time interval dτ is defined by

c2dτ2 = −ηµνdxµdxν = c2dt2 − dr2 = c2
(

1− u
2

c2

)
dt2, (157)

where

u =
dr

dt
(158)
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is the fluid velocity. The contravariant form of the fluid four-velocity is

uµ =
dxµ

dτ
= γ (c,u) , (159)

where

γ =
dt

dτ
=

(
1− u

2

c2

)−1/2
=

1√
1− u2/c2

=
1√

1− β2
. (160)

The scalar product gives

uµu
µ = γ (−c,u) · γ (c,u) = γ2

(
−c2 + u2

)
= −c2. (161)

B. Covariant formulation of the equations of motion

The contravariant mass current density four-vector is defined by

jµ = (ρc, j) , (162)

so that the equation of continuity becomes

∂µj
µ =

(
1

c

∂

∂t
,∇
)
· (ρc, j) =

∂ρ

∂t
+ ∇ · j = 0. (163)

The energy-momentum tensor of a perfect fluid can be defined as

Tµνf = pηµν +

(
◦
U + p

)
uµuν

c2

= p

( −1 0

0 I

)
+

(
◦
U + p

)
γ2
(

1 u/c
u/c uu/c2

)

=

 γ2
(
◦
U + pβ2

) (
◦
U + p

)
γ2u/c(

◦
U + p

)
γ2u/c pI +

(
◦
U + p

)
γ2uu/c2

 ,

(164)

where
◦
U =

◦
nmc2 + p/ (γA − 1) is the proper energy density, p =

◦
nkB

◦
T = nkBT is the invariant pressure, and γA

is the “adiabatic” coefficient. This definition is in accordance with the equations of motion obtained by variational
methods in Section II, as will be shown in the following. Indeed, in terms of the gravitoelectromagnetic field tensor
Fµν introduced in Subsection II A, the fluid energy-momentum equation can be written as

∂νT
µν
f = jνF

µν . (165)

Thus

(
1

c

∂

∂t
,∇
)
·

 γ2
(
◦
U + pβ2

) (
◦
U + p

)
γ2u/c(

◦
U + p

)
γ2u/c pI +

(
◦
U + p

)
γ2uu/c2


= (−ρc, j) ·

(
0 Eg/c

−Eg/c ε ·Bg

)T
= (−ρc, j) ·

(
0 −Eg/c

Eg/c −ε ·Bg

)
.

(166)

The energy conservation equation is given by the temporal component of the previous equation

1

c

∂

∂t

[
γ2
(
◦
U + pβ2

)]
+ ∇ ·

[(
◦
U + p

)
γ2
u

c

]
= j · Eg

c
, (167)

and the momentum conservation equation is given by the spatial components

1

c

∂

∂t

[(
◦
U + p

)
γ2
u

c

]
+ ∇ ·

[(
◦
U + p

)
γ2
uu

c2
+ pI

]
= ρEg + j ×Bg. (168)
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Note that −j ·
(
ε ·Bg

)
= j ×Bg. With some rearrangement these equations can be written as

∂

∂t

[
γρc2 +

(
1

γA − 1
+ β2

)
γ2p

]
+ ∇ ·

[(
γρc2 +

γA
γA − 1

γ2p

)
u

]
= j ·Eg, (169)

and

∂

∂t

[(
γρc2 +

γA
γA − 1

γ2p

)
u

c2

]
+ ∇ ·

[(
γρc2 +

γA
γA − 1

γ2p

)
uu

c2
+ pI

]
= ρEg + j ×Bg.

(170)

This shows that the above definition of the fluid energy-momentum tensor Tµνf gives the correct form of the energy and

momentum density conservation equations (cf. equations (74) and (64)). The energy conservation equation can be
obtained by scalar multiplication of the momentum conservation equation by u and application of the fluid continuity
constraint, as demonstrated in Subsection II A.

The condition of entropy conservation is satisfied by the above covariant set of equations constrained by the second
law of thermodynamics. This can be shown as follows. Multiplication of the energy-momentum conservation equation
by the four-velocity yields

uµ∂νT
µν
f = uµjνF

µν =
◦
nmuµuνF

µν

=
◦
nmγ2 (−c,u) ·

(
0 Eg/c

−Eg/c ε ·Bg

)
· (−c,u)

=
◦
nmγ2 (−c,u) ·

(
−u ·Eg/c

−Eg − u×Bg

)
= 0.

