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Abstract: Modifications of human land use and climate change are known to be a threat  

for the health and proper functioning of tropical wetlands. They interfere with the seasonal 

flood pulse, which is seen as the most important driver for biodiversity and directly controls 

evaporation. In order to investigate the impact of local and upstream changes on wetlands, a 

regional assessment of evaporation is crucial but challenging in such often remote and poorly 

gauged ecosystems. Evaporation is the major water balance component of these wetlands 

and links the flood pulse with the ecosystem. It can therefore be seen as a proxy for their 

functioning. In the last decades, information from space became an important data source to 

assess remote wetland areas. Here, we developed a new approach to quantify regional 

evaporation driven by inundation dynamics as its dominant control. We used three water and 

vegetation indices (mNDWI (modified Normalized Difference Water Index), NDVI 

(Normalized Difference Vegetation Index), and EVI (Enhanced Vegetation Index)) from 

MODIS (Moderate Resolution Imaging Spectroradiometer) surface reflectance products to 

assess regional inundation dynamics between the dry and wet seasons. Two years of 

continual in situ water level measurements at different locations in our study area, the 
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Pantanal wetland of South America, provided the reference to evaluate our method. With 

process-based modeling that used the inundation dynamics to determine the water available for 

evaporation, we were able to estimate actual evaporation (AET) on a regional scale. Relating 

AET to changes in discharge due to upstream flow modifications and on local precipitation 

over the last 13 years, we found that the Pantanal is more vulnerable to alternated inundation 

dynamics than to changes in local precipitation. We concluded that coupling ground- and 

space-based information in this remote wetland area is a valuable first step to investigate the 

status of the Pantanal ecosystem. 

Keywords: Pantanal; MODIS; inundation; evaporation; tropical wetland; remoteness 

 

1. Introduction 

Tropical wetlands are biodiversity hotspots on Earth and are well-known for their outstanding variety 

in flora and fauna [1–3]. They play an important role in the hydrological cycle by providing ecosystem 

services such as groundwater recharge and the buffering capacity of the annual flood pulse [4]. The latter 

is seen as the key driver for the functioning of the whole wetland. The shape and magnitude of the flood 

pulse are determined by the regional climate, in particular the precipitation pattern, and the flow regime 

of rivers flowing into the wetland as well as directly on the floodplain [5]. The seasonal flood pulse in 

turn controls evaporation being the dominant part in the wetland’s water balance. Evaporation links 

climatology with the ecosystem [6] and can therefore be seen as a proxy for the ecosystem’s functioning. 

Understanding this link is a prerequisite for a proper wetland management and the protection of their 

biodiversity [7]. For clarification, we use the term evaporation in this study as the combined process of 

open water evaporation, soil evaporation and transpiration.  

Today, tropical wetlands are threatened by upstream modifications such as hydroelectric 

infrastructure [8], water withdrawal for agriculture [9] and other land use activities influencing the 

hydrological cycle and the flow regime. Along with future climate change projections, the above-mentioned 

modifications have major implications for the flooding characteristics of these wetlands [10,11] with 

unknown consequences for the future ecosystem’s state. Assessing the vulnerability of wetlands to such 

changes is very difficult, even more where the remoteness results in insufficient ground truthing due to 

poor or missing gauging stations [10,12–14]. River gauging data do not provide spatial information on 

the inundation extent in wetlands [15] and evaporation measurements are scarce, which complicates its 

estimation on a regional scale [16]. Therefore, in the last decades, satellite imagery became an important 

data source for assessing the status of remote wetland areas. 

In wetlands, remote sensing information is commonly used for inundation assessment. Moderate 

resolution imagery, such as MODIS (Moderate Resolution Imaging Spectroradiometer) data, is  

a suitable tool for floodplain monitoring and modeling [17–20]. The advantages of using MODIS for 

hydrological research are low cost, open access as well as diverse spatial and temporal  

resolution [11,17,21–24]. However, interpretations with MODIS imagery are limited by cloud cover, 

which often does not allow for daily use [25], and the passive remote sensing approach, where flood 

detection is reduced under dense vegetation cover [26]. Spatial and temporal extents of the inundation 
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process are often investigated by multi-band classification [11,17,20,21,23,24,27–30] using vegetation 

and humidity indices [17,20–22,29,31,32]. MODIS-derived inundated areas can then be validated by 

Landsat [22,31,33,34], ASTER [27], and SAR [25], or with national land cover datasets [35]. Few studies 

examine MODIS satellite imagery with gauged water levels, such as those of Ordoyne and Friedl [20] or 

Pavelsky and Smith [36]. The general outcomes of these studies are flood inundation maps indicating 

the inundation extent and duration, flood frequency and probability [18], but they do not provide 

information on the ecosystem’s functioning. We therefore suggest extending the information about 

inundation dynamics for estimating regional evaporation in order to investigate the impact of local and 

upstream changes on the wetland ecosystem. Being among the most important water balance components 

in tropical wetlands, we use the actual water loss by evaporation (AET) as a proxy for ecosystem 

functioning since it is directly controlled by the seasonal flood pulse and also determined by the climate 

conditions of the floodplain region. Previous studies using MODIS products for evaporation assessment 

were either not undertaken in remote tropical wetland ecosystems [6,37–39] or did not consider the flooding 

process in their evaporation models [7,40], which mostly controls the water available for evaporation. 

Therefore, our study aims at developing a method to estimate regional evaporation for remote wetland 

areas considering inundation dynamics and use this information to investigate the impact of changes in 

local precipitation and inflow on the ecosystem. Our study site is the Brazilian Pantanal wetland, one of 

the largest tropical wetlands on the globe. In a first step we determined seasonal inundation dynamics of 

the Pantanal integrating high-resolution measurements of water levels and MODIS. Then, we used the 

observed inundation dynamics to estimate regional AET for the years 2001–2013. Finally, we relate our 

evaporation results to local precipitation and the flow conditions of tributaries in order to investigate 

their impact on the Pantanal ecosystem. 

