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Tubular flames represent a canonical combustion configuration that can simplify
reacting flow analysis and also be employed in practical power generation systems.
In this paper, a theoretical model for non-premixed tubular flames, with delivery of
liquid fuel through porous walls into a swirling flow field, is presented. Perturbation
theory is used to analyse this new tubular flame configuration, which is the
non-premixed equivalent to a premixed swirl-type tubular burner – following the
original classification of premixed tubular systems into swirl and counterflow types.
The incompressible viscous flow field is modelled with an axisymmetric similarity
solution. Axial decay of the initial swirl velocity and surface mass transfer from the
porous walls are considered through the superposition of laminar swirling flow on
a Berman flow with uniform mass injection in a straight pipe. The flame structure
is obtained assuming infinitely fast conversion of reactants into products and unity
Lewis numbers, allowing the application of the Shvab–Zel’dovich coupling function
approach.

Key words: combustion, laminar reacting flows, vortex interactions

1. Introduction
A tubular flame is a classical configuration used in fundamental studies in

combustion science. Their characteristic shape, first observed by Ishizuka (1985)
as circular in cross-section and long in the perpendicular direction, distinguishes them
from other elementary combustion systems, such as the counterflow, coflow, etc. The
most common tubular flame configurations – the swirl type and the counterflow type
– have been applied primarily in the analysis of premixed systems. However, after the
introduction of non-premixed counterflow tubular systems (Hu et al. 2007; Wang, Hu
& Pitz 2007), interest in tubular combustion configurations has increased due to their
cylindrical nature, which allows the study of flame curvature effects, making those
non-premixed systems suitable for the description of curved flamelets in turbulent
combustion modelling (Pitz, Hu & Wang 2014; Xuan, Blanquart & Mueller 2014).
To date, a theoretical model for a non-premixed system equivalent to a premixed
swirl-type tubular flame has not been discussed.

† Email address for correspondence: vmsauer@uci.edu
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Non-premixed swirl-type tubular flames 211

The non-premixed counterflow tubular flame is obtained experimentally by using a
modified premixed counterflow tubular burner (Mosbacher et al. 2002). One of the
reactants is injected outwards in the radial direction through a porous cylinder along
the centre axis (Hu et al. 2007). An outer contoured nozzle issues the other reactant
inwards. As a consequence, the mathematical model of non-premixed tubular systems
consists of the same conservation equations used to describe premixed tubular flames
(Dixon-Lewis et al. 1991; Smooke & Giovangigli 1991), but with modified boundary
conditions to account for the injection of reactants into the chamber from the inner
porous cylinder (Wang, Wehrmeyer & Pitz 2006; Wang et al. 2007). Another tubular
flame configuration in which the reactants are injected separately, the rapidly mixed
burner, has been developed recently (Ishizuka, Motodamari & Shimokuri 2007). This
configuration consists of an injection system in which reactants are issued tangentially
in a tube through four slits located at its closed end, and a downstream transparent
tube allows flame visualization. A Damköhler number analysis suggests that this type
of flame can only be established for mixing times shorter than the reaction time,
i.e. when the system is actually premixed (Shi, Shimokuri & Ishizuka 2013).

The majority of the studies on tubular flames are limited to the analysis of systems
with fuel in the gas phase. One of the few exceptions is the liquid film combustor
(Sirignano, Pham & Dunn-Rankin 2002). The liquid film combustor takes advantage
of the fact that for miniature systems a condensed fuel layer can offer a surface
area for vaporization as high as in vaporizing sprays (Dunn-Rankin 2013). In this
configuration liquid fuel is injected tangentially onto a tube wall, creating a thin film
on its surface. A swirling air flow is introduced from the closed end of the tube
through a swirl generator (Giani & Dunn-Rankin 2013). The injection of swirling air
creates a rotational movement of the flow field which helps to spread the fuel and
stabilize the film on the combustor inner surface (Pham, Dunn-Rankin & Sirignano
2007). A mathematical model for the system considering unity Lewis numbers was
developed to describe theoretically the combustion process in the liquid film burner
(Sirignano, Stanchi & Imaoka 2005). Perturbations were used to account for effects
of swirl-induced flow, vaporization-induced flow and gas expansion on an undisturbed
plug flow. For the case of a parabolic velocity profile, the combination of these effects
was not taken into account.

The combustion of liquid fuels requires a phase change before mixing, and hence
is much more complex when compared to combustion of gaseous fuels. In the
combustion of condensed fuels the flame is located in the gas phase, and a portion of
the heat generated by the chemical reaction is conducted towards the liquid phase to
provide the latent heat needed to vaporize the fuel (Spalding 1950). At the same time,
the gas phase reaction can be accompanied by a number of complicating parameters
such as the pyrolysis of the fuel, formation of condensed products, heterogeneous
reactions, phase transitions, etc., which, consequently, creates difficulties in developing
theoretical models (Namyatov et al. 2000). As a result, the mechanisms involved in
the combustion of liquid and gaseous fuels in a tubular system are very distinct, even
though the configurations are similar. However, notwithstanding the complications
involved in their analysis, most of the fuels used for propulsion are in the liquid
phase, making it necessary to develop tubular flame systems where condensed fuels
can be applied.

The non-premixed swirl-type concept is based on radial injection of fuel, and takes
advantage of the advances in liquid fuel film and classical tubular flame burners.
In this new configuration, illustrated in figure 1, instead of developing a layer of
liquid on the inner surface of the combustion chamber, the condensed fuel is injected
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Air

Fuelr

FIGURE 1. Representation of the physical system.

through the burner walls, which are permeable. The condensed fuel vaporizes thereby
becoming the gaseous fuel source for the chemical reaction with the swirling air
that is injected axially. The flame is located in the combustion chamber between
the burner walls and the exhaust gas. This new configuration, as well as the liquid
film burner, are potential alternatives to the systems that, otherwise, would be limited
by the difficulties inherent to the atomization of condensed fuel. At the same time,
the condensed fuel can offer protection from heat losses and quenching since the
temperature of the walls does not exceed the boiling point of the fuel.

The mathematical description of the system is based on two classical models for
pipes flows. The fuel injection is described by the theory of laminar pipe flows with
porous walls. The solution of the Navier–Stokes equations for fully developed flows
in channels with rectangular permeable walls was first presented by Berman (1953).
A constant flow velocity inside the porous wall was assumed, and the conservation
equations transformed using a streamfunction defined in terms of a similarity variable.
The analysis was extended to circular pipe flows by Yuan & Finkelstein (1955), and
was extensively investigated in several studies by a number of groups (Sellars 1955;
Eckert, Donoughe & Moore 1957; Berman 1958; White 1962; Terrill 1964; Terrill
& Thomas 1969). The study of rotating porous pipes was also considered, but with
the assumption that swirl velocity was constant along the pipe (Prager 1964; Terrill
1967; Terrill & Thomas 1973; Banks & Zaturska 1996). Details of the published
work on laminar flows in porous ducts have been presented in an in-depth review
(Chellam et al. 1995). The theory for laminar pipe flows with porous walls was
extended by Yuan & Finkelstein (1958) for the investigation of the heat transfer
problem for a steady fully developed laminar flow developed by Graetz (1882). The
conservation equations for energy and species were modified by the introduction of
velocity components from the solution of the momentum equations for laminar pipe
flows with porous walls. Their work was followed by a number of investigations
that accounted for injection and extraction of mass (Kinney 1968), different boundary
conditions (Raithby 1971), mass transfer cooling (Peng & Yuan 1965) and internal
heat sources (Eroshenko, Zaichik & Rabovskii 1980). The analysis of the flow field
in the system is performed on the basis of the theory developed for swirling laminar
flows. Among early relevant analytical descriptions of this type of flow are those of
Collatz & Görtler (1954) and Talbot (1954), who analysed analytically the decay of
swirl in tubes with impermeable walls. Collatz & Görtler (1954) presented a solution
for the tangential velocity field, but it did not account for concomitant disturbances of
the axial and radial velocity fields. On the other hand, Talbot (1954) presented a study
in which the disturbances of the axial and radial velocities were considered using a
momentum integral equation. Deka (1963, 1966) and Lavan, Nielsen & Fejer (1969)
obtained an equivalent solution to problems in which the downstream section of the
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Non-premixed swirl-type tubular flames 213