(171)

Hence, replacing Tµνf by its covariant form,

uµ∂νT
µν
f = uµ∂ν

[
pηµν +

(
◦
U + p

)
uµuν

c2

]
= uµ∂

µp− ∂ν
[(
◦
U + p

)
uν
]

+

(
◦
U + p

)
uνuµ
c2

∂νu
µ

= uµ∂
µp− ∂ν

[(
◦
U + p

)
uν
]

+
1

2

(
◦
U + p

)
uν∂ν

(
uµu

µ

c2

)
︸ ︷︷ ︸

=0

= 0.

(172)

Using the equation of continuity

∂µ

(
◦
nuµ

)
= 0, (173)

the previous equation becomes

◦
nuµ

[
p∂µ

(
1/
◦
n
)

+ ∂µ

(
◦
U/
◦
n

)]
= 0. (174)

The second law of thermodynamics (23)

◦
Tds = d

(
◦
U/
◦
n

)
+ pd

(
1/
◦
n
)

(175)

gives

◦
n
◦
Tuµ∂µs = puµ∂µs = 0, (176)

where s is the invariant specific entropy of the perfect fluid.
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C. Covariant formulation of Maxwell’s equations

In covariant form the Maxwell source equations are written as

∂νF
µν = −4πG

c2
jµ. (177)

In components form (
1

c

∂

∂t
,∇
)
·
(

0 Eg/c

−Eg/c ε ·Bg

)T
= −4πG

c2
(ρc, j) , (178)

and, noting that ∇ ·
(
ε ·Bg

)T
= ∇ ·

(
ε
T
·Bg

)
= −∇ ·

(
ε ·Bg

)
= −∇×Bg, it follows that

∇ ·Eg = −4πGρ,

∇×Bg = −4πG

c2
j +

1

c2
∂Eg
∂t

.
(179)

The anti-symmetric gravitoelectromagnetic field tensor can be derived from the four-vector potential Aµg =
(φg/c,Ag) as follows

Fµν = ∂µAνg − ∂νAµg , (180)

that is, (
0 Eg/c

−Eg/c ε ·Bg

)
=

(
−1

c

∂

∂t
∇

)(
φg
c
Ag

)
−

[(
−1

c

∂

∂t
∇

)(
φg
c
Ag

)]T

=

 0 −1

c

∂Ag

∂t
− 1

c
∇φg

1

c
∇φg +

1

c

∂Ag

∂t
∇Ag − (∇Ag)

T

 .

(181)

Hence

Eg = −∇φg −
∂Ag

∂t
,

Bg = ∇×Ag.
(182)

The relation Fµν = ∂µAνg − ∂νAµg is a consequence of gauge invariance of the second kind. The quantities Aµg (x) and
Aµg (x)− ∂µf (x) are physically indistinguishable, so that Aµg can be required to satisfy Lorenz’s condition

∂µA
µ
g = 0 → 1

c2
∂φg
∂t

+ ∇ ·Ag = 0. (183)

The inhomogeneous field equations can be written in terms of the four-potential as

�2Aµg =
4πG

c2
jµ

{
�2φg = 4πGρ

�2Ag =
4πG

c2
j

(184)

Summary: The dynamics of a fully relativistic fluid in the flat-space gravitoelectromagnetic field is
described by the covariant set of equations

∂νT
µν
f = jνF

µν energy-momentum conservation

�2Aµg =
4πG

c2
jµ Maxwell’s source equations

puµ∂µs = 0 entropy conservation

(185)

with

Fµν = ∂µAνg − ∂νAµg and ∂µA
µ
g = 0. (186)
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This set of covariant equations gives a total of 9 equations in the 5 fluid (ρ,u, p) and 4 field (φg,Ag)
variables. Note that the continuity condition is automatically satisfied by Maxwell’s source equations.
Note also that the energy-momentum equation constrained by the second law of thermodynamics satisfies
the condition of isentropic flow. Taking into account the second law only one equation of state, the perfect
gas law in the present case, is needed to close the system of fluid-field equations.