2. Study Area 

Our study area is the Pantanal wetland of Mato Grosso, where major parts are located in the  

central-western part of Brazil in the Upper Paraguay River Basin (Figure 1a). It is one of the largest 

seasonally inundated floodplains worldwide with an area of approximately 150,000 km2 [41]. The 

characteristic inundation dynamics of the Pantanal, a so-called monomodal flood pulse [42], are caused 

by the rainfall pattern of the tropical semi-humid AW climate [43]. A distinct dry and wet season occurs 

during the course of a year. Heavy rainfall in the wet summer months (October to March) and discharge 

from tributaries cause an annual inundation of the floodplain lasting several months. This flood pulse 

varies from year to year in its duration and magnitude [44]. During the dry winter season with monthly 

precipitation < 40 mm [45], the water level of the floodplain drops continuously due to discharge and 

evapotranspiration [44]. Evaporation losses are estimated to range from 1100 to 1600 mm [41,44–47] 

making up for more than 70% of yearly precipitation [48]. Air temperatures remain high throughout the 

year with a mean annual value of 25.7 °C [49]. 
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Figure 1. (a) Pantanal study area (RPPN (Reserva Particular do Patrimônio Natural: 

Private reserve of national heritage) SESC (Serviço Social do Comércio: Commercial Social 

Service) Pantanal, white) located in Central-Western Brazil (MODIS tile framed in red) with 

INMET (Instituto Nacional de Meteorologia: National Institute of Meteorology) stations 

(yellow, CGB—Cuiabá, CAC—Cáceres, RON—Rondonópolis), Hidroweb stations from 

ANA (red, Agência Nacional de Águas: National Water Agency in Brazil; BDB—Barra do 

Bugres, POE—Porto Estrela, CGB—Cuiabá, BAR—Barão de Melgaço, POC—Porto 

Cercado, COR—Rio Correntes, SFR—São Francisco, POM—Porto da Manga) and TRMM 

(Tropical Rainfall Measuring Mission) area (striped). (b) Location of water level probes 

installed in the RPPN SESC Pantanal (modified from [16]). 

3. Methodology 

Seasonal inundation dynamics were assessed at a regional scale with MODIS satellite imagery using 

three different spectral indices. We evaluated the results for the two-year intensive study period (1 April 

2012–30 March 2014) with continuous high-resolution water level measurements using loggers installed 

in the study area. Estimating the probability of inundation with a multivariate logistic regression model, 

we were able to determine the hydroperiod (annual duration of inundation) for every MODIS pixel 

(Figure 2). Based on the seasonal inundation dynamics, we calculated regional evaporation losses with a 

previously developed approach for the same region. We estimated potential evaporation (PET) and used 

PET to constrain the estimate of AET based on available water and hence inundation dynamics [16] 

(Appendix 1). In order to investigate the impact of local and upstream changes on the ecosystem, we 

also calculated evaporation for the years 2001–2013 and related our results to regional conditions of the 

study area (precipitation and inflow of tributaries). All methodological steps are explained in detail in 

the following.  
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Figure 2. Flow chart of satellite- and ground-based inundation assessment for the study 

period (1 April 2012–30 March 2014). 

3.1. Space-Based Inundation Assessment 

To provide information on the seasonal inundation dynamics from space two different standard 

MODIS Surface Reflectance Products were obtained. First, the Surface Reflectance 8-day L3 Global 

500 m (MOD09A1) product provides 8-day composite images with a resolution of 500 m in the sinusoidal 

projection. Atmospheric corrections for thin clouds as well as gases and aerosols are implemented 

already in the downloadable data [50]. MODIS 8-day composites only include pixels with the best 

quality in terms of highest observation coverage, low view angle, absence of clouds and its shadow as 

well as aerosol loading [51]. Second, the MODIS Surface Reflectance Product referred to as Vegetation 

Indices 16-day L3 Global 500 m (MOD13A1) provides 16-day composite images of the Normalized 

Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) with the same spatial 

resolution and projection. Since problems in inundation mapping often result from the presence of vegetation 

cover [27], we decided to additionally include these vegetation indices for model building [11,17,52,53]. 

Time series of both products for the MODIS tile h12v10 were acquired from 1 January 2001 to 30 March 

2014 from the Level 1 and Atmosphere Archive and Distribution System (LAABS) run by the National 

Aeronautics and Space Administration (NASA) Goddard Space Flight Center [54]. 

All MODIS images were resized to the study area comprising the northern part of the Pantanal  

(15°–19°S/54.5°–59.5°W, cf. Figure 1a MODIS tile framed in red) and reprojected with the MODIS 

Reprojection Tool (MRT) to the rectangular projection UTM and the reference system  

WGS84 [55]. To account for clouds, cloud shadow and the surface reflectance band quality an additional 

cloud masking was applied for model building using MODIS quality bits. 

From MOD09A1 we calculated the widely used modified Normalized Difference Water Index 

(mNDWI) after Xu [32], which is defined as: 
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
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where GREEN is the Green Surface Reflectance Band (545–565 nm) and MIR is the Middle Infrared 

Band (1628–1652 nm). According to Chen et al. [21], the MOD09A1 band 4 and band 6 are used for 

calculating the mNDWI, which ranges between −1 (not inundated) and 1 (inundated). From MOD13A1 

we used the readily available vegetation indices NDVI and EVI ranging between −1 (no vegetation) and 1 

(densely vegetated). To assure the same temporal resolution of all spectral indices, only dates at which 

all MODIS products were available, were considered. To account for pixel value outliers of the three 

MODIS products and to include more spatial coherence information a spatial data smoothing was 

undertaken by calculating the mean value of the surrounding eight pixels for every MODIS pixel averaged 

by the proper target pixel value. 

3.2. Ground-Based Inundation Assessment 

To determine seasonal inundation dynamics in the field, we used high-resolution water level 

measurements of surface and groundwater levels recorded every 30 min by Odyssey capacitance probes 

(Dataflow Systems Ltd., Christchurch, New Zealand) over the two-year study period. Ten water level 

loggers were installed at different locations in the RPPN (Reserva Particular do Patrimônio Natural: 

Private reserve of national heritage) SESC (Serviço Social do Comércio: Commercial Social Service) 

Pantanal, a nature reserve located in the Northern part of the Brazilian Pantanal wetland (Figure 1). The 

water levels were averaged according to the 16-day temporal resolution of the MODIS products. The 

transition dates from the wet to the dry seasons (first and second drying during the study period) were 

determined for the days the water level loggers fell dry and remained dry for at least two weeks (example 

for location B, Figure 3). The two weeks threshold was chosen to override smaller short-term water level 

changes. In accordance, the transition dates from the dry to the wet seasons (first and second wetting 

during the study period) were determined for the days when the water level started to rise after the dry 

seasons logging water for at least two weeks (Figure 3). Table 1 indicates the location (Figure 1) and 

type of water body where water-level loggers were installed as well as their transition dates. 

Table 1. Location (Figure 1) and type of water body as well as transition dates for the  

two-year study period (1 April 2012–30 March 2014). 

Water Body Water Body Type 1st Drying 1st Wetting 2nd Drying 2nd Wetting 

A permanent no drying no drying no drying no drying 

B ephemeral 09.09.2012 23.11.2012 22.09.2013 03.02.2014 

C floodplain 19.06.2012 02.02.2013 26.06.2013 03.02.2014 

D floodplain no inundation 12.02.2013 25.04.2013 05.03.2014 

F ephemeral 29.07.2012 26.11.2012 24.07.2013 13.12.2013 

I ephemeral 08.08.2012 26.11.2012 no drying no drying 

M ephemeral 31.07.2012 16.10.2012 27.07.2013 02.10.2013 

N ephemeral 25.07.2012 27.11.2012 15.08.2013 15.12.2013 

S permanent no drying no drying no drying no drying 

V ephemeral 02.07.2012 11.12.2012 24.05.2013 30.12.2013 
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Figure 3. Observed water level for water body B (Figure 1) for the study period (1 April 

2012–30 March 2014) indicating 1st drying, 1st wetting, 2nd drying and 2nd wetting. 