tube rotates and the upstream region is stationary by employing integral transforms.
Kreith & Sonju (1965) extended the analysis to study the swirl decay in turbulent
flows, modifying the swirl equations through the introduction of an eddy diffusivity
term. Kinney & Sparrow (1970) extended the analytical solution of the swirl decay
in tubes by combining it with the theory of laminar pipe flows with porous walls
to account for tubes with surface mass transfer. The assumption in their analysis is
similar to the ones from Deka (1963, 1966) and Lavan et al. (1969), and consisted
of a porous pipe with a downstream rotating porous wall where the swirl is generated
and an upstream stationary permeable pipe where mass is injected (or removed) and
the swirl decays. Lee, Ou & Chen (1987) used the same framework as Talbot (1954)
to obtain the velocity field for the growing swirl in a rotating tube. The resultant
mixing induced by the fluid flow in the presence of molecular diffusion and chemical
reactions was characterized.

The analysis herein presents an effort to combine the effect of swirl decay in
tubes with heat and mass transfer in laminar pipe flows with porous walls. Although
considered separately in the prior work cited above, these effects have not been
combined in the analysis of reacting nor non-reacting flows in pipes. The model is
used to predict important flame characteristics in a non-premixed system, in which
oxidizer is introduced through a swirling flow from one end and fuel is supplied
from the walls of the burner. The conservation equations for energy and species
are transformed using the Shvab–Zel’dovich approach, so that the solution methods
used in the study of convective heat and mass transfer in confined flows can also be
applied. The model can provide theoretical support and general design guidelines to
the development of non-premixed swirl-type tubular systems.

2. Theoretical model

The combustion process in non-premixed flames is controlled by the rate at which
fuel and oxidizer are brought together in proper proportions. In the Burke–Schumann
limit, the chemical reactions are described by an irreversible infinitely fast conversion
of reactants into stable products. That creates a very thin exothermic reaction zone
at high temperature and with high concentration of combustion products, where
stoichiometric mixing of fuel (F) and oxidizer (O2) takes place. As a consequence,
fuel and oxidizer sides are separated by the reaction sheet. The combustion process
is represented by

F+ sO2 −→ sCO2CO2 + sH2OH2O. (I)

The overall reaction (I) represents with good accuracy the chemical processes when
the concentrations of major species outnumber significantly the minor species. In the
formulation s, sCO2 , sH2O are, respectively, the mass of oxygen consumed, and the
mass of carbon dioxide (CO2) and water vapour (H2O) produced, for which, 1+ s=
sCO2 + sH2O. The dimensionless axisymmetric steady-state conservation equations of
mass, momentum in the axial, radial and tangential directions, energy, and species for
the gas phase, considering it an incompressible flow with constant physical properties
throughout the whole domain, are given by

1
Re0

∂u
∂z
+

1
r
∂

∂r
(rv)= 0, (2.1)

u
Re0

∂u
∂z
+ v

∂u
∂r
=−

1
Re0

∂p
∂z
+

2
Re0

[
1
r
∂

∂r

(
r
∂u
∂r

)
+

1
Re2

0

∂2u
∂z2

]
, (2.2)
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u
Re0

∂v

∂z
+ v

∂v

∂r
−

w2

r
=−

∂p
∂r
+

2
Re0

[
1
r
∂

∂r

(
r
∂v

∂r

)
−
v

r2
+

1
Re2

0

∂2v

∂z2

]
, (2.3)

u
Re0

∂w
∂z
+ v

∂w
∂r
+
vw
r
=

2
Re0

[
1
r
∂

∂r

(
r
∂w
∂r

)
−

w
r2
+

1
Re2

0

∂2w
∂z2

]
, (2.4)

u
Re0

∂Yk

∂z
+ v

∂Yk

∂r
=

2
Pe0

[
1
r
∂

∂r

(
r
∂Yk

∂r

)
+

1
Re2

0

∂2Yk

∂z2

]
− Skṁ, (2.5)

u
Re0

∂T
∂z
+ v

∂T
∂r
=

2
Pe0

[
1
r
∂

∂r

(
r
∂T
∂r

)
+

1
Re2

0

∂2T
∂z2

]
+ γ (1+ S)ṁ, (2.6)

where u ≡ û/Û0, v ≡ v̂/Û0 and w ≡ ŵ/Û0 are the velocity components in the axial,
radial and circumferential directions scaled by the average velocity at the inlet Û0.
The other dependent variables, p ≡ p̂/ρ̂Û2

0 , T ≡ (T̂ − T̂0)/T̂0 and Yk ≡ Ŷk/Ŷk,ref are
pressure, temperature and mass fractions of species k, respectively, for k = F, O,
CO2 or H2O, scaled by their respective reference values. The parameter T̂0 represents
the temperature at the air inlet and ρ̂ denotes the gas density. The independent
variables r ≡ r̂/r̂w and z ≡ ẑ/r̂wRe0 are scaled by the internal radius of the tube,
r̂w, and the Reynolds number, Re0 ≡ 2r̂wÛ0/ν̂, where ν̂ is the kinematic viscosity.
The term ṁ ≡ r̂w ˆ̇m/ρ̂Û0 represents the rate of consumption of fuel mass. The flows
considered are laminar with large axial Reynolds numbers Re0. Therefore, diffusion
in the streamwise direction is negligible since it scales with 1/Re2

0. Besides the
condition of equal diffusion speed between all species, unity Lewis numbers are
assumed, i.e. equal mass and heat diffusion, denoted by D̂ and α̂, respectively. The
Péclet number is defined as Pe0 ≡ 2r̂wÛ0/α̂. The stoichiometric mass ratios are
defined as S ≡ sŶF,w/ŶO,0, SH2O ≡ sH2OŶF,w and SCO2 ≡ sCO2 ŶF,w and the heat release
γ ≡ q̂cŶF,w/ĉpT̂0(S + 1), where q̂c is the amount of heat released per amount of fuel
burnt and ĉp is the specific heat at constant pressure of the gas phase. Small Mach
number is assumed for the flow. Buoyancy, heat transport by radiation, Soret and
Dufour effects are neglected in the analysis. Fick’s law is used to describe diffusion
velocities of species. Assuming no penetration of other species at the liquid–vapour
interface, Stefan convection and diffusion on the gas side and the convection on the
liquid side are related by

vw−Yk,w− −
2

Pe0

∂Yk

∂r

∣∣∣∣
r=1−
= vw−YF,lδk,F, (2.7)

where δ is the delta function and YF,l is the mass fraction of fuel in the condensed
phase. Purely inward radial flow is assumed inside the porous medium, which means
that we consider the flow inside the porous matrix not affected by the flow in the
tube. From mass conservation, the radial velocity vw− at the internal radius of the tube
is related to the fuel velocity in the condensed phase according to vw− = ϕρlvw+ , in
which ρl≡ ρ̂l/ρ̂ is the liquid fuel density and ϕ is the porosity of the permeable tube
walls. The superscripts − and + denote the gas and liquid sides at the tube wall,
respectively, as shown in figure 2. From a first law analysis at the interface, assuming
it to be non-reacting,

2
Pe0

∂T
∂r

∣∣∣∣
r=1−
=
ρ̂lĉl

ρ̂ĉp

2
Pem

∂T
∂r

∣∣∣∣
r=1+
+ vw−L, (2.8)
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FIGURE 2. Representation of the wall interface.

where L ≡ L̂/ĉpT̂0, in which L̂ is the latent heat of vaporization. The Péclet number
on the porous medium side is defined as Pem≡ 2r̂wÛ0/α̂m, where α̂m≡ κ̂m/(ρ̂ĉ)l is the
thermal diffusivity of the porous medium, and κ̂m≡ ϕκ̂l+ (1− ϕ)κ̂s, in which κ̂ is the
thermal conductivity and ĉ the specific heat capacity. The subscripts l and s denote
the liquid and solid phases, respectively.