D. Lorentz transformation of the gravitoelectromagnetic field

A restricted or proper Lorentz transformation by the four-velocity vµ = γ (c,v) is described by the matrix (pure
boost)

Λµν =

 γ γ
v

c

γ
v

c
I +

γ − 1

β2

vv

c2

 . (187)

The transformation of the gravitoelectromagnetic field Fµν is given by

F ′µν = Λ µ
ρ Λ ν

σ F
ρσ =

[
ΛT (v)FΛ (v)

]µν
=

 γ γ
v

c

γ
v

c
I +

γ − 1

β2

vv

c2

 ·
 0

Eg
c

−Eg
c

ε ·Bg

 ·
 γ γ

v

c

γ
v

c
I +

γ − 1

β2

vv

c2

 .
(188)

Hence

F ′µν =

 γ γ
v

c

γ
v

c
I +

γ − 1

β2

vv

c2


·

 γ
v ·Eg
c2

Eg
c

+
γ − 1

β2

vv ·Eg
c3

−γEg
c

+ γ
v ×Bg

c
−γEgv

c2
+ ε ·Bg +

γ − 1

β2

(v ×Bg)v

c2


(189)

and

F ′µν =

 0

−γEg
c

+
γ2

γ + 1

vv ·Eg
c3

+ γ
v ×Bg

c

γ
Eg
c
− γ2

γ + 1

vv ·Eg
c3

− γ v ×Bg

c

−γEgv − vEg
c2

+ ε ·Bg −
γ − 1

β2

v (v ×Bg)− (v ×Bg)v

c2

 ,

(190)

so that the fields in the primed system, moving with velocity v relative to the unprimed frame, can be written as
E′g = γ

(
I − γ

γ + 1

vv

c2

)
·Eg − γv ×Bg

ε ·B′g = ε ·Bg −
γ − 1

β2

v (v ×Bg)− (v ×Bg)v

c2
− γEgv − vEg

c2

(191)

Using the identity

v

c
×
(v
c
×Eg

)
=

(
vv

c2
− v2

c2
I

)
·Eg, (192)

the transformation of the GE field becomes

E′g = Eg −
γ2

γ + 1

v × (v ×Eg)
c2

− γv ×Bg. (193)
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Moreover, using the identities

−γ − 1

β2

(
v (v ×Bg)− (v ×Bg)v

c2

)
= − γ2

γ + 1
ε ·
(
v × (v ×Bg)

c2

)
,

−γ
(
Egv − vEg

c2

)
= γε ·

(
v ×Eg
c2

)
,

(194)

the transformation of the GM field becomes

B′g = Bg −
γ2

γ + 1

v × (v ×Bg)

c2
+ γ

v ×Eg
c2

. (195)

In components parallel and perpendicular to v:
E′g‖ = Eg‖
E′g⊥ = γ (Eg⊥ − v ×Bg⊥)
B′g‖ = Bg‖
B′g⊥ = γ

(
Bg⊥ + v ×Eg⊥/c2

) (196)

Thus, the transformation of the gravitoelectromagnetic fields is identical to the transformation of the fields in electro-
magnetic theory [31, 32]. Note that the Lorentz transformation Λ (v) transports a fluid element from rest to velocity
v. The inverse transformation Λ (−v) transports the element to the rest frame.

V. CONSERVATION EQUATIONS

The conservation equations can be written in a compact form introducing the momentum, stress and energy densities
for the fluid:

Gf =

(
γρ+

γA
γA − 1

γ2p

c2

)
u fluid momentum density

T f = γρuu+

(
I +

γA
γA − 1

γ2
uu

c2

)
p fluid stress tensor

Uf = γρc2 +

(
1

γA − 1
+ β2

)
γ2p fluid energy density

(197)

Hence

∂Gf

∂t
+ ∇ · T f = ρEg + j ×Bg momentum conservation equation

∂Uf
∂t

+ c2∇ ·Gf = j ·Eg energy conservation equation
(198)

Note the following relations:

T f : I = γρu2 +

(
3 +

γA
γA − 1

γ2β2

)
p

T f :
uu

u2
= γρu2 +

(
1 +

γA
γA − 1

γ2β2

)
p = β2Uf +

(
1 + β2

)
p

2p = T f :
(
I − uu

u2

)
β2Uf = T f :

uu

u2
−
(

1 + β2

2

)
T f :

(
I − uu

u2

)
(199)

Using the gravitoelectromagnetic laws of Gauss, Ampère and Faraday, and standard procedures [31–33], the mass
and current mass sources can be eliminated so that the momentum conservation equation can be written as

∂Gf

∂t
+ ∇ · T f =

1

4πG

∂

∂t
(Eg ×Bg)

+
1

4πG
∇ ·

(
E2
g

2
I −EgEg

)
+

c2

4πG
∇ ·

(
B2
g

2
I −BgBg

)
.