3.3. Multivariate Logistic Regression Model 

Fixed thresholds for the spectral indices are often calibrated for separating land from water. Since,  

in our study, threshold calibration did not lead to reasonable results, we determined the probability of 

inundation occurrence for all MODIS pixels using a multivariate logistic regression model. It predicts 

the binary response variable (inundation/no inundation) by the independent variables mNDWI, NDVI 

and EVI. The water level data measured in the field was recoded to a binary variable, where water levels 

greater than 15 cm above the surface were set as “flooded” and water levels more than 15 cm below the 

surface were set as “non-flooded”. This 15 cm threshold is explained by the fact that a water level close to 

the surface is likely located in a partially flooded pixel due to topographic variability within the pixel [20]. 

The water level data were separated into training (locations B, C, D, F, N) and testing (locations A, I, 

M, S, V) datasets. The logistic regression was determined with the training dataset by a Generalized 

Linear Mixed Model (GLMM) fit by Maximum Likelihood [56]. The fixed term of the model included 

the three independent variables. To test for absence of collinearity, we calculated the Variance Inflation 

Factor (VIF), which is commonly used as an indicator for multicollinearity in multiple regression models. 

All VIFs for each predictor in the GLMM were smaller four, where five is the maximum acceptable value 

recommended by Rogerson [57]. The pixel ID of the ten pixels, where water levels were derived, was 

fitted as a random intercept in the mixed model. Parameters of the GLMM (regression coefficients βs, 

standard errors and confidence intervals) were estimated using the programming language R 3.0.3 [58]. 

With the GLMM, the probability of inundation could be calculated for every MODIS pixel of all 16-day 

MODIS composite images. 
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3.4. Dry and Wet Season Delineation for Evaporation Estimation 

In order to define the seasonal inundation dynamics for every MODIS pixel, all pixels with estimated 

probabilities of inundation < 0.5 were defined as “not inundated” and pixels with probabilities of 

inundation > 0.5 were defined as “inundated” [20,59]. We considered the first transition of a MODIS 

image indicating inundation to a MODIS image indicating no inundation as the start of the dry season 

for both years of the study period. The last transition of a pixel indicating no inundation to the pixel 

indicating inundation determined the end of the dry season. Since inundation duration was determined 

from MODIS for 16-day periods, we considered the dates in the middle between two consequent MODIS 

images that showed transitions as the real starting dates for the drying or wetting periods, respectively. 

This way, we determined the duration of the dry and wet seasons for the two-year study period. Using 

this water availability information we calculated daily AET with a recently developed approach (short 

description provided in Appendix 1), where evaporative water loss was simulated on a local scale [16]. 

Climatic variables used for this approach were derived from the National Institute of Meteorology in 

Brazil (INMET—Instituto Nacional de Meteorologia) including air temperature, relative humidity, wind 

velocity, barometric pressure and cloud cover data from OGIMET (www.ogimet.com). To evaluate our 

approach based on the inundation assessment and the resulting AET rates for the two-year study period 

we compared AET estimations derived from the satellite-based inundation assessment with the AET 

results derived from the ground-based inundation assessment. All AET rates were estimated with an 

independent approach after Schwerdtfeger et al., 2014, using a groundwater evaporation function based 

on continuous water level measurements in the field (Appendix 1). 

3.5. Impact of Local and Upstream Changes 

To investigate the impact of local and upstream changes on the ecosystem, we analyzed how AET 

responded to historic changes in precipitation/wet season precipitation and discharge/wet season discharge. 

We used precipitation data from the Tropical Rainfall Measuring Mission (TRMM), where the weighted 

average of the 0.25 degree TRMM cells of the product 3B43 from inside the Cuiabá basin contribution 

area were used, as well as data of three INMET stations. Discharge data were obtained from the National 

Water Agency (ANA) network (www.hidroweb.ana.gov.br) for nine different stations (Figure 1, 

Appendix 2). The prerequisite for a station to be included in our dataset was their data availability of at 

least seven out of the 13 years (2001 to 2013). In order to find the variable with the largest influence on 

AET, we related the previously calculated AET rates for the study area for the years 2001 to 2013 to 

precipitation and discharge data from selected stations. This was done by correlating yearly precipitation 

data, yearly discharge data of discharge stations and data of discharge losses between all discharge 

stations with our AET rates. Correlation analysis describes the relationship between two variables, where 

Pearson’s correlation coefficient (r) ranging between −1 and +1 expresses the strength of this linear 

relationship. An overview about data used, the data source and the stations is given in Table 2. 
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Table 2. Data used for investigating the impact of local and upstream changes as well as data 

source, name of location/station (Figure 1) and detailed data information  

(MODIS—Moderate Resolution Imaging Spectroradiometer, LAABS—Level 1 and 

Atmosphere Archive and Distribution System, NASA—National Aeronautics and Space 

Administration, INMET—Instituto Nacional de Meteorologia: National Institute of 

Meteorology, ANA—Agência Nacional de Águas: National Water Agency in Brazil, 

TRMM—Tropical Rainfall Measuring Mission). 

Data Data Source Location/Station Detailed Data Information 

MODIS LAABS/NASA 

Pantanal area inside MODIS 

tile (Figure 1a, MODIS tile 

framed in red)  

MODIS spectral indices 

Meteorological 

data 
INMET 

CGB, CAC, RON (Figure 1a, 

stations labeled in yellow) 

Climate variables; Minor data gaps 

were filled with the weekly moving 

average of the other years, where 

data were existent; data of the 

station closest to each MODIS pixel, 

respectively, were used. 

Precipitation TRMM CGB basin (Figure 1a) Mean precipitation of Cuiabá basin 

Precipitation INMET 
CGB, CAC, RON (Figure 1a, 

stations labeled in yellow) 

stations, where at least seven out of 

the 13 years (2001–2013) of 

precipitation data were available 

Discharge 

ANA 

Hidroweb 

database 

BDB, POE, CGB, BAR, POC, 

CAC, COR, SFR, POM (Figure 

1a,stations labeled in red) 

Stations, where at least seven out of 

the 13 years (2001–2013) of 

discharge data were available 

Discharge loss 

ANA 

Hidroweb 

database 

BDB, POE, CGB, BAR, POC, 

CAC, COR, SFR, POM 

Calculated differences of discharge 

between stations 

4. Results 

4.1. Inundation Assessment 

Parameters estimated from the GLMM are shown in Table 3. In our study all indices of the logistic 

regression showed significant p-values (p < 0.01). Thus, they were included in our logistic regression 

model. The logistic regression was able to predict the probability of inundation with a very high 

conditional R2 (0.84), which is the variance explained by both fixed (three MODIS indices) and random 

factors (pixel ID).  