The fuel is heated from the injection temperature, T = 0, to a state close to its
boiling point T = Tb. The amount of heat necessary for that to happen is supplied
by the hot gas in the combustion chamber. Thus, some of the heat generated by the
reacting flow is used to vaporize the fuel and the remainder is conducted into the
permeable wall. It is assumed that the porous wall is an isotropic medium where
radiative effects, viscous dissipation and work done by pressure changes are negligible,
that there is local thermal equilibrium between the solid and fluid phases, and that
heat conduction in both phases takes place in parallel such that there is no heat
transfer from one phase to the other (Nield & Bejan 2013). Moreover, considering
the permeable wall consisting of an interior region at uniform temperature, T0, and a
thin layer at the wall surface temperature, Tw, and neglecting the axial components
of the fluid flow with respect to the terms in the radial direction, the heat conducted
to the liquid phase is given as

2
Pe0

∂T
∂r

∣∣∣∣
r=1−
= vw−Leff , (2.9)

in which the effective latent heat of vaporization is defined as Leff ≡ clTw + L. For
simplicity the wall surface temperature is assumed to be equal to the boiling point of
the fuel, i.e. Tw = Tb. This condition prescribes both the temperature and the mass
fraction at the walls. As a consequence, mass and energy fluxes at the walls are
allowed to vary in the axial direction. In order to further simplify the analysis, an
average value Vw is used in the conservation equations as an approximation to the
absolute value of the velocity at the wall |vw− |. The term Vw becomes an eigenvalue of
the problem, specified through the imposition of the boundary conditions. Its value is
determined by considering an estimate value Vw, which is corrected until it equals the
average of |vw− |, obtained by substituting the solution for T into (2.9). The boundary
conditions at the axis of symmetry, internal surface of the tube, and at the inlet are
given as

∂u
∂r
= v =w=

∂Yk

∂r
=
∂T
∂r
= 0, r= 0, (2.10a)

u= v + Vw =w= T − Tb = YF − YF,w = YO = 0, r= 1, (2.10b)
u− u0 = v =w−w0 = T = YF = YO − 1= 0, z= 0. (2.10c)
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In this analysis, a swirl velocity w0, with a maximum intensity W0 ≡ Ŵ0/Û0,
is imposed at the flow inlet satisfying the condition W0 � 1. Therefore, the swirl
component in the flow field can be considered as a perturbation, which allows the
use of series expansion to solve the problem. The condition of a long tube with a
very small ratio of radius to length is considered. The flow rate of oxidant at z= 0
is limited to laminar Reynolds number Re0 conditions. However, the amount of fuel
delivered to the system can be as large as the tube length permits, which, at some
position along the tube, can create excessively rich regions that result in local flame
extinction. Under some conditions, the flame can reignite and maintain itself for a
certain length, establishing ‘flame streets’ as described by Mohan & Matalon (2017).
This combustion regime will not be included in the analysis.

The linear combination of energy and mass fraction conservation equations
eliminates the reaction terms through the introduction of two conserved scalars,
namely, the mixture fraction Z, and the excess-enthalpy H (Liñán, Vera & Sánchez
2015). The conserved scalars can be further simplified because of the assumption
of unity Lewis numbers. In that case, the conservation equations for the conserved
scalars are given, respectively, as

u
Re0

∂Z
∂z
+ v

∂Z
∂r
−

2
Pe0

[
1
r
∂

∂r

(
r
∂Z
∂r

)]
= 0, (2.11)

u
Re0

∂H
∂z
+ v

∂H
∂r
−

2
Pe0

[
1
r
∂

∂r

(
r
∂H
∂r

)]
= 0, (2.12)

in which the mixture fraction and the excess enthalpy are defined, respectively, as
(Liñán et al. 2015)

Z ≡ (SYF − YO + 1)/(S+ 1), (2.13)
H ≡ T + γ (S+ 1)(YO − 1)/S. (2.14)

At the flame front, the concentrations of fuel YF and oxygen YO go to zero and the
flame position rf can be determined by

Zf = 1/(S+ 1) (2.15)

and the peak flame temperature can be obtained as (Sauer, Leiroz & Colaço 2012;
Liñán et al. 2015)

Tf = T0 + γYF,w +
Tw − T0

S+ 1
. (2.16)

The boundary conditions for (2.11) and (2.12) are obtained by combining (2.10),
(2.13) and (2.14):

∂Z
∂r
=
∂H
∂r
= 0, r= 0, (2.17a)

H −Hw = Z − Zw = 0, r= 1, (2.17b)
H = Z = 0, z̃= 0. (2.17c)

At the same time, the fluxes of both conserved scalars at the walls are obtained by
substituting (2.13) and (2.14) into (2.7) and (2.9) as

2
Pe0

∂Z
∂r

∣∣∣∣
r=1

=−
Svw−(1− YF,w)

(S+ 1)
, (2.18a)

2
Pe0

∂H
∂r

∣∣∣∣
r=1

= vw−Leff . (2.18b)
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2.1. Flow field
The model is based on the theory of internal laminar swirling flows with surface mass
and heat transfer. Due to the swirling nature of the gas flow, the equations of motion
are represented in a form that allows the rotating field to be taken into account by
superimposing a laminar swirl flow on a Poiseuille flow in a straight pipe. The flow
through the tube is two-dimensional, axisymmetric, laminar and the physical properties
do not vary with temperature. The velocity components are represented in the form
(Deka 1963)

u= uo(r, z)+ ε2u∗(r, z)+O(ε3), (2.19a)
v = vo(r)+ ε2v∗(r, z)+O(ε3), (2.19b)

w= εw∗(r, z)+O(ε2), (2.19c)

in which the superscript o represents O(ε0) terms, i.e. velocities of undisturbed
flow field and the velocity downstream, where perturbations have dissipated and the
velocity field has attained a fully developed profile. Since axisymmetric conditions are
imposed on the problem, the circumferential velocity perturbation w∗ has an influence
on the species and temperature field through the other velocity components, u and v.
By considering w as a perturbation of O(ε), from (2.3), it is observed that its effect
is to induce a O(ε2) perturbation to the velocity components u and v. The model
does not account for perturbations other than the one due to the swirl, therefore O(ε)
terms are not included in the axial and radial velocities expansions in (2.19). The
term W0 is assumed as the magnitude of the swirl perturbation. Consequently, in
(2.19), for W0� 1, ε=W0. The swirl angle θ is related to W0 by

W0 = tan θ. (2.20)

The procedure employed to obtain the velocity components of the flow field in this
section follows closely the derivation presented by Kinney & Sparrow (1970).