(200)
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Similarly, the energy conservation equation becomes

∂Uf
∂t

+ c2∇ ·Gf =
1

4πG

∂

∂t

(
E2
g + c2B2

g

2

)
+

c2

4πG
∇ · (Eg ×Bg) . (201)

Therefore, the momentum and energy conservation equations can be written as

∂

∂t
(Gf +Gg) = −∇ ·

(
T f + T

(e)

g + T
(m)

g

)
,

∂

∂t
(Uf + Ug) = −c2∇ · (Gf +Gg) .

(202)

where

T
(e)

g = − 1

4πG

(
E2
g

2
I −EgEg

)
GE field stress tensor

T
(m)

g = − c2

4πG

(
B2
g

2
I −BgBg

)
GM field stress tensor

Gg = − 1

4πG
(Eg ×Bg) GEM field momentum density

Ug = −
E2
g + c2B2

g

8πG
=

(
T

(e)

g + T
(m)

g

)
: I GEM field energy density

(203)

Here, the free-field stress tensors T
(e)

g and T
(m)

g are defined in analogy to the Maxwell stress tensors in electromag-

netism. The total gravitoelectromagnetic stress tensor T g = T
(e)

g + T
(m)

g is given by the sum of the GE and GM
stress tensors.

The total energy-momentum tensor Tµν = Tµνf + Tµνg is given by the sum of the fluid Tµνf and the gravitoelectro-
magnetic Tµνg tensors:

Tµνf =

(
Uf cGf

cGf T f

)
and Tµνg =

(
Ug cGg

cGg T g

)
. (204)

Hence, the total momentum and energy conservation equations can be written in covariant form as follows

∂νT
µν = 0. (205)

This equation describes the exchange of energy between matter and the gravitoelectromagnetic field in flat-space.

A. Integral form of the conservation theorems

The system of equations of motion for a flowing mass distribution in the gravitoelectromagnetic field is given in
conservation form by

∂ρ/∂t = −∇ · j mass density conservation

∂G/∂t = −∇ · T momentum density conservation
∂U/∂t = −c2∇ ·G energy density conservation

(206)

where

G = Gf +Gg , T = T f + T g and U = Uf + Ug (207)

denote the total fluid and gravitoelectromagnetic field momentum density, stress dyadic and energy density, respec-
tively. Integration over a volume V gives the integral form of the conservation equations:∫

V

�
ρd3r = −

∮
S

j · d2r mass conservation∫
V

�
Gd3r = −

∮
S

T · d2r momentum conservation∫
V

�
Ud3r = −c2

∮
S

G · d2r energy conservation

(208)
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Now, the laws of Ampère and Faraday give

Eg ·∇×Bg = −4πG

c2
j ·Eg +

1

c2
Eg ·

�
Eg,

Bg ·∇×Eg = −Bg ·
�
Bg.

(209)

The subtraction of these two equations gives

∇ ·
(
− c2

4πG
Eg ×Bg

)
= −j ·Eg +

�

E2
g + c2

�

B2
g

8πG
. (210)

Thus

∇ · Sg = −j ·Eg −
�
Ug, (211)

where

Sg = − c2

4πG
Eg ×Bg = c2Gg (212)

is the vector of Poynting. Integration over V yields the theorem of Poynting∫
V

(
�
Ug + j ·Eg

)
d3r = −

∮
S

Sg · d2r. (213)

Multiplying the momentum density conservation equation by r× gives

r ×
�
G = −r ×

(
∇ · T

)
. (214)

The angular momentum density is defined by L = r ×G, so that

�
L = −∇ ·

(
r × T

T
)

+ T×. (215)

The superscript T denotes the transposed dyadic and the subscript × the vector of a dyadic. The stress dyadic T is

symmetric (T
T

= T , T× = 0), hence

�
L = −∇ ·

(
r × T

)
= −∇ ·M . (216)