Index values of the training dataset ranged for mNDWI from −0.65 to −0.33, for NDVI from −0.57 

to 0.85 and for EVI from 0.27 to 0.66 (Figure 4). For clarification, all indices correlated positively with 

inundation alone but in the case of EVI its p-value was not significant and in combination with the other 

two indices its regression parameter turned negatively. It does not reveal multicollinearity, which has 

been tested before (cf. Section 3.3) To test the predictability of the regression parameters derived from 

the GLMM the area under the receiver operating characteristic curve (AUC) as a measure for model 
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discrimination and validation was calculated for the testing dataset, being 0.858. According to the AUC 

grading guidelines this large AUC credit the model with a “good discrimination” [60]. 

Table 3. Generalized Linear Mixed Model (GLMM) results (β = regression parameter, SE 

β = standard error of β, CI = confidential interval, p-value) for all model predictors (mNDWI, 

NDVI, EVI from MODIS). 

Predictor β SE β CI p-value 

Intercept −13.02 11.082 −1.175 0.2401 

mNDWI 27.284 11.93 2.287 <0.01 

NDVI 52.043 11.106 4.686 <0.001 

EVI −27.244 6.949 −3.921 <0.001 

 

Figure 4. Probability of inundation for MODIS derived water and vegetation indices (mNDWI, 

NDVI, EVI) determined by the Generalized Linear Mixed Model (GLMM). 

 

Figure 5. Comparison of ground-based (darkgrey and white boxes) and satellite-based 

(darkgrey line) inundation assessment for all studied water bodies (Figure 1) over the study 

period (1 April 2012–30 March 2014). 
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The inundation dynamics derived from ground- and satellite-based information are compared in 

Figure 5. The extents of the dry seasons simulated by MODIS data are similar to the observed inundation 

periods. The inundation determined with MODIS reflects the observed variability to a large extent in 

terms of inundation duration. Underestimations were found for the floodplain sites (C and D), where the 

water level loggers observed dry seasons lasting between 224 and 320 days and MODIS determined dry 

seasons lasting between 96 and 272 days. For most of the ephemeral water bodies (B, F, I, M, N, V) 

MODIS simulations estimate longer dry periods than observed by the water levels in the field. Obviously, 

there were no dry seasons observed in the field for the permanent water bodies A and S. The water level 

logger of water body A was not working properly during the second year of the study period. For both 

locations (A and S), dry seasons simulated by MODIS were very short. Concerning the overall duration 

of observed and simulated dry seasons in the study period for all locations we obtained a correlation 

coefficient of 0.54. 

4.2. Evaporation Estimation 

For the floodplain water bodies (C and D), yearly AET simulated from the ground-based inundation 

assessment for the first year of the study period was 1199 and 877 mm, where MODIS driven simulations 

overestimated AET by 34% and 42%, which corresponds to a difference of 406 and 370 mm, respectively 

(Table 4). For the second year of the study period MODIS overestimated yearly AET by 38% and 4%, 

which corresponds to differences in AET of 456 and 27 mm, respectively. For the ephemeral water 

bodies simulated yearly AET from the ground-based inundation assessment for the first year of the study 

period ranged from 1510 to 1767 mm. The simulated differences of AET by MODIS ranged from 3% to 

29%. Over- and underestimations by MODIS driven simulations of AET could be observed. For the 

second year of the study period AET rates were simulated from the field-based inundation assessment 

between 1204 and 1757 mm, where MODIS simulated AET rates ranged from 4% to 22%. For both 

permanent water bodies (A and S), the simulated yearly AET for the first year of the study period derived 

from MODIS and the water level loggers were 1543 and 1839 mm, respectively, with a difference of 

296 mm. This corresponds to an underestimation of MODIS-derived AET of 16%. For the second year, 

the differences simulated by MODIS were only 200 and 113 mm for water bodies A and S, respectively. 

Yearly AET from the ground-based inundation assessment was 1757 mm for both water bodies and 1557 

and 1644 mm simulated by MODIS for A and S corresponding to an underestimation of MODIS-derived 

AET between 11% and 6%. The mean difference of yearly AET for all locations between the ground- and 

satellite-based inundation assessments was 1.2% (79 mm) for the first and 1.6% (57 mm) for the second 

year of the study period. The mean simulated daily AET rates for both years of the study period were 

3.5 mm/day, ranging from 0.8 to 7.1 mm/day for the first and from 0.6 to 7 mm/day for the second year 

of the study period. The mean hydroperiod for both years was simulated to last 162 and  

160 days, respectively. 

The RMSE for the first and the second year of the study period was 296 and 251 mm, the relative 

RMSE was 19% and 17%, respectively. The predicted AET for the years 2001 to 2013 resulted in mean 

daily annual AET between 2.4 and 3.7 mm (Table 5) and the mean duration of the hydroperiod ranged 

from 111 to 197 days averaged over the whole map area (Figure 6). The annual AET ranged from 887 to 

1359 mm (Figure 7), where the differences to simulated annual PET rates, ranging from 1541 to 1873 mm, 
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were between 396 and 713 mm. Consequently, simulated AET rates were between 23% and 42% lower 

than simulated PET rates for the different years. 

Table 4. Yearly actual evaporation (AET) [mm] derived from MODIS satellite- and  

ground-based inundation assessment as well as differences of AET rates [mm and %] for all 

studied locations (Figure 1) for first (1 April 2012–30 March 2013) and second year  

(1 April 2013–30 March 2014) of the study period. 

1st Year of Study 

Period 
A B C D F I M N S V Mean 

AET [mm] derived 

from field data 
1839 1765 1199 877 1651 1682 1767 1638 1839 1510 - 

AET [mm] derived 

from MODIS 
1543 1248 1605 1247 1474 1474 1548 1686 1543 1605 - 

Difference [mm] 296 517 −406 −370 177 208 219 −48 296 −96 79 

Difference [%] −16 −29 34 42 −11 −12 −12 3 −16 6 −1.2 

2nd Year of Study 

Period 
A B C D F I M N S V Mean 

AET [mm] derived 

from field data 
1757 1546 1188 754 1521 1757 1724 1581 1757 1204 - 

AET [mm] derived 

from MODIS 
1557 1227 1644 781 1304 1371 1607 1644 1644 1439 - 

Difference [mm] 200 319 −456 −27 216 386 118 −63 113 −235 57 

Difference [%] −11 −21 38 4 −14 −22 −7 4 −6 19 −1.6 

Table 5. Simulated mean hydroperiod, daily and yearly mean of actual evaporation (AET), 

yearly mean of potential evaporation (PET), the difference of yearly AET and PET as well 

as the ratio of AET and PET for the years 2001 to 2013. 

