Using genetic algorithms to learn a fuzzy based
pseudometric for k-NN classification

F. Martins®, J. C. Becceneril, L. Dutral, D. Lu?, and S. Sandri!

! Instituto Nacional de Pesquisas Espaciais
12201-970, Sao José dos Campos, SP, Brazil
E-mail: flavinha@dpi.inpe.br, becce @lac.inpe.br, luciano.dutra@dpi.inpe.br,
sandra.sandri @inpe.br
2 Michigan State U. - Center for Global Change and Earth Observations, East Lansing, MI, USA
E-mail: ludengsh@msu.edu

Abstract. We address the derivation of pseudometric based on fuzzy relations
for classification applications, by the use of genetic algorithms to learn the fuzzy
relations. We present an experiment for the classification of land use in an area of
the Brazilian Amazon region.
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1 Introduction

In a previous work [2], we proposed a a function called f*, based on fuzzy relations,
which are themselves derived from fuzzy partitions, for use in classification appli-
cations. This function is the complement in [0, 1] of a particular kind of fuzzy rela-
tion, called an Order Compatible Fuzzy Relation (OCFR<), defined using a total order
(2. <) [10]. An OCFRx itself is derived from a type of fuzzy partition (a collection of
fuzzy sets), called Convex Fuzzy Partitions (CFP<). The creation of OCFR< was moti-
vated by the need to ease the burden of creating suitable relations for use the particular
fuzzy case-based reasoning classification approach proposed in [8]. In [2], we proved
that f* function is i) a pseudometric, when obtained from a specific type of CFP<,
called 2-Ruspini, and, in particular, a ii) metric, when this CFP< is moreover composed
solely of triangular fuzzy sets. The same happens in the case of multidimensional do-
mains, for function f(J; ) that aggregates the results obtained for T in each domain,
using the arithmetic means as aggregation operator .

Here we address the derivation of f+ for k-NN classification applications [11],
by the use of fuzzy genetic algorithms [1] to learn the fuzzy relations. We describe an
application in the classification of land cover and use in an area of the Brazilian Amazon
region.

2 Fuzzy relation based pseudometrics £ and f(‘;)
Let S : £22 — [0, 1] be a fuzzy binary relation and (§2, <) be a total order. Formally, S

is an Order Compatible Fuzzy Relation with Respect to a Total Order ({2, <) (OCFR<
or OCFR, for short), when it obeys the following properties [10]:
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- Va,y,z € 2, S(z,x) = 1 (reflexivity)

- Va,y,z € 2, S8(x,y) = S(y, x) (symmetry)

- Va,y,z € 2,ifx <y < z, then S(z,2) < min(S(z,y),S(y, 2)) (compatibility
with total order ({2, =), or <-compatibility for short).

Let ({2, <) be a total order and let A = { Ay, ..., A; } be fuzzy partition (a collection
of fuzzy sets) in (2; here A; denotes a fuzzy set but also its associated membership
function. Let the core and support of a fuzzy set A be defined as core(A) = {z €
2| A(z) = 1} and supp(A) = {z € 2| A(z) > 0}), respectively [3]. Formally, A
is a Convex Fuzzy Partition with Respect to a Total Order ({2, =) (CFP< or CFP, for
short), if it obeys the following properties [10]:

1. VA, € A,z € 2, A;(z) = 1 (normalization),

2. Va,y,z € 2,VA; € A, if x < y = zthen
A;(y) > min(A;(z), A;(2)) (convexity),

3. Vo € 2,3A; € A, A;(x) > 0 (domain-covering),

4. VA;, A; € A,if i # j then core(A;) N core(A;) =10
(non-core-intersection).

Let A <) denote the set of all CFPs that can be derived considering a total order
(2,2). CFP A € Ay <) is said to be a n-CFP if each element in {2 has non-null
membership to at most n fuzzy sets in A (n > 1). In particular, a 2-CFP< A is called a
2-Ruspini partition, when it obeys additivity:

- Vo e 2,), Ai(z) = 1 (additivity)

In [10], the authors propose to generate OCFR< St : 22 — [0, 1] from a CFP< A
as

0,if S*(z,y) =0
+ _ ) )
5t (z,y) = {SL(x, y), otherwise
Vr,y € 2,8%(x,y) = supmin(4;(z), 4i(y))
Va,y € 2,50(x,y) =inf 1— | A;(2) — Ai(y) |

Note that S, is constructed based on the Lukasiewicz biresiduated operator [9].
In [2], the following function was proposed for tasks in which metrics and pseudo-
metrics are employed!:

VI, Yy e 97 f;(a‘v y) =1- SX($7 y)
This formula can be written directly as:

1,if Vi, min(A4;(x), A;(y)) = 0,

+ _
Yo,y € 0, fa(7,y) = {supi | Ai(z) — Ai(y) |, otherwise.