The flux of angular momentum is defined by M = r×T , and the last equation indicates that, due to both the conser-

vation of momentum density and the symmetry of T , the angular momentum density is also conserved. Integration
over V gives the conservation of angular momentum in integral form∫

�
Ld3r = −

∮
M · d2r. (217)

Finally, consider the quantity

∇ ·
[
r ·
(
T f + T g

)]
= (∇r) :

(
T f + T g

)
+ r ·∇ ·

(
T f + T g

)T
= I :

(
T f + T g

)
+ r ·∇ ·

(
T f + T g

)
,

(218)

that is

∇ ·
[
r ·
(
T f + T g

)]
= I :

(
T f + T g

)
− r ·

(
�
Gf +

�
Gg

)
. (219)

Integration over V yields∮
S

[
r ·
(
T f + T g

)]
· d2r =

∫
V

I :
(
T f + T g

)
d3r −

∫
V

r ·
(

�
Gf +

�
Gg

)
d3r. (220)
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Assuming that all quantities are bounded, one takes the time average over a long period of time according to the
definition 〈

�
f

〉
=

1

t

∫ t

0

�
f dt =

f (t)− f (0)

t
→
t→∞

0. (221)

Thus ∫
V

〈
I :
(
T f + T g

)〉
d3r =

∮
S

〈
r ·
(
T f + T g

)〉
· d2r. (222)

This is a general form of the virial theorem in equilibrium [34]. Substituting the expressions for the stress dyadics:∫
V

〈
γρu2 +

(
3 +

γA
γA − 1

γ2β2

)
p+ Ug

〉
d3r

=

∮
S

〈
r ·
[
γρuu+

(
I +

γA
γA − 1

γ2
uu

c2

)
p

]〉
· d2r

+

∮
S

〈
r ·
(
EgEg + c2BgBg

4πG

)
+ rUg

〉
· d2r.

(223)

Since at the edge of the fluid configuration the mass density ρ and the pressure p vanish (mass discontinuities are
ignored) the virial theorem in equilibrium shows that the configuration is contained by the field surface terms. The
field energy density existing beyond the fluid surface represents a back pressure acting on the fluid. Extending the
integration volume to infinity, where the fields are assumed to vanish, it follows that∫

V→∞

〈
γρu2 +

(
3 +

γA
γA − 1

γ2β2

)
p+ Ug

〉
d3r = 0. (224)

Note that the gravitational energy density is negative, Ug = −
(
E2
g + c2B2

g

)
/8πG, so that the fluid mass distribution

is self-contained. In a non-equilibrium situation the terms involving the evolution of the average kinetic energy and
of the moment of inertia must be taken into account, describing the expected collapse or expansion of clusters.

VI. GRAVITOELECTROMAGNETIC WAVES

The Maxwell source equations give the gravitoelectromagnetic field in terms of the true mass density ρ = mn and
of the true mass current density j = ρu by

∇ ·Eg = −4πGρ GEM Gauss’s law

∇×Bg = −4πG

c2
j +

1

c2
∂Eg
∂t

GEM Ampère’s law
(225)

These equations satisfy the equation of continuity

∂ρ

∂t
+ ∇ · j = 0. (226)

The gravitoelectromagnetic field can be also defined in terms of both the vector Ag and the scalar φg potentials:

Bg = ∇×Ag,

Eg = −∇φg −
∂Ag

∂t
,

(227)

These definitions are a consequence of the homogeneous Maxwell equations

∇×Eg +
∂Bg

∂t
= 0 GEM Faraday’s law

∇ ·Bg = 0 GM Gauss’s law
(228)

Accordingly, the source equations can be written in terms of the potentials as

∇2φg +
∂

∂t
(∇ ·Ag) = 4πGρ,(

∇2Ag −
1

c2
∂2Ag

∂t2

)
−∇

(
∇ ·Ag +

1

c2
∂φg
∂t

)
=

4πG

c2
j.

(229)
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Since Bg is defined in terms of the rotational of Ag, the gradient of a scalar function f can be added to the vector
potential without changing the value of Bg:

Ag → Ag + ∇f. (230)

The scalar potential must be simultaneously transformed to keep the GE field Eg unchanged

φg → φg +
∂f

∂t
. (231)

This freedom means that the potentials can satisfy the Lorenz condition

∇ ·Ag +
1

c2
∂φg
∂t

= 0, (232)

so that φg and Ag satisfy the wave equations

∇2φg −
1

c2
∂2φg
∂t2

= 4πGρ,

∇2Ag −
1

c2
∂2Ag

∂t2
=

4πG

c2
j.