Year 
Mean Hydroperiod 

[days] 

AET Daily 

Mean [mm] 

AET Yearly 

Mean [mm] 

PET Yearly 

Mean [mm] 

PET-AET 

[mm] 

AET/PET 

[–] 

2001 142 2.9 1066 1604 538 0.66 

2002 149 3.1 1116 1630 514 0.68 

2003 149 2.9 1051 1574 523 0.67 

2004 132 2.7 993 1578 585 0.63 

2005 151 3.0 1091 1580 490 0.69 

2006 111 2.4 887 1541 654 0.58 

2007 175 3.4 1223 1652 429 0.74 

2008 180 3.4 1258 1690 432 0.74 

2009 141 3.1 1146 1681 535 0.68 

2010 118 3.0 1110 1823 713 0.61 

2011 197 3.7 1359 1756 396 0.77 

2012 128 3.3 1210 1873 664 0.65 

2013 157 3.5 1260 1778 518 0.71 

min 111 2.4 887 1541 396 0.58 

max 197 3.7 1359 1873 713 0.77 



Remote Sens. 2015, 7 9781 

 

 

 

Figure 6. Simulated hydroperiods [days] for the years 2001 to 2013, where the map area 

corresponds to the Pantanal area located inside the MODIS tile (Figure 1a). 

 

Figure 7. Simulated yearly means of actual evaporation (AET) [mm] for the years 2001 to 

2013, where the map area corresponds to the Pantanal area located inside the MODIS tile 

(Figure 1a). 
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4.3. Impact of Local and Upstream Changes 

For one precipitation station (CGB) simulated AET was positively correlated with annual and wet 

season precipitation (Tables 6 and 7). For all other stations, the correlations were negative ranging from 

−0.22 to −0.17 for yearly precipitation and from −0.26 to 0 for wet season precipitation. Corresponding 

p-values were significant at the 5% level for yearly precipitation data for all stations except for CAC and 

for the wet season precipitation only for TRMM. Only one (COR) out of nine discharge stations showed 

a positive correlation with simulated AET for the whole map area (Figure 7). Correlations for all other 

discharge stations were between −0.35 and −0.08. All p-values were significant at the 5% level. For the 

wet season, discharge data of two additional discharge stations (SFR, POM) were positively correlated 

with simulated AET with significant p-values at the 5% level. Correlations between wet season discharge 

and simulated AET for all other discharge stations ranged from −0.25 to −0.05. Yet significant p values 

at the 5% level were only found for some stations. We found seven out of twelve river sections with 

positive correlations between their discharge loss and simulated AET with significant p values. For the 

Cuiabá River stations (Figure 1a) positive correlations between their discharge loss and simulated AET 

were between 0.38 and 0.82. Correlations between the discharge loss of the two Paraguay River sections 

BDB-SFR as well as BDB-POM and simulated AET were between 0.48 and 0.65. Correlations between 

discharge at all other river sections with simulated AET ranged from −0.29 to −0.04 with significant  

p-values at the 5% level. 

Table 6. Correlation coefficients (r) between precipitation (P) or discharge (Q) and 

simulated actual evaporation (AET) as well as correlation coefficients (rwet) between wet 

season precipitation or wet season discharge and simulated AET and their p-values for 

considered INMET (Instituto Nacional de Meteorologia: National Institute of Meteorology) 

and Hidroweb stations from ANA (Agência Nacional de Águas: National Water Agency in 

Brazil) in the study area (Figure 1a). 

 
TRMM  

P 

CGB  

P 

CAC  

P 

RON  

P 

CGB 

Q 

BAR  

Q 

POC  

Q 

COR  

Q 

BDB  

Q 

POE  

Q 

CAC  

Q 

SFR  

Q 

POM  

Q 

r −0.17 0.47 −0.18 −0.22 −0.34 −0.16 −0.20 0.83 −0.35 −0.31 −0.33 −0.18 −0.08 

p 0.00 0.00 0.27 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

rwet −0.07 0.56 0.00 −0.26 −0.24 −0.05 −0.25 0.88 −0.15 −0.19 −0.18 0.43 0.61 

pwet 0.00 0.27 0.08 0.83 0.65 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 

Table 7. Correlation coefficients (r) between annual discharge loss (Qloss) or wet season 

discharge loss (QlossW) and simulated actual evaporation (AET) for the study area and their 

p-values for considered Hidroweb stations from ANA (Agência Nacional de Águas: National 

Water Agency in Brazil) in the study area (Figure 1a). 

 

CGB-

BAR  

Qloss 

CGB-

BAR  

QlossW 

CGB-

POC  

Qloss 

CGB-

POC  

QlossW 

BDB-

POE  

Qloss 

BDB-

POE  

QlossW 

BDB-

CAC  

Qloss 

BDB-

CAC  

QlossW 

BDB- 

SFR  

Qloss 

BDB- 

SFR  

QlossW 

BDB- 

POM  

Qloss 

BDB- 

POM  

QlossW 

r 0.69 0.38 0.82 0.55 0.37 −0.06 −0.29 −0.14 −0.15 0.48 −0.04 0.65 

p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

  



Remote Sens. 2015, 7 9783 

 

 

5. Discussion 

5.1. Use of MODIS and Remotely Sensed Indices 

We used MODIS 16-day composite images instead of daily products since frequent cloud cover in 

tropical regions makes it difficult to use the daily products. It is obvious that these composite images 

cannot provide a very detailed inundation assessment but are sufficient to characterize the hydrological 

flooding regime. Several studies demonstrate the usefulness of MODIS composite images to study 

hydrological conditions in wetlands [20,23]. Chen et al. [22] compared the ability of daily and 8-day 

MODIS composites images for inundation mapping. They summarize that both products provide a 

reasonable accuracy at a regional scale. After Chen et al. [21], the observation frequency provides 

sufficient cloud free 8-day MODIS composites during the flooding period. 

Choosing the mNDWI for delineating water from land for our study is based on the fact that the 

mNDWI was already successfully used to study inundation dynamics with MODIS time series [21,29]. 

Ji et al. [14] recommend using the mNDWI for mapping surface water because it has lower influence of 

subpixel vegetation components compared to others. During calibration of a fixed index threshold for 

separating land from water we obtained unsatisfying results. Therefore we used the logistic regression. 

Its advantage is that it can be directly validated and its value for binary classification was proved by 

Ordoyne and Friedl [20]. Combining the mNDWI with the vegetation indices the logistic regression 

results demonstrate the successful combination of our index composition. A combination of MODIS 

indices to detect flooding was also successfully used by Xiao et al. [35] in paddy rice fields in Asia.  

In general, a broad range of index values for determining inundation can be found in the literature, 

which highlights the necessity of thoroughly calibrating thresholds for every study area with its specific 

characteristic. The large confidence interval of the mNDWI (Figure 4) shows that the water index alone 

is not a sufficient predictor for inundation mapping. Its value is strongly altered as a function of green 

vegetation cover. We deduce that only the combination of using different indices, one or more being 

more sensible to water surface extent and others to green vegetation cover, can separate land from water 

with reasonable results. The high conditional R2 (0.84) supports our index combination and the effective 

estimation of inundation probability with our approach. 