2.1.1. Fully developed velocity profile
With the assumption of steady burning, the mass flow rate of fuel from the porous

walls is constant. In the fully developed region of such flows, it has been shown, from
the overall mass conservation, that the flow field can be described in terms of the
streamfunction (Yuan & Finkelstein 1955) as

Ψ (r, z)= 1
2 rG(r)U(z), (2.21)

in which G(r) is an unspecified function of r, and the function U(z)= (1+ 2Rewz) is
the flow local mean axial velocity (Collatz & Görtler 1954), where the wall injection
Reynolds number is defined as

Rew ≡ 2r̂wV̂w/ν̂ = VwRe0. (2.22)

The velocity components in the axial and radial directions can be written, respectively,
as (Berman 1958)

uo(r, z)=U(z)F(r), (2.23a)
vo(r)=−VwG(r). (2.23b)
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The term F(r) is a function of r yet to be determined. Substituting uo and vo from
(2.19) and (2.23) into (2.1) and (2.2), we obtain a system of differential equations for
F and G,

2F−G′ −
G
r
= 0, (2.24a)

Rew(2F2
−GF′)− 2

(
F′′ +

F′

r

)
=−Λ, (2.24b)

where

Λ=
1
U
∂p
∂z

(2.25)

is an eigenvalue of the problem. The prime (′) represents differentiation with respect
to r. The boundary conditions, equation (2.10), can be modified, namely,

F′ =G= 0, r= 0, (2.26a)
F=G− 1= 0, r= 1, (2.26b)

in order to determine the functions F and G together with the pressure gradient term
Λ. The solution for the system of ordinary differential equations in (2.24b) can be
obtained analytically, e.g. through the homotopy perturbation method (Mahmood et al.
2011), or numerically, e.g. using shooting or collocation methods. The homotopy
perturbation method would limit the choice of Rew, thus we opt for a numerical
solution using a collocation method (Kierzenka & Shampine 2001). For the special
case of impermeable walls, in which Rew = 0, the solution of (2.24b) yields the
Poiseuille parabolic profile F = 2(1 − r2), with the dimensionless pressure gradient
Λ= 16.

2.1.2. Axial decay of swirl velocity
Substituting the expressions from (2.19) into (2.4), collecting terms of order O(ε),

and neglecting higher-order terms we obtain

uo

Re0

∂w∗

∂z
+ vo ∂w∗

∂r
+
vow∗

r
=

2
Re0

(
∂2w∗

∂r2
+

1
r
∂w∗

∂r
−

w∗

r2

)
. (2.27)

Substituting the expressions for uo and vo from (2.23) into (2.27), one finds

2
F

[
∂2w∗

∂r2
+

(
RewG

2
+

1
r

)
∂w∗

∂r
+

(
RewG

2
−

1
r

)
w∗

r

]
=U

∂w∗

∂z
. (2.28)

Using the method of separation of variables, the swirl velocity w(z, r) is obtained by

w= εw∗ =W0

∞∑
n=1

cnφnU−λn/(2Rew), (2.29)

where φn(r) are the eigenfunctions of the problem (details of the derivation are given
in appendix A). The boundary condition at r = 0 is automatically satisfied, and the
remaining boundary condition at r = 1 is used to determine the eigenvalues λn. The
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Non-premixed swirl-type tubular flames 219

constants cn are determined such that w∗(z, r) equals the boundary condition at z= 0,
w∗0(r). Hence,

cn =
1
‖φn‖

2

∫ 1

0
w∗0(r)φn(r)σφ(r) dr, (2.30)

where the norm ‖φn‖
2 is defined in (A 8). The inlet swirl velocity w∗0(r) is assumed

to behave as a Rankine vortex, i.e.

w∗0(r)=

{
r/r0, r 6 r0,

(r0/r)(1− r)/(1− r0), r> r0,
(2.31)

where r0 is the radial location where the swirl velocity transitions from forced to free
vortex.

2.1.3. Axial and radial perturbations velocities
The perturbation velocities u∗ and v∗ can be determined by combining the

momentum equations for the axial and radial directions into an equation for the
tangential component of vorticity (Kinney & Sparrow 1970). The conservation
equation is obtained by differentiating (2.2) with respect to r, equation (2.3) with
respect to z, and subtracting the first from the latter (as shown in appendix A) as

∂3u∗

∂r3
+

(
Rew

2
G+

1
r

)
∂2u∗

∂r2
−

UF
2
∂2u∗

∂z∂r
−

(
Rew

2r
G+

1
r2

)
∂u∗

∂r

−RewF′u∗ +
Re0

2
U
(

F′

r
− F′′

)
v∗ =

1
2r
∂

∂z
(w∗)2. (2.32)

Equation (2.32) must be solved together with the continuity equation for the perturbed
velocities,

1
Re0

∂u∗

∂z
+

1
r
∂

∂r
(rv∗)= 0. (2.33)

The boundary conditions are obtained from (2.10) and (2.19) as

∂u∗

∂r
= v∗ = 0, r= 0, (2.34a)

u∗ = v∗ = 0, r= 1, (2.34b)
u∗ = v∗ = 0, z→∞. (2.34c)

The perturbed axial velocity can be expressed in terms of the multiplication between
an unknown function of the scaled axial coordinate a0(z), and a fifth degree
polynomial P(r) (as discussed in appendix A), as

u∗ = a0(z)P(r). (2.35)

From the continuity equation (2.1), the perturbation velocity v∗ is given by

v∗ =−
1

Re0

da0

dz
Q(r), (2.36)

where
Q(r)=

1
r

∫
rP(r) dr. (2.37)
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The expressions for u∗ and v∗ can be substituted into (2.32), yielding

[(1+ 2Rewz)(rP′F+QF′ − rQF′′)]
da0

dz

+

[
Rew(2rF′P+GP′ − rGP′′)+ 2

(
P′

r
− P′′ − rP′′′

)]
a0 =−

∂

∂z
(w∗)2. (2.38)

In order to solve (2.38), the solution for w∗, given in (2.29), must be squared. This
operation results in products of mixed eigenfunctions that can be eliminated through
the application of the orthogonality property from (A 8) (Kinney & Sparrow 1970).
Multiplying (2.38) by the weight function σφ(r), defined in (A 7), and integrating with
respect to r,

da0

dz
+

C2

C1U
a0 =

1
C1

∞∑
n=1

BnU−(2+λn/Rew), (2.39)

which is a linear, non-homogeneous, ordinary differential equation for a0 with solution

a0 = AU−C2/(2C1Rew) +

∞∑
n=1

BnU−(1+λn/Rew)

C2 − 2C1(Rew + λn)
, (2.40)

where the constant of integration A vanishes, since for w∗0 = 0, axial and radial
perturbations induced by the tangential velocity component are not present, i.e. u∗ =
v∗ = 0. The terms Bn, C1, and C2 are given, respectively, by

Bn =
2λn

‖φn‖
2

[∫ 1

0
w∗0φnσφ dr

]2

, (2.41a)

C1 =

∫ 1

0
[rP′F+Q(F′ − rF′′)]σφ dr, (2.41b)

C2 =

∫ 1

0

[
Rew(2rF′P+GP′ − rGP′′)+ 2

(
P′

r
− P′′ − rP′′′

)]
σφ dr. (2.41c)

The final form for velocity components is obtained substituting the expressions from
(2.23), (2.35) and (2.40) into (2.19):

u= uo
+ ε2u∗ =U

[
F+W2

0 P
∞∑

n=1

BnU−(2+λn/Rew)

C2 − 2C1(Rew + λn)

]
, (2.42a)

v = vo
+ ε2v∗ =−Vw

[
G− 2W2

0 Q
∞∑

n=1

(1+ λn/Rew)BnU−(2+λn/Rew)

C2 − 2C1(Rew + λn)

]
. (2.42b)

The effect of the perturbation induced by the swirl velocity can be estimated by
simplifying (2.42). At the centreline, P attains its maximum value P(0)= 1 (Kinney
& Sparrow 1970). Equation (2.42) shows that the axial perturbation velocity u∗cL(z)
can be scaled by

u∗cL/U =
∞∑

n=1

BnU−(2+λn/Rew)

C2 − 2C1(Rew + λn)
. (2.43)

The left-hand side of (2.43) corresponds to the ratio between the maximum intensity
of the perturbation induced by the swirl flow in the axial direction and the maximum
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Non-premixed swirl-type tubular flames 221

intensity of the initial swirl squared. From the choice of perturbation orders, this ratio
must be of order O(ε0) or lesser, i.e.