(233)

In general, the wave equation in the Lorenz gauge,

�2Ag =
4πG

c2
j, (234)

can be formally solved inverting the d’Alembertian operator

Ag (r, t) = −G
c2

∫
j (r′, t′)

|r − r′|
d3r′ radiating regime (235)

where t′ = t−|r − r′| /c is the retarded time. The solution depends not only on the distribution of elementary currents
inside the source, but also on the relative velocities between different parts of the distribution. It is the difference in
the retarded times which gives rise to radiation. Taking into account these phase differences, the fluid oscillations give
rise to gravitoelectromagnetic waves, which propagate away to infinity. Such waves are also possible, for example,
in the (Lorentz covariant) analogy put forward by Heaviside [5], and whose properties were described in a recent
calculation of the gravitational radiation from orbiting binaries [35]. The waves associated with matter oscillations
are not exclusive of the general relativity theory, but have different propagation characteristics that may depend on
the particular stage of formation. The gravitoelectromagnetic waves here considered conceivably correspond to a weak
phase of the gravitational waves.

Alternatively, the vector potential can satisfy the Coulomb gauge,

∇ ·Ag = 0, (236)

so that the scalar potential satisfies the GE Poisson equation

∇2φg = 4πGρ. (237)

According to this equation the scalar potential describes near field effects given in terms of the mass distribution by
the instantaneous Coulomb’s law solution

φg = −G
∫

ρ (r′, t)

|r − r′|
d3r′ for ∇ ·Ag = 0. (238)

In the Coulomb gauge the vector potential satisfies the inhomogeneous wave equation

∇2Ag −
1

c2
∂2Ag

∂t2
=

4πG

c2
j +

1

c2
∇∂φg

∂t

=
G

c2

(
4πj + ∇

∫ ∇′ · j (r′, t)

|r − r′|
d3r′

)
,

(239)
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where the equation of mass continuity was used. The volume integral can be integrated by parts∫ ∇′ · j (r′)

|r − r′|
d3r′ =

∫
∇′ ·

(
j (r′)

|r − r′|

)
d3r′ −

∫
j (r′) ·∇′

(
1

|r − r′|

)
d3r′. (240)

Noting that

∇′
(

1

|r − r′|

)
= −∇

(
1

|r − r′|

)
, (241)

the previous expression becomes∫ ∇′ · j (r′)

|r − r′|
d3r′ =

∮
j (r′)

|r − r′|
· d2r′ + ∇ ·

∫
j (r′)

|r − r′|
d3r′. (242)

Hence

∇2Ag −
1

c2
∂2Ag

∂t2
=

G

c2

[
4πj + ∇

∮
j (r′, t)

|r − r′|
· d2r′ + ∇

(
∇ ·

∫
j (r′, t)

|r − r′|
d3r′

)]
=

G

c2

[
4πj + ∇

∮
j (r′, t)

|r − r′|
· d2r′

+∇×
(
∇×

∫
j (r′, t)

|r − r′|
d3r′

)
+ ∇2

∫
j (r′, t)

|r − r′|
d3r′

]
.

(243)

The last term in the right-hand side can be simplified using the relation

∇2

(
1

|r − r′|

)
= −4πδ3 (r − r′) , (244)

and used to cancel the first term. Therefore, in the Coulomb gauge ∇ ·Ag = 0 the wave equation for Ag becomes
[32]

∇2Ag −
1

c2
∂2Ag

∂t2
=
G

c2

[
∇×

(
∇×

∫
j (r′, t)

|r − r′|
d3r′

)
+ ∇

∮
j (r′, t)

|r − r′|
· d2r′

]
, (245)

where the first term on the right-hand side corresponds to the transverse mass current density distribution (source of
internal gravitoelectromagnetic waves) and the second term to the contribution of surface currents (source of surface
waves) which vanishes for limited sources. This equation describes the excitation and propagation of gravitoelec-
tromagnetic waves. These can be either nonpropagating waves, that can be properly named gravity waves (fluid
oscillations), or propagating gravitatoelectromagnetic waves. Note that