5.2. Inundation Assessment 

We are aware of the limited representativeness of our water level probes in terms of spatial resolution 

and different vegetation forms in the Pantanal. However, to our knowledge our water level measurements 

are the only high-resolution dataset with continuous two-year time series of water levels at several 

locations inside the northern Pantanal, which make them a valuable data source for assessing the 

ecosystem’s state. Using satellite information is crucial especially in remote areas, where usually no 

other long-term inundation monitoring is available [28], but these data sources need ground-based 

information. Considering lack of reliable data in our study area, we made use of existing data but are 

conscious about the fact that a two-year time series of water levels are not sufficient to address all 

variability in seasonal inundation dynamics. However, since studies that examine MODIS satellite 

imagery with gauged hydrological data are very scarce for the Pantanal wetland, we considered our 

correlation between ground- and satellite-based inundation assessment (r = 0.54) sufficient to proceed 
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with our analysis. Pavelsky and Smith [36] compared observed water levels and inundation patterns 

derived from MODIS in the Peace-Athabasca Delta in Canada and obtained correlation coefficients for 

four different sites between 0.33 and 0.94. Thakur et al. [61] compared annual NDVI values from 

MODIS with measured annual mean groundwater levels in two Turkish wells and obtained correlation 

coefficients of 0.31 and 0.74, where the lower value was probably due to variation in terrain height. 

Ordoyne and Friedl [20] evaluated their logistic model with independent sites in the Everglades and state 

that the overall pattern was realistic but showed considerable model errors. Only few studies exist that 

evaluate MODIS time series with observed data in the field. Some of them use additional information, 

such as the information given by a DEM in the study of Peng et al. [53]. Li et al. [34] derived water 

levels by subtracting ground elevation from water surface elevation.  

For defining the dry season we considered only the first and last MODIS images that determined the 

transitions from the dry to the wet seasons and vice versa. This implies that the inundation process of a 

seasonal wetland does usually not show smaller short-term periods with inundation during the dry 

season, since its flood pulse is defined as monomodal [42]. We attribute the short-term increase of the 

probabilities of inundation within the dry season to model weaknesses, which are explained below 

(Section 5.4). In our study, inundation duration of the permanent water bodies and also of most of the 

ephemeral water bodies was underestimated by MODIS. A general trend of underestimating inundation 

by MODIS was also observed by Chen et al. [22]. In contrast, the inundation duration at our floodplain 

sites were overestimated by MODIS. A possible reason could be that inundation with small water depth, 

given in floodplain sites, is always more susceptible to misclassification than with deep water levels [22]. 

5.3. Evaporation Estimation 

At locations without inundation, we simulated dry season AET rates between 0.3 and 2.3 mm/day for 

the years 2001 to 2013, which are very similar to the dry season AET rates for a Brazilian floodplain 

ranging from 1.3 to 3.3 mm/day [62]. Hutley et al. [63] report AET rates from 1.2–1.9 mm/day from the 

mid to the late dry season in a wet–dry Australian savanna. The resulting annual AET between 427 and 

694 mm corresponds well with our minimum simulated yearly AET rates ranging from 557 to 693 mm. 

Daily mean AET determined for the northern Pantanal with the Bowen ratio method ranged from  

2.5 mm in the dry season to 4 mm/d in the wet season [64]. These values correspond well to our mean 

daily AET rates ranging from 2.4 to 3.7 mm for the years 2001 to 2013. That range is due to the simulated 

water availability as well as the available energy for evaporation. Sanches et al. [64] also report a 

difference of AET to open water evaporation, which was 30% and 25% lower for the dry and the wet 

season, respectively. This reduction is in correspondence to our findings, where AET is between 23% 

and 42% lower than PET for the years 2001 to 2013. In addition, their annual AET of 1208 mm and PET 

of 1557 mm for the year 2007, derived from micrometeorological measurements at location C in our 

study area, corresponds well to our simulation of 1223 and 1652 mm for the year 2007. Comparing 

evaporation results from the satellite-based inundation assessment with evaporation results based on 

inundation measurements of our approach reveals that it provides reasonable evaporation estimations 

for the Pantanal wetland. 
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5.4. Model Weaknesses and Description of Uncertainties 

An important issue regarding model uncertainties results from the scale effect between local and 

space-born observations. While water level data are point measurements, spectral indices from remote 

sensing represent areas according to the system’s spatial resolution. When using these ground truth data 

for model building and validating the MODIS inundation prediction, it introduces a systematic error to 

the approach [65]. However, in our study area, we were dependent on that small-scale information since 

no other data were available for evaluating our approach. Model weaknesses probably result from the 

fact that in our study one water level probe is compared with a pixel of 500 m resolution. The Pantanal 

is a difficult-to-access area and during installation we could not guarantee that the water level probes 

represent the mean pixel elevation. This was also one reason for model errors in the study of Ordoyne 

and Friedl [20]. Therefore, we followed their approach by only labeling sites as flooded, when the water 

level was above 15 cm (and as non-flooded, when the water level was below 15 cm) to minimize model 

bias. Huang et al. [18] explained that the timing of the observed flooding in relation to MODIS-derived 

inundation is offset due to the relative gauge position. 

Another source of uncertainty results from the fragmentation and subpixel heterogeneity in one 

MODIS pixel [35]. It limits the detection of smaller water bodies inside of a pixel [22]. The very diverse 

landscape of the Pantanal wetland is therefore difficult to cover in one pixel value. Especially images 

from seasonal transition times are susceptible to misclassification, since water bodies in the study area 

dry out heterogeneously inside of a pixel. The determination of pixels, which are covered by vegetation 

mixed with or completely flooded by water, is usually difficult [30,33]. Pixels can be covered by a 

mixture of different land types, which are all combined in one index pixel value leading to an over- or 

underestimation of MODIS-derived inundation [30]. 

Sakamoto et al. [17] pointed out that under dense vegetation cover it is usually difficult to detect 

flooded areas with MODIS. Inundation is more likely detected when plants are submerged by rising 

water levels in the pixel, which increases the ratio of water area to vegetation cover. Vegetation such as 

high tree cover contributes to the error by masking the signal detected by MODIS [20]. This was eventually 

the case for location D, where a large forest stand (V. divergens), locally called Cambarazal, covers the 

area [64]. The use of a multispectral index for separating land from water cannot guarantee the detection 

of inundation beneath vegetation cover and at the same time distinguish between inundation and dark 

soil (Chen et al. 2013). Landmann et al. [33] sum up that besides inherent pixel variability and mapping 

errors, the variation in high water and vegetation dynamics tend to be responsible for inaccuracies in 

mapping wetland dynamics. They also mention the variability of aquatic vegetation cover in space and 

time. Despite the low spatial resolution of the MODIS pixels that results in a large heterogeneity of pixel 

compositions, dos Santos et al. [66] conclude that MODIS provide satisfactory results in mapping the 

dynamics of the Pantanal biome. 