O(u∗cL/U)=O

[
∞∑

n=1

BnU−(2+λn/Rew)

C2 − 2C1(Rew + λn)

]
6 O(ε0). (2.44)

The analysis is valid in the portion of the tube where (2.44) is satisfied.

2.2. Scalar field
The analysis considers a non-dissipative, constant property flow. The conserved scalars
can be represented in a form similar to the one used for the velocity components as

Z = Zo
+ ε2Z∗ +O(ε3), (2.45a)

H =Ho
+ ε2H∗ +O(ε3), (2.45b)

in which the subscript o denotes O(ε0) terms, i.e. the values of scalars obtained
for the undisturbed flow field and the values of the scalars far downstream, where
perturbations have dissipated. The terms ε2Z∗ and ε2H∗ are perturbations to the
conserved scalars, O(ε2) terms. The procedure used to solve the conservation
equations for both conserved scalars is equivalent. Thus, without loss of generality,
we present the development only for the excess enthalpy.

2.2.1. Undisturbed scalar field
The undisturbed scalar field is obtained through the solution of the conservation

equation for the conserved scalar, equation (2.12), retaining only order-zero terms as

uo

Re0

∂Ho

∂z
+ vo ∂Ho

∂r
=

2
Pe0

[
1
r
∂

∂r

(
r
∂Ho

∂r

)]
. (2.46)

Substituting the velocity components given in (2.23) into (2.46),

2
F

[
∂2Ho

∂r2
+

(
Pew

2
G+

1
r

)
∂Ho

∂r

]
=UPr

∂Ho

∂z
, (2.47)

in which Pr ≡ ν̂/α̂ is the Prandtl number, and Pew ≡ VwPe0. Introducing (2.45) into
(2.17), the boundary conditions for (2.46) read

∂Ho

∂r

∣∣∣∣
r=0

=Ho(1, z)−Hw =Ho(r, 0)= 0, (2.48)

and the flux of Ho at the wall, from (2.18), can be obtained from

2
Pew

∂Ho

∂r

∣∣∣∣
r=1

=−Leff . (2.49)

The boundary conditions in the radial direction for H and, consequently, Ho are not
homogeneous. For the case of non-zero prescribed excess-enthalpy value or flux at the
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wall, a new dependent variable Θ(r, z) is introduced. The undisturbed excess-enthalpy
field for any Rew is obtained using the method of separation of variables as

Ho(r, z)=Hw[1−Θ(r, z)] (2.50)

in which

Θ(r, z)=
∞∑

n=1

bnRnXn, (2.51)

where Rn(r) represents the eigenfunctions of the problem and Xn=U−β
2
n /(2Pew) (details

of the derivation are provided in appendix A). The boundary condition at r = 0 is
automatically satisfied, and the remaining boundary condition at r = 1 is used to
determine the eigenvalues β2

n . The constants bn are determined such that Ho equals
the boundary condition at z= 0. Hence,

bn =
1
‖Rn‖

2

∫ 1

0
RnσR dr, (2.52)

where the norm ‖Rn‖
2 and the weight function σR are defined in (A 29) and (A 30),

respectively.

2.2.2. Axial and radial perturbations to the scalar field
Substituting the expressions for the velocity components and for the excess enthalpy

from (2.45) and (2.23), respectively, into (2.12), and retaining only second-order terms,

uo

Re0

∂H∗

∂z
+ vo ∂H∗

∂r
−

2
Pe0

1
r
∂

∂r

(
r
∂H∗

∂r

)
=−

(
u∗

Re0

∂Ho

∂z
+ v∗

∂Ho

∂r

)
, (2.53)

where the terms on the right-hand side of the equality are known. Equation (2.53) is
a non-homogeneous partial differential equation that satisfies the boundary conditions

∂H∗

∂r

∣∣∣∣
r=0

=H∗(1, z)= 0. (2.54)

The solution to (2.53) is sought through the eigenfunction expansion method. The
perturbation to the scalar field H∗ in terms of the eigenfunctions Rn(r), which are
the eigenvectors of the Sturm–Liouville system obtained from the solution of the
associated homogeneous problem (2.53), is given by

H∗(r, z)=
∞∑

n=1

Rn(r)X∗n(z). (2.55)

The associated homogeneous problem (2.53) has the same form as (2.46). For that
reason, the eigenfunctions used in the expansion (2.55) are the same as the ones
in (2.51). Substituting the velocity components given in (2.23) into (2.53) and using
transformed dimensionless coordinates,

1
F

{
2

Pr

[
∂2H∗

∂r2
+

(
Pew

2
G+

1
r

)
∂H∗

∂r

]
−

(
u∗
∂Ho

∂z
+ Re0v

∗
∂Ho

∂r

)}
=U

∂H∗

∂z
. (2.56)
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The last two terms on the left-hand side of the conservation equation for the perturbed
scalar field (2.56) are known and can be expanded as

u∗

F
∂Ho

∂z
= a0

P
F
∂Ho

∂z
=−Hw

∞∑
n=1

u∗n(z)Rn(r), (2.57a)

Re0
v∗

F
∂Ho

∂r
=−

da0

dz
Q
F
∂Ho

∂r
=−Hw

∞∑
n=1

v∗n(z)Rn(r) (2.57b)

such that the coefficients u∗n(z) and v∗n(z) are obtained through the application of the
orthogonality property of Rn(r), equation (A 30), to (2.57), yielding

u∗n(z)=
1

2‖Rn‖
2
a0

∞∑
k=1

bk
dXk

dz

∫ 1

0
PRkRnqR dr, (2.58a)

v∗n(z)=−
1

2‖Rn‖
2

da0

dz

∞∑
k=1

bkXk

∫ 1

0
Q

dRk

dr
RnqR dr. (2.58b)

Substituting the expansions from (2.57), the velocity components from (2.23)
into (2.53), we have

2
FRn

[
∂2Rn

∂r2

(
PewG

2
+

1
r

)
∂Rn

∂r

]
X∗n + PrHw(u∗n + v

∗

n)=UPr
dX∗n
dz
. (2.59)

The term multiplying X∗n can be replaced by the eigenvalues βn corresponding to the
solution of the associated homogeneous problem (2.53). Each term in the sum satisfies

dX∗n
dz
+

β2
n

UPr
X∗n =Hw

u∗n + v
∗

n

U
. (2.60)

Equation (2.60) is an ordinary differential equation in X∗n with solution

X∗n(z)=
∞∑

n=1

U−β
2
n /(2Pew)

{
b∗n +Hw

∫ z

0
[u∗n(t)+ v

∗

n(t)][U(t)]
−1+β2

n /(2Pew) dt
}
, (2.61)

where the constants b∗n vanish, because of the boundary condition at z = 0. This is
justified from the assumption of perturbations to the scalar field being due solely
to axial and velocity perturbations induced by the tangential velocity component.
Therefore, the solution to the homogeneous version of (2.53) is H∗ = 0. The
perturbed scalar field is given, in its final form, for any Rew, assuming (for simplicity
of representation) the same number of terms in the sums for Ho (2.50) and H∗
(2.55), as

H(r, z) = Hw

{
1−

∞∑
n=1

RnU−β
2
n /(2Pew)

×

[
bn −W2

0

∫ z

0
[u∗n(t)+ v

∗

n(t)][U(t)]
−1+β2

n /(2Pew) dt
]}

. (2.62)

The perturbed temperature field can be obtained by substituting back the result of the
conserved scalar field from (2.62) into (2.14). Fuel and oxidizer mass fraction fields
can be obtained by replacing H with Z in (2.62) and substituting the result into (2.13).
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FIGURE 3. Fully developed velocity profiles for wall Reynolds numbers 0, 1, 10 and 100.