' A metric satisfies non-negativity, symmetry and the triangle inequality and the identity of
indiscernibles properties. Pseudometrics obey the same properties, except for the identity of
indiscernibles, that is substituted by anti-reflexivity, a weaker property.
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When no confusion is possible, we denote f4 as simply f+.
Let O = (21 X ... X {2,,, where Vi, (£2;, <) is a total order. Let A; be a 2-Ruspini
CFP< on (2; and f;" be derived from A;. Let f(’; )+ O — [0,1] be the extension of

function f* to multidimensional domains, defined as

f(_;)(xy) = .u(fl-i_(xlvyl)v ceey ;}(%mym)),

where @ [0,1]™ — [0, 1] is the arithmetic mean, i.e., p(a1, ..., am) = #
In [2], it is proved that f;{ is a pseudometric, in general, and a distance when all

fuzzy sets in A are triangular. Function fa; ) trivially satisfies symmetry, anti-reflexitivity

and non-negativity. The same result holds for f, +1 . In the same work, function f J;) was
tested in a real-world application and yielded very good results when compared to both
the Euclidean and Mahalanobis distances.

3 Learning f(‘z) using genetic algorithms for k-NN classification

We propose to use genetic algorithms to learn the fuzzy partitions necessary for function
f(J,Z ) which is also our fitness function. Here we consider classification by k-NN but
other methods could be used.

Let X = {1, ...z, } be a set of variables, each of which defined in domain 2; =
[l;yui],i € {1,m}. We encode each chromosome as a sequence of m genes, each
of which related to a variable in X. The i-th gene is a sequence of parameters <
p1,...,Ps >, representing points in domain (2; for a Ruspini partition. The sequence
is such that p; < p;+1,1 < i < s — 1. In a trapezoidal partition, the first (respec. last)
fuzzy term will have [I;, p1] (respec. [ps, u;]) as core and [I;, po] (respec. [ps—1,u;]) as
support. In a triangular partition, the first (respec. last) fuzzy term will have [; (respec.
u;) as core and [l;, p1] (respec. [ps,w;]) as support.

Crossover consists in choosing a cutting place in two selected chromosomes ¢; and
c2, and generating two new chromosomes c;2 and ca;. Let chromosome c; be described
as < p;.1,-..,Pi,s > and let the cutting happen between the (k)-th and (k+1)-th genes.
The crossover between any two chromosomes c; and co would be generate two new
chromosomes c12 and co1, respectively described as < pi1,1, -, D1,k P2,k+415 5 -3 P2, >
and < P21, ..., D2,k P1k41s5 s Pl,s >

If one of the generated chromosomes does not satisfy the condition on the p;s,
we reorganize the parameters. For example, let us suppose we have two chromosomes
with 3 trapezoidal fuzzy sets Let ¢; and co be described as < 10,20,30,40 > and
< 31,32,33,34 >, respectively, and that the cutting point is between ps and ps. We
obtain a valid chromosome, cio =< 10, 20,33,34 >, and an invalid one, co; =<
31, 32, 30,40 >. We then rearrange the invalid chromosome as co; =< 30,31, 32,40 >.

In this work we use n-fold cross-validation. First of all, a data set T is partitioned
in n (approximately) equal parts (folds) 7;, such that 7' = U;T;. Then, for a given
fold i, training is performed using the elements of all folds, except for those in ¢, and
testing is performed the elements of fold ¢ itself, making Train; = UTj er,j2i Lj» and
T(:’Sti = Tz
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4 Experiments

In the following, we briefly describe an experiment that illustrates the use of function
f (J; ) in a land use classification task in the Brazilian Amazon region. The area of interest

covers approximately 411 km? and in the municipality of Belterra, state of Par4, in the
Brazilian Amazon region, partially contained in the National Forest of Tapajés. An
intense occupation process occurred in the region along the BR-163 highway (Cuiab4-
Santarém), with opening of roads to establish small farms, after deforestation of primary
forest areas [4]. As aresult, there are mosaics of secondary vegetation in various stages,
with pastures and cultivated areas embedded in a forest matrix [5].