5.5. Impact of Local and Upstream Changes 

The correlation between simulated AET and the discharge is determined empirically in our study. 

The human impact on inundation in our study is assumed based on a thorough literature review. 

Freshwater wetlands such as the Pantanal are stated to be among the most threatened ecosystems on 
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earth [67]. They are especially vulnerable to human-induced activities such as land use change or dam 

construction [68,69] in the upstream watersheds. In the Pantanal region, hydropower plants were 

constructed to cope with the increasing electricity needs affecting intensively the natural discharge of 

Pantanal tributaries and their water levels. As a result, the initiation of the flooding process in the wetland 

is also changed [8]. Furthermore, Brazil is the second largest soybean producer in the world. Large parts 

of its territory are used to plant this water-intensive crop [70]. This is also the case for Mato Grosso, in 

which 65% of the Pantanal area is located [71], where water for soybean irrigation is taken from Pantanal 

tributaries [70]. Therefore, it is highly probable that human activity in the upper catchments changes the 

inflow conditions in the wetland as well, and thus also influences AET. We found primarily negative 

correlations between precipitation and simulated AET, which can be explained by the fact that in years 

with higher precipitation simulated AET is lower due to the cloud cover inhibiting radiation to reach the 

ground surface. This radiation reduction results in a lower AET since in the tropics radiation is the main 

factor controlling AET [72]. It is not surprising that most of the positive, strong correlations (0.38 < r < 0.82) 

were found between the discharge loss and the simulated AET. Evaporation is considered to be the 

dominant cause of water loss from seasonal wetlands [73]. However, there are differences among the 

wetlands. The positive correlations between the discharge loss and the simulated AET reveal that the 

inundation dynamics, which are assumed to be a result of man-made impacts on upstream inflow to the 

wetland (through hydropower plant reservoirs or land use change), strongly determine AET in the 

wetland. Our results indicate that the Pantanal wetland is more susceptible to changes in tributary inflows 

than to changes in local precipitation, which is determined by the regional climate conditions [74]. The 

direct effect of human-induced changes on the inundation dynamics, and thus on the evaporative water 

loss, will have major implications for the wetland ecosystem recalling that the annual flood pulse is the 

key driver for the wetland’s biodiversity [5]. Using evaporation as a proxy for the ecosystem functioning 

is based on the link it constitutes between the climatological and the ecological system and its important 

role in the hydrological water cycle [6]. We are aware that our study is only based on thirteen years of 

data and thus our results can only be seen as a first step in investigating the impact of local and upstream 

changes on the wetland system.  

6. Conclusions 

The aim of our study was developing an approach to estimate regional evaporation for remote wetland 

areas taking into account the inundation dynamics and to investigate the impact of local and upstream 

changes on the ecosystem. We were able to determine inundation dynamics of wet and dry seasons for 

the Pantanal study area using MODIS water and vegetation indices. A unique dataset of continuous  

2-year time series of water levels at several locations inside the northern Pantanal served to evaluate the 

inundation dynamics. We obtained a correlation coefficient of 0.54 for the overall duration of observed 

and simulated dry seasons in the study period for all locations. We found that MODIS data can be used 

to characterize the hydrological flooding regime in the remote Pantanal wetland area even though 

different sources of uncertainty limit a too detailed interpretation. For instance, the MODIS derived 

inundation did not reflect all the observed variability in terms of inundation duration. With our results, 

we can state that satellite information is a valuable data source for remote wetland areas but only when 

representative ground truthing data is available.  
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Using the information about inundation dynamics, which determine the available water for evaporation, 

it was possible, for the first time, to estimate regional AET for the Pantanal with a process-based evaporation 

model. AET estimations ranged from 877 to 1839 mm for the first year of the study period and from 745 

to 1757 mm for the second year of the study period, where the MODIS derived estimations were between 

1247 and 1686 mm as well as 781 and 1644 mm, respectively. This corresponds to a relative RMSE of 

19% and 17%. In order to assess the impact of local and upstream changes on the Pantanal ecosystem, 

we calculated AET for the years 2001–2013 and applied a correlation analysis that related our 

evaporation results to the local precipitation and inflow of tributaries. The highest correlations were 

found between discharge loss and simulated AET for seven stations inside of the Pantanal ranging from 

0.38 to 0.82. This indicates that the Pantanal wetland is more susceptible to changes in tributary inflows 

than to changes in local precipitation determined by the regional climate conditions. Our approach may 

serve as a first step to investigate the Pantanal ecosystem’s state. It reveals that further research is 

indispensable to assess to which extent the Brazilian Pantanal wetland is vulnerable to man-made impacts 

on the inundation process due to upstream land use modifications. Hence, future research requires further 

long-term monitoring desirably with a higher sampling resolution. 

Until today, tropical wetlands are not yet well considered in global climate and land cover products. 

Knowing that tropical wetlands are not only valuable biodiversity hotspots but are determinant for 

regional up to continental climate conditions underline the importance of an accurate representation in 

large-scale hydrological models in order to improve their predictability. 

Acknowledgments 

The MODIS data used in this study were acquired as part of NASA’s Earth-Sun System Division, 

archived and distributed by the MODIS Adaptive Processing System (MODAPS). The authors are 

grateful to the RPPN SESC Pantanal for transport, accommodation and field assistance in the framework 

of the Long Term Ecological Research project with funding through the Brazilian National Science and 

Technology Research Council (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq) 

launched by E.G. Couto. Field study was assisted by the “guarda-parques” and “brigadistas” from the 

RPPN SESC Pantanal, where especially the help of Guarda-Parques Rodrigo and Pedro Paulo is 

acknowledged. Meteorological data has been collected from INAU, the Brazilian National Research 

Institute for Humid Areas (Instituto Nacional de Ciência e Tecnologia em Áreas Úmidas). The first 

author was funded by the IPSWaT (International Postgraduate Studies in Water Technology) PhD 

scholarship of the German Federal Ministry of Education and Research (BMBF). We acknowledge 

statistical advice on GLMM of Simone Ciuti. 

Author Contributions 

Julia Schwerdtfeger planned and set-up the fieldwork in the Pantanal wetland, collected the data and 

wrote the manuscript. Sérgio Gripp conducted the cloud masking of the satellite images. All authors 

contributed to the data analysis, evaluation and interpretation and all co-authors reviewed the manuscript.  