3. Discussion
The solution to the undisturbed velocity field in a porous tube has been extensively

discussed by several authors (see Yuan & Finkelstein 1955; Eckert et al. 1957;
Berman 1958; White 1962; Terrill & Thomas 1969). It has been observed that
different injection velocities at the wall alter significantly the dynamic behaviour and
the existence of solutions for the fluid flow (see Terrill & Thomas 1969; Robinson
1976; Skalak & Wang 1977; Secomb 1978; Skalak & Wang 1978; Durlofsky & Brady
1984; Zaturska, Drazin & Banks 1988). The wall Reynolds number Rew depends on
the liquid fuel evaporation rate, which is a characteristic of the fuel considered.
Therefore, the choice of different fuels results in different balances between Stefan
convection and diffusion (on the gas side) and convection (on the liquid side). The
axial Reynolds number Re0 and the swirl angle θ also influence the flow field.
Sufficiently large axial Reynolds numbers guarantee that streamwise diffusion is
negligible compared to diffusion in the radial direction as long as the flow remains
laminar. The axial Reynolds number also controls the length of the developing region
through the scaled axial coordinate z – which is equivalent to the inverse Graetz
number multiplied by Pr – that depends on Re0. Small swirl angles are necessary
for the validity of the model, while providing the circumferential velocity component
to the flow field. The influence of those parameters on a non-reacting system is
evaluated before proceeding with the full solution, where the combination of all
physical effects on the system is examined.

3.1. Wall Reynolds number
The similarity variable F = uo/U defined in (2.23), regarded as the fully developed
velocity profile, is a function of the radial coordinate r only. Figure 3 presents the
profiles for uo/U for several wall Reynolds numbers. A small change occurs in the
profiles, with the non-dimensional centreline velocity varying from approximately 1.6
for a wall with large injection to 2.0 for no injection of mass. For the case of a
wall with no injection, the Poiseuille parabolic profile is obtained. These results agree
with the ones reported in the literature (Eckert et al. 1957; Berman 1958; White 1962;
Kinney 1968; Terrill & Thomas 1969; Raithby 1971).

It is worth noting that, as in Prandtl’s boundary layer theory, the similarity variable
F is a function of the radial coordinate stretched in the longitudinal direction. For
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FIGURE 4. Axial velocity component profile at different z for selected wall Reynolds
numbers: (a) Rew = 1, (b) Rew = 10, (c) Rew = 100.
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FIGURE 5. Tangential velocity component profile at different z for selected wall Reynolds
numbers: (a) Rew = 0, (b) Rew = 1, (c) Rew = 10.

that reason, the boundary condition at the tube inlet for different values of Rew
is not equivalent to the Poiseuille parabolic profile, but of a Berman (1953) flow
type (Haldenwang 2007). Consequently, close to the inlet, the velocity field obtained
through (2.24b) is not expected to match experimental measurements in which the
flow is allowed to attain a Poiseuille velocity profile before entering the porous walled
tube, but in the downstream region it would asymptotically approach the observations
(Raithby & Knudsen 1974).

The wall Reynolds number is defined in terms of the dimensional wall injection
velocity V̂w. Equivalently, it can also be described by the axial Reynolds number,
as shown in (2.22). Therefore, the wall Reynolds number provides complete
characterization of the dimensionless velocity field of a fluid in a tube with mass
injection at the walls. The radial distribution of the axial velocity profiles for different
axial positions z is shown in figure 4, where the effect of increasing Rew is observed.

3.2. Swirl velocity
The decay of the inlet distribution of the swirl velocity component for different axial
positions z is shown in figure 5, where the effect of increasing Rew is observed. It
is assumed that the position where the transition from forced to free vortex occurs is
ro = 0.9. The plots show the influence of the swirl velocity on the fluid flow without
(figure 5a) and with (figure 5b,c) injection of mass through the wall. It is observed
that the decay of the swirl velocity with z decreases with increasing values of the wall
injection Reynolds number. This effect is shown more clearly in figure 7(a) where

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

24
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IN

PE
 - 

Bi
bl

io
te

ca
 d

o 
In

st
itu

to
 N

ac
io

na
l d

e 
Pe

sq
ui

sa
s 

Es
pa

ci
ai

s,
 o

n 
19

 Ju
n 

20
18

 a
t 1

4:
58

:4
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.248
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


226 V. M. Sauer, F. F. Fachini and D. Dunn-Rankin

0 0.025 0.050 0.075 0.100 0 0.025 0.050 0.075 0.100 0 0.025 0.050 0.075 0.100

0

–0.2

–0.4

0.2

–0.6

–0.8

0

–0.2

–0.4

0.2

–0.6

–0.8

0

–0.2

–0.4

0.2

–0.6

–0.8

(a) (b) (c)

r r r

FIGURE 6. Modes Kn as functions of ẑ for selected wall Reynolds numbers: (a) Rew= 0,
(b) Rew = 1, (c) Rew = 10.
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FIGURE 7. Peak values of the velocity components as a function of z for selected wall
Reynolds numbers. (a) Swirl velocity, (b) axial perturbation velocity.

the maximum value of the swirl velocity is plotted as a function of the scaled axial
coordinate z for the same values of wall injection Reynolds numbers. As observed by
Kinney & Sparrow (1970), the decay of swirl velocity has a boundary layer character
that confines the retarding action of the tube wall to the inner region (a layer adjacent
to the wall surface) and the initial swirl distribution to the outer region. Figure 5
shows that the thickness of the inner layer is a function of the wall injection Reynolds
number Rew.

Following previous analyses in which the axial and radial perturbations induced by
the swirl velocity were calculated, only the first term in the series in (2.42) is taken
into account (Talbot 1954; Kinney & Sparrow 1970). The first term in the series is
dominant at axial locations z> 10−2. If all terms in the expansion were included, the
decay of the perturbation induced by the swirl to the axial velocity would not be
monotonic for all Rew, which is consistent mathematically but not physically. Each
mode Kn in the sum in (2.43), where

Kn ≡
BnU−(1+λn/Rew)

C2 − 2C1(Rew + λn)
, (3.1)

has a varying influence on the total because of their different dependency on Rew.
Hence, from (2.43), each mode decays monotonically, as observed in figure 6 for
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n from 1 to 5, but their sum need not behave the same way. Therefore, the decay
of each term represents correctly the influence of the swirl perturbation on other
velocity components, but the sum does not. This behaviour is mainly due to the lack
of higher-order terms that would include corrections for the diffusion of the induced
perturbation.