In this application, 14 attributes have been considered, derived from either radar or
optical satellite images, with 6 classes: forest, initial or intermediate regeneration, ad-
vanced regeneration or degraded forest, cultivated area, exposed soil, and pasture. The
samples consist of 138 ground information based hand-made polygons. The attribute
value for each polygon is the average of the values for the pixels composing it. The
experiments have been done using 6 folds (5 for training and 1 for testing).

To obtain the lower (respec. upper) bound for a variable domain, we took the small-
est (respec. largest) value from the elements in the fold, less (respec. plus) 20%. We have
tested two types of partition for each variable, a triangular and a trapezoidal one, each
of which with 3 fuzzy terms. In the triangular experiment, each partition is described
by < p1 >, where p; is the core of the middle triangular fuzzy term. In the trapezoidal
experiment, each partition is described by < p1, pa, p3, ps >, where [ps, ps] is the core
of the middle trapezoidal fuzzy term.

In our experiments, for each fold, the candidate population has 10 chromosomes.
Each chromosome has 3 genes, each of which describing a partition corresponding to
one of 3 variables used here. We have used an elitist genetic algorithm, keeping the
best 6 elements and combining the 3 first elements to generate the new candidates that
replace the worst 4 elements. We used a mutation rate of .2 and 400 generations.

We have used two kinds of population in the initial generation for each fold: “ran-
dom” and “‘selected”. In the selected first population for the fuzzy terms, the points are
obtained from a fixed set of percentage vectors. Considering all domains to be normal-
ized to [0, 1], the selected population for the trapezoidal fuzzy sets corresponds to the set
of 10 quadruples < .20, .40, .60, .80 >, < .05,.28,.52,.76 >, < .23,.47,.71,.95 >,
< .23,.47,.52,.76 >, < .23,.28,.52,.76 >, < .23,.47,.71,.76 >, < .4,.55,.7,.85 >,
< .15,.55,.7,.85 >, < .15,.3,.7,.85 > and < .15, .3, .45, .85 >. The selected popula-
tion for the triangular fuzzy sets is obtained by taking the arithmetic means between p,
and p3 from the trapezoidal fuzzy terms. It corresponds to < .50 >, < .40 >, < .59 >,
< .49 >, < .40 >, < .59 >, < .62 >, < .62 >, < .50 > and < .37 >.

Figure 4 brings the accuracy results for this application, considering k-NN with 1 to
6 neighbours, using the several versions of function f;" : trapezoid-based and triangle-
based, considering selected and random initial populations (KNN_dFtz_s, kKNN_dFtz_r,
kNN_dFtg_s, KNN_dFtg_r). For comparison, the figure also brings the Euclidean dis-
tance (kNN_JE).

We see from the figures that all methods had high accuracy and that the best average
results in the 6 folds were obtained with the use of f;r for the triangular partitions. The
best individual results, considering all folds, were the same methods for 1, 2 and 3
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Fig. 1. Classification accuracy results for: a) k-NN average and b) k-NN maximum.

neighbours and the Euclidean distance for 2 and 3 neighbours. In particular, f: for the
triangular partitions with the initial population obtained at random yielded the same
results for the maximum as the Euclidean distance, except for 1 neighbour, when f;r
fares better. All methods fare better with a small number of neighbours. In particular, the
best results for the triangular partitions, considering both the average and the maximum,
is obtained already with a single neighbour. The worst results have been obtained with
the trapezoidal partitions, for both types of initial populations.

5 Conclusions

In this work, we have proposed to use of genetic algorithms to learn fuzzy relations,
that are parameters for a pseudometric f;".. We describe a classification application of
land cover and use in an area of the Brazilian Amazon region, using k-NN. The results
have shown that the triangular partitions produced the best results.

Future work includes experimenting with other data sets. We also intend to verify
alternatives to reduce the computational cost, without a decrease in accuracy or ade-
quately reducing the training data Another alternative consists in learning the partition
for each variable separately; in order to calculate accuracy the distance relative to the
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other variables would be fixed (e.g. Euclidean) and aggregated with the distance ob-
tained from the partition.

This work is a first step towards using f(; ) in [7], an extension to k-NN for image
classification, in which there is the possibility of using multiple spaces, that can be
originated from different data sources, having different ranges of values, as well as the
geographical space itself, allowing the use of topological associations.
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