∇2Ag = ∇(∇ ·Ag)︸ ︷︷ ︸
0

−∇×∇×Ag = −∇×∇×Ag (246)

in the Coulomb gauge condition. Thus in the low-frequency regime the vector potential is given simply by the
Biot-Savart’s law

Ag (r, t) = −G
c2

∫
j (r′, t)

|r − r′|
d3r′ non-radiating regime (247)

In the Coulomb gauge the scalar potential φg contributes only to the near fields, both in the low- and high-frequency
regimes. The same is true for the vector potential Ag in the low-frequency case when only gravitoelectromagnetic
waves may be formed which do not radiate. However, in the high-frequency regime the vector potential satisfies a
wave equation with the transverse current density contributing to the formation of gravitoelectromagnetic waves over
all space, even for localized sources.

VII. BOUNDARY CONDITIONS AND ENERGY DENSITY DISTRIBUTION

The fluid and gravitoelectromagnetic field variables must satisfy several boundary conditions at the fluid-vacuum
interface, as follows. Let n denote the unit vector normal to an interface and 〈〈X〉〉 the increment of any quantity X
across the interface in the direction n. For the interface between two fluids

n · 〈〈u〉〉 = 0. (248)
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For the fluid-vacuum interface

n · u = 0. (249)

Gauss’s law in the fluid-vacuum interface gives

∇ ·Eg = −4πGρ =⇒ n · 〈〈Eg〉〉 = −4πGσ
∇ ·Bg = 0 =⇒ n · 〈〈Bg〉〉 = 0

(250)

where σ designates the surface mass density. Also, the laws of Faraday and Ampère give

∇×Eg = −∂Bg

∂t
=⇒ n× 〈〈Eg〉〉 = 0

∇×Bg = −4πG

c2
ρu+

1

c2
∂Eg
∂t

=⇒ n× 〈〈Bg〉〉 = −4πG

c2
K

(251)

where K is the surface mass current density.
Recall the equation of momentum density conservation derived in Subsection II A

ρ
d

dt

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
u

]
= −∇p+ ρ (Eg + u×Bg) . (252)

Using the laws of Gauss, Ampère and Faraday this equation can be written as

ρ
d

dt

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
u

]
= −∇p+

∂

∂t

(
Eg ×Bg

4πG

)
− 1

4πG
[∇ · (EgEg)− (Eg · ∇)Eg]

+
1

4πG

[
Eg × (∇×Eg) + c2Bg × (∇×Bg)

]
.

(253)

Using the following relations

(∇ ·Eg)Eg = ∇ · (EgEg)− (Eg · ∇)Eg = (∇Eg) ·Eg − (Eg ×∇)×Eg
(∇ ·Bg)Bg = ∇ · (BgBg)− (Bg · ∇)Bg = 0

Eg × (∇×Eg) = (∇Eg) ·Eg − (Eg · ∇)Eg =
∇E2

g

2
− (Eg · ∇)Eg

Bg × (∇×Bg) = (∇Bg) ·Bg − (Bg · ∇)Bg =
∇B2

g

2
− (Bg · ∇)Bg

(254)

the equation of momentum density conservation becomes

ρ
d

dt

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
u

]
=

∂

∂t

(
Eg ×Bg

4πG

)
−∇ ·

[(
p−

E2
g + c2B2

g

8πG

)
I +

EgEg + c2BgBg

4πG

]
.

(255)

Furthermore, one may use the expansions

ρ
d

dt

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
u

]
= ρ

∂

∂t

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
u

]
+ργ

(
1 +

γA
γA − 1

γp

ρc2

)
u · ∇u

+ρu2∇
[
γ

(
1 +

γA
γA − 1

γp

ρc2

)]
,

(256)

and

∇ ·
(
EgEg + c2BgBg

4πG

)
=

(Eg · ∇)Eg + c2 (Bg · ∇)Bg

4πG
− ρEg

=
(Eg · ∇)Eg + c2 (Bg · ∇)Bg

4πG
+ ρ

(
∇φg +

∂Ag

∂t

)
.