The perturbation due to the swirl influences the axial and radial velocity components.
Therefore, as the initial swirl decays so does the effect it induces in the other velocity
components. The maximum swirl intensity and the perturbation induced by the
swirling flow in the axial velocity at the centreline are shown in figure 7 for selected
Rew as a function of the scaled axial coordinate z. The results from figure 7(b) should
be treated with care. It is important to point out that the axial and radial perturbations
due to the swirl are O(ε2) effects and that mass injection through the walls creates
an increase in the mean axial velocity several orders of magnitude greater than the
swirl-induced perturbation.

The effect of the inlet swirl intensity can also be evaluated. It is observed from
figure 7(b) that the axial perturbation is strongly influenced by the magnitude of the
injection of mass through the tube walls. Therefore, as Rew increases, larger values
for W0 are needed for the radial and axial velocity components to be affected by the
perturbations due to the swirl. At the same time, equation (2.44) imposes a limiting
restriction to the model at the inlet. In the vicinity of that region, the swirl intensity is
maximum, and the magnitude of the induced perturbation is limited by its order. From
figure 7(b), it is observed that (2.44) is indeed satisfied, i.e. O(u∗cL/U) 6 O(ε0). The
maximum intensity W0 is assumed to be around 0.5, which corresponds to an inlet
flow swirl angle θ of approximately 27◦. (This value for the maximum swirl intensity
minimally satisfies the constraints imposed by the perturbation orders.) As observed
from figure 7(b), the chosen W0 induces axial perturbations of absolute values as large
as 0.48, 0.16 and 0.02 for Rew = 0, 1 and 10, respectively.

A prescribed inlet swirl velocity distribution w∗0, given in (2.31), is considered. For
such velocity distribution, the maximum intensity of the swirl is not solely responsible
for the perturbation, even though it defines its order. The term Bn, defined in (2.41a),
which can be seen as a projection of the function w∗0, represents the normalized
inlet swirl radial profile squared. Therefore, the magnitude of the perturbation is also
influenced by the radial distribution of w∗0. The effect of different values of r0 on u∗cL
at z= 0 is presented in figure 8. For r0 greater than 0.7, which would correspond to
commonly observed conditions, the influence of the position where the swirl velocity
transitions from forced to free vortex is reduced. At the same time, the larger the
injection, the smaller will be the effect of the inlet swirl distribution on the axial
induced perturbation. The results in figure 8 also show that a larger perturbation is
created for r0' 0.6. This parameter could be considered in the design of swirl vanes
that are intended to induce stronger perturbations.

3.3. Perturbed scalar field
Before proceeding to the analysis of the tubular flame system, the solution for the
scalar field is presented. Since it is assumed that the boundary condition at the wall is
of the first type, i.e. a prescribed value for the conserved scalar, the solution for both
the mixture fraction Z and excess enthalpy H can be scaled in terms of the function
Θ , defined in (2.51). The solution for the perturbed fields for wall Reynolds numbers
1 and 10, for selected radial positions, as a function of the scaled axial coordinate z is
presented in figure 9. The solution for the case of impermeable walls (Rew= 0) is not
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FIGURE 8. Maximum intensity of the axial perturbation induced by the swirl flow at the
inlet versus ro for wall Reynolds numbers 0, 1, 10.
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FIGURE 9. Variation of Θ with z at selected radial positions for wall Reynolds 1 and 10.

shown in figure 9 because in the present model fuel evaporates from the wall, which
corresponds to Rew greater than zero.

The effect of the perturbations induced by the swirl velocity on the scalar field are
prominent in the inner region, i.e. in the zone close to the wall surface, and it is
solely due to the terms on the right-hand side of (2.53). That occurs because the swirl
improves mixing in the inner region, while in the outer region, where a free vortex-
like structure exists, mixing is not favoured. As a consequence, in the inner zone, the
transport from the walls is increased in comparison to the undisturbed case.

4. Results
The theoretical model is employed in the analysis of the structure of non-premixed

swirl-type tubular flames. The generality of the formulation allows it to be applied to
various conditions. However, we limit the results to conditions in which experimental
studies would be of interest.

The flows considered in this analysis are laminar, such that their Reynolds numbers
are of the order of hundreds, or a few thousands. Consequently, the range of values
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for the scaled axial coordinate z we are interested in does not span up to higher
values. Results are discussed considering Re0= 500 and the burner axial length zmax=

0.02. This choice does not limit the application of the theoretical model, but allows
a physical interpretation that matches existing small-scale tubular flame systems, in
which the length of the burner is commonly not greater than ten times its inner radius.
The evaluation of the solution for a smaller portion of the domain also allows the
analysis to be focused on the region where the influence of the swirling flow is more
prominent, as observed in figure 7. It also means that, at the exit port of the burner,
a swirling flow would still be found.

The intensity of Stefan convection, i.e. the vaporization rate of the fuel from the
porous walls, determines the range of Rew, which can be estimated roughly from an
overall mass conservation at the flame, assuming stoichiometric burning. If all the
entraining air and injected fuel up to the axial location zmax were completely consumed
at the flame sheet, the mass flow rates of air and fuel necessary for the stoichiometric
burning would be

2SRewzmax = 1, (4.1)

which can be employed to determine the values of Vw used as starting estimate for the
Stefan convection velocity. It is worth noting that (4.1) shows that for a fuel burning
stoichiometrically, longer tubes would require lower wall injection Reynolds numbers.
Assuming the maximum length of the tube as zmax, the choice of fuel will influence
the conserved scalar field through Rew, via its latent heat of vaporization L, and the
amount of heat release from the chemical reaction though γ . These parameters do
not vary significantly for hydrocarbons, such as some higher carbon alkanes, which
are found in condensed phase in standard conditions, and commonly employed in the
evaluation of combustion systems. From (4.1), for stoichiometric conditions, the values
of Rew for hexane, heptane and octane are, approximately, 1.7. At the same time,
for those hydrocarbons, experimental peak flame temperatures are Tf ' 4.5, which
corresponds to γ ' 4.5. For that reason we will consider a single condition, which
represented a number of alkanes found in liquid phase at ambient temperature and
pressure.

In order to determine Vw the procedure described in § 2 is employed. An initial
guess is considered to calculate the excess-enthalpy field, and (2.18b) is used to
correct Vw until its value is equal to the average of |vw− | over the length of interest.
The axial distance z over which the mean value is obtained spans the final 80 % of
the tube. The approximation of |vw− | by a constant value Vw corresponds to its zeroth
order, and can be relaxed by employing a formulation in which a non-uniform Rew is
assumed, for example, by considering a local pressure-dependent injection (Galowin,
Fletcher & Desantis 1974; Haldenwang 2007). With the correct approximation for
Rew, the perturbed vector and scalar fields can be sought.

Contours of the non-dimensional temperature field and mass fractions are presented
in figures 10(a) and 10(b), respectively. The flame position, obtained as the location
where the mixture fraction satisfies (2.15), is highlighted. The contour levels represent
the non-dimensional temperature. The fuel side and the oxidizer side are indicated in
figure 10(b) by YF and YO, respectively, where the levels represent the non-dimensional
mass fractions on each side. It is observed that, even though the flame gets closer
to the axis of the tube in the downstream region, the tube is not long enough for
the flame sheet to close before reaching the tube outlet. The calculated wall injection
Reynolds number is approximately 9. That corresponds to a fuel-rich condition,
considering the stoichiometric value 1.7 obtained from relation (4.1). Even though
the stoichiometric and the calculated Rew are of the same order of magnitude,
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FIGURE 10. Contours of dimensionless scalar fields. The dashed line represents the flame
sheet. (a) Temperature, (b) mass fraction.

it is important to point out that the solution does not incorporate other thermal
losses that could be added to the effective latent heat of vaporization to reduce the
estimated fuel injected using (2.18b). At the same time, effects such as finite rate
chemistry, variations of transport and thermodynamic properties with temperature
or concentration, radiation losses, non-equilibrium temperature effects between the
porous matrix and the liquid phase, radial or axial temperature variations in the
wall, axial heat transfer in the porous matrix, spatial variation of the vaporization
rate, among several others, are not considered in the solution. Therefore, given the
approximations involved, the analytical result is expected to predict only qualitatively
flame characteristics, similarly to the solution obtained by the Burke–Schumann model
for coflow flames. Indeed, the non-premixed flame established in this configuration
resembles the latter solution for the so-called underventilated case. In this condition,
the flame is established above a coflow burner from which the amount of air issued is
smaller than that necessary to burn all the injected fuel, and the flame extends into the
oxidizer region. The non-dimensional temperature and species contours in figure 10
possess the same characteristics.