  



Remote Sens. 2015, 7 9788 

 

 

Appendix 1: Calculation of Daily AET Based on Water Availability after  

Schwerdtfeger et al. (2014) 

To calculate AET based on water available determined by the seasonal inundation dynamics of the 

study area, the Turc model modified for subtropical regions [75,76] was chosen to calculate PET for 

different locations in the study area. The PET model results were used to estimate AET rates by applying 

the groundwater evaporation function after Stoll and Weiler [77]. This function uses continual in situ 

measurements of surface- and groundwater levels to predict AET based on the relationship between AET 

and groundwater depth. During the inundation times, AET is PET. Simulated AET was evaluated for 

one location with observations from a Bowen ratio climate station inside of the study area obtained from 

Sanches et al. (2011), where the Bowen ratio method measures the latent heat flux in the energy balance 

including all evaporating fluxes such as evaporation and transpiration. To transfer the model results to 

different locations, where measured groundwater levels were not available, a general drying and 

rewetting approach was developed using measured data of one groundwater probe in the study area 

(Figure A1). Their measured groundwater levels served to determine a general procedure of drying and 

wetting assuming these processes to be consistent in time and space. The drying phase started from the 

first decrease in groundwater levels to the lowest groundwater level measured in the dry season. From 

there, rising groundwater levels determined the rewetting phase up to the date where they reached again 

the land surface. For both phases linear regressions were calculated and validated with data of a second 

groundwater probe. The regression-derived groundwater levels were transferred to locations without 

groundwater level measurements by shifting the drying and rewetting phases with their specific slopes 

based on the duration without inundation. For the application of this approach, only the starting and 

ending dates of the dry season are necessary. This way, groundwater levels can be calculated on a 

regional scale as well as for locations without measured groundwater levels to determine the water 

available for evaporation. 

 

Figure A1. Conceptual model of the drying and rewetting approach modified from [16]. 
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Appendix 2: Time Series of Data Used for Investigating Impact of Local and Upstream Changes 

Table A1. Yearly precipitation and wet season precipitation (October–March, subscript wet) 

obtained from TRMM (Tropical Rainfall Measuring Mission) and INMET (Instituto 

Nacional de Meteorologia: National Institute of Meteorology) stations (Figure 1a, stations 

labeled in yellow, CGB—Cuiabá, CAC—Cáceres, RON—Rondonópolis) for the years 2001 

to 2013. 

Year 
TRMM 

[mm] 

TRMMwet 

[mm] 

CGB 

[mm] 

CGBwet 

[mm] 

CAC 

[mm] 

CACwet 

[mm] 

RON 

[mm] 

RONwet 

[mm] 

2001 1815 1453 1226 1073 1292 1131 1137 926 

2002 1671 1354 1173 988 974 744 1214 1151 

2003 1772 1470 1372 1113 1094 948 1290 1016 

2004 1696 1465 1177 967 1136 914 1396 1178 

2005 1510 1299 967 829 1199 1088 1246 1120 

2006 1773 1485 1518 1193 1404 1175 1528 1379 

2007 1613 1444 1604 1404 1283 1161 1250 1091 

2008 1594 1320 no data no data 1326 1198 1527 1193 

2009 1849 1438 no data no data 1255 987 1443 1216 

2010 1443 1335 1597 1474 1347 1211 1283 1206 

2011 1755 1567 1673 1467 1230 1120 1147 1103 

2012 1670 1243 1620 1231 981 817 1514 1225 

2013 1659 1425 1525 1322 1091 905 1300 1111 

min 1443 1243 967 829 974 744 1137 926 

max 1849 1567 1673 1474 1404 1211 1528 1379 

Table A2. Yearly mean discharge of Hidroweb stations from ANA (Agência Nacional de 

Águas: National Water Agency in Brazil) (Figure 1a, stations labelled in red,  

CGB—Cuiabá, BAR—Barão de Melgaço, POC—Porto Cercado, COR—Rio Correntes, 

BDB—Barra do Bugres, POE—Porto Estrela, CAC—Cáceres, SFR—São Francisco, 

POM—Porto da Manga) for the years 2001 to 2013. 

Year 
CGB  

[m3/s] 

BAR  

[m3/s] 

POC  

[m3/s] 

COR  

[m3/s] 

BDB  

[m3/s] 

POE  

[m3/s] 

CAC  

[m3/s] 

SFR  

[m3/s] 

POM  

[m3/s] 

2001 238 243 251 91 119 150 497 1264 1443 

2002 433 439 390 97 159 195 587 1748 2066 

2003 420 453 388 95 182 213 612 1701 2009 

2004 396 389 349 88 141 165 510 1502 1742 

2005 309 345 332 60 108 135 462 1330 1499 

2006 497 498 428 17 178 214 628 1928 2225 

2007 321 381 383 296 140 180 558 1756 2128 

2008 419 455 no data no data 134 no data 516 no data no data 

2009 no data 402 no data no data 130 no data 435 no data no data 

2010 no data 390 no data no data 178 no data 542 no data no data 

2011 368 407 no data no data 148 no data 544 no data no data 
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Table A2. Cont. 

Year 
CGB  

[m3/s] 

BAR  

[m3/s] 

POC  

[m3/s] 

COR  

[m3/s] 

BDB  

[m3/s] 

POE  

[m3/s] 

CAC  

[m3/s] 

SFR  

[m3/s] 

POM  

[m3/s] 

2012 273 318 no data no data 100 no data 394 no data no data 

2013 356 380 no data no data no data no data no data no data no data 

min 238 243 251 17 100 135 394 1264 1443 

max 497 498 428 296 182 214 628 1928 2225 

Table A3. Mean of maximum discharge (Dec-Apr) of Hidroweb stations from ANA 

(Agência Nacional de Águas: National Water Agency in Brazil) (Figure 1a, stations labelled 

in red, CGB—Cuiabá, BAR—Barão de Melgaço, POC—Porto Cercado,  

COR—Rio Correntes, BDB—Barra do Bugres, POE—Porto Estrela, CAC—Cáceres, 

SFR—São Francisco, POM—Porto da Manga) for the years 2001 to 2013. 

Year 
CGB  

[m3/s] 

BAR  

[m3/s] 

POC  

[m3/s] 

COR  

[m3/s] 

BDB  

[m3/s] 

POE  

[m3/s] 

CAC  

[m3/s] 

SFR  

[m3/s] 

POM  

[m3/s] 

2001 847 569 448 118 301 335 989 1287 1503 

2002 1385 919 583 133 458 519 1174 1962 1957 

2003 1157 870 577 127 494 501 1189 1478 1504 

2004 1031 831 565 118 356 391 1010 1426 1555 

2005 1039 825 552 101 343 377 989 1404 1646 

2006 1447 986 649 41 467 516 1214 1735 1730 

2007 907 781 597 277 372 437 1184 2094 2205 

2008 1275 938 no data no data 420 no data 1036 no data no data 

2009 no data 829 no data no data 371 no data 795 no data no data 

2010 no data 849 no data no data 485 no data 1208 no data no data 

2011 1196 890 no data no data 441 no data 1156 no data no data 

2012 729 656 no data no data 229 no data 675 no data no data 

2013 1057 898 no data no data no data no data no data no data no data 

min 729 569 448 41 229 335 675 1287 1503 

max 1447 986 649 277 494 519 1214 2094 2205 
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