(257)
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Denoting an infinitesimal displacement from one side of a fluid interface to the other by δr, the equation of momentum
density conservation gives

ρ
∂

∂t

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
u · δr

]
+ ργ

(
1 +

γA
γA − 1

γp

ρc2

)
(u · ∇u) · δr

+ρu2δ

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)]
= δr · ∂

∂t

(
Eg ×Bg

4πG

)
− δ

(
p−

E2
g + c2B2

g

8πG

)
−
(

(Eg · ∇)Eg + c2 (Bg · ∇)Bg

4πG

)
· δr − ρδφg − ρδr ·

∂Ag

∂t
.

(258)

Taking the limit δr → 0

ρu2δ

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)]
+ δ

(
p−

E2
g + c2B2

g

8πG

)
+ ρδφg = 0. (259)

Hence 〈〈
ρu2

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)]
+ p+ ρφg + Ug

〉〉
= 0. (260)

This indicates that the sum of the kinetic energy density and the pressure are balanced across each interface both by
the negative GE potential φg and by the negative gravitoelectromagnetic field energy density Ug.

VIII. COMMENTS AND CONCLUSIONS

A consistent set of hydrodynamic and Maxwell equations for the gravitoelectromagnetic field was obtained applying
Hamilton’s principle to a perfect fully-relativistic fluid in flat space, leading to an extended gravitoelectromagnetic or
hydrogravitoelectromagnetic (EGEM or HGEM) model. The variational principle was carried out both in the Eulerian
and Lagrangian frameworks. The Eulerian formulation in the mean fluid variables leads to equations which describe the
conservation of energy and momentum for fluid flow immersed in a self-consistent or external gravitoelectromagnetic
field. The Lagrangian formulation, in particular, gives an equation for the rate of change of the canonical momentum
of a fluid element (particle). Furthermore, the momentum densities canonically conjugate to the Lagrangian field
coordinates allow to define the Hamiltonian density and an energy integral for the fully relativistic flow in the
gravitoelectromagnetic field.

The derived equations of motion for a relativistic fluid constitute an extended version of the gravitomagnetic theory
originally proposed by Thirring [12] for a test mass within the weak general relativistic formulation, although using
a different approach. The present extended version is adequate for the analysis, in flat space, of phenomena such
as the galactic rotation curve [18]. However, it does not describe effects which depend on higher order terms in the
velocity of light, in the Lorentz force. These terms are needed, for example, to calculate the relativistic correction to
the planetary perihelion shift. Nevertheless, it removes many restrictions of the original theory, which was limited to
quasi-static solutions and did not include the fluid pressure and the full relativistic inertial and thermal corrections.
The long-standing question about the validity of Faraday’s law in the gravitomagnetic theory is also naturally solved.

It was demonstrated that the equations for fluid motion contain a Cauchy invariant, which partially integrates the
equations of motion and has important consequences in astrophysical applications, as it includes the vorticity inducing
and braking effects of the gravitomagnetic field. These effects are illustrated in the study of the rotational motion of
galaxies [18]. The braking effect is also manifested in the anomalous precession of the planetary perihelion (cf. the
joint paper “Extended gravitoelectromagnetism. III. Mercury’s perihelion precession”). The conservation equations
of fluid flow were written in compact form by the definition of the momentum, stress and energy densities for both
the fluid and the field. This allows to write the total momentum and energy conservation equations in covariant
form. The integral forms of the conservation equations were also derived with emphasis in a general form of the virial
theorem. The equations which describe the excitation and propagation of gravitoelectromagnetic waves according to
the standard gauge conditions were discussed, as well as the boundary conditions and the energy density distribution
in the fluid.

Note that the electromagnetic field theory gives a result similar to the gravitoelectromagnetic field equations with
the following analogies

E → Eg , B → Bg,
φ → φg , A → Ag,

ε0 → − 1

4πG
, µ0 → −4πG

c2
,

(261)
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and the charge q replaced by the mass m. In this way, the results of the present paper are entirely similar to the
results presented in [19]. However, there are many important differences, since the gravitoelectromagnetic field is only
attractive. This is manifested, for example, in the energy integral and in the virial theorem.

Last, the covariant equations which describe the interaction between the fluid and the gravitoelectromagnetic field
in flat space make it possible to obtain the perturbations in the metric tensor according to the weak general relativity
formulation, but this is the subject of the second part article in the present three-parts work (cf. the joint paper
“Extended gravitoelectromagnetism. II. Metric perturbation”).
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