The fuel-rich inlet conditions and the results from figure 10(b) indicate that a
mixture of unburned fuel and products is found at the burner outlet. This condition
resembles the experimental observations for the miniature liquid film burner (Pham
et al. 2007). Results in the downstream region of the combustion chamber, i.e. after
the exit port, cannot be predicted by the model, but the characteristic of the external
flame can be qualitatively estimated. As a consequence of the absence of tube walls
that constrain the flow and act as a fuel source to the chemical reaction at axial
positions greater than the burner length zmax, the flame would expand outwards in the
radial direction due to the centrifugal force, and its shape would no longer possess a
tubular structure, but a conical structure instead. The external flame shape would also
be due to the excess air found in the environment reacting with the mixture of hot
unburned fuel and products if the burner is exposed to normal ambient conditions.

Dimensionless temperature and mixture fraction profiles are shown, respectively, in
figures 11 and 12 for selected axial positions as a function of the radial coordinate r.
The variation of temperature and mixture fraction along the radial direction resembles
the profiles obtained in non-premixed counterflow configurations for axial locations
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FIGURE 11. Variation of non-dimensional temperature with r at selected axial positions.
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FIGURE 12. Variation of non-dimensional mixture fraction profiles at selected axial
positions: (a) z= 10−4, (b) z= 10−3, (c) z= 10−2.

near the inlet as expected for a non-premixed system. The flame is located, for each
of the axial positions z as the temperature peak, in figure 11, and as the minima, in
figure 12. The effect of the flame sheet extending into the oxidizer region for larger
axial locations is clearly observed.

5. Conclusions
A theoretical model for non-premixed swirl-type tubular flames burning condensed

fuels with unity Lewis numbers is presented. The formulation allows the determination
of the velocity, temperature and species fields. Results are discussed considering a
similarity solution for axisymmetric incompressible viscous flow fields. Axial decay
of the initial swirl velocity, its induced axial and radial perturbations to the flow,
temperature and species field together with surface mass and heat transfer from the
porous walls are considered through the superposition of laminar swirling flow on a
Berman flow with uniform mass injection in a straight pipe. The flame structure is
obtained assuming infinitely fast conversion of reactants into products and unity Lewis
numbers, allowing the application of Shvab–Zel’dovich variables.

Results from the perturbation analysis consider constant temperature at the walls,
more specifically, at the fuel boiling point. Non-dimensional temperature and species
profiles are presented for conditions in which experimental results would be of interest.
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The balance between the amount of energy necessary for the fuel to be heated from
the injection temperature to its boiling point and the energy released by the reaction
show that the system operates in fuel-rich conditions. The flame extends towards the
oxidizer region as it is observed in the underventilated case for the Burke–Schumann
model.

The theoretical model can provide qualitative guidelines to the design of
non-premixed swirl-type tubular systems, such as the influence of inlet or dimensional
parameters on flame position, flame confinement as well as overall system temperature
and heat transfer. The analytical expressions presented herein, which are developed in
a simplified framework, allow a fast and comprehensive description of the temperature,
species and flow fields for the system.

Appendix A. Details of the derivations
A.1. Swirl decay of axial velocity

Both sides of (2.28) are functions of only one independent variable, thus its solution
can be found by a separation of variables in the form

w∗(r, z)= φ(r)ψ(z), (A 1)

which can be substituted into (2.28), yielding

2
Fφ

[
d2φ

dr2
+

(
RewG

2
+

1
r

)
dφ
dr
+

(
RewG

2
−

1
r

)
φ

r

]
=

1+ 2Rewz
ψ

dψ
dz
=−λ. (A 2)

The solution for the axial direction is obtained by integrating the equation for ψ(z)
as

ψ(z)= c(1+ 2Rewz)−λ/(2Rew), (A 3)

where c is the constant of integration. The equation for φ(r) is given by

d2φ

dr2
+

(
RewG

2
+

1
r

)
dφ
dr
+

(
RewG

2
−

1
r

)
φ

r
+ λ

F
2
φ = 0, (A 4)

which can be cast into Sturm–Liouville form through the introduction of an integrating
factor,

qφ(r)= exp
∫ (

RewG
2
+

1
r

)
dr, (A 5)

yielding
d
dr

(
qφ

dφ
dr

)
+

[
qφ
r

(
RewG

2
−

1
r

)]
φ + λσφφ = 0, (A 6)

where the weight function σφ(r) is given by

σφ(r)= qφF/2. (A 7)

The swirl velocity w∗ must vanish at the tube wall (r= 1) and at the axis of symmetry
(r = 0). These conditions must be satisfied for all z, such that φ(0)= φ(1)= 0. The
solution of (A 6) for all eigenfunctions is obtained numerically using a collocation
method (Kierzenka & Shampine 2001). An initial guess and a condition for the
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n Rew = 0 Rew = 1 Rew = 10 n Rew = 0 Rew = 1 Rew = 10

1 21.3823 21.3599 26.5302 11 1994.9157 2007.0243 2064.6951
2 74.7793 75.0402 81.7034 12 2368.2545 2382.6816 2450.2508
3 160.1496 160.9149 169.8567 13 2773.5928 2790.5379 2868.8521
4 277.5077 278.9855 291.0582 14 3210.9306 3230.5930 3320.4993
5 426.8592 429.2533 445.3036 15 3680.2680 3702.8471 3805.1923
6 608.2067 611.7189 632.5919 16 4181.6051 4207.3001 4322.9313
7 821.5515 826.3828 852.9237 17 4714.9419 4743.9521 4873.7164
8 1066.8944 1073.2452 1106.2995 18 5280.2784 5312.8031 5457.5477
9 1344.2358 1352.3061 1392.7197 19 5877.6147 5913.8531 6074.4251
10 1653.5762 1663.5658 1712.1848 20 6506.9508 6547.1020 6724.3489

TABLE 1. First twenty eigenvalues λn for selected Rew.

eigenvalues λ are necessary to solve (A 6) numerically. The orthogonality condition,
which requires that, for orthonormal eigenfunctions,∫ 1

0
φm(r)φn(r)σφ(r) dr= δmn‖φn‖

2 (A 8)

is solved together with (A 6) to determine each eigenfunction–eigenvalue pair – a
classical approach for the numerical solution of Sturm–Liouville problems (Ascher
1980). The solution for the special case Rew= 0 is used as the starting estimate to the
one for any Rew since the solution for the problem with surface mass transfer at the
walls presents a relatively small deviation from the special case of impermeable walls.
The solution for Rew = 0 is given in terms of the confluent hypergeometric function
of the first kind 1F1 (Abramowitz & Stegun 1965) as (Talbot 1954)

φ0
n(r)= λ

1/4
n r exp

(
−

√
λn

2
r2

)
1F1

(
1−
√
λn

4
, 2,
√
λnr2

)
. (A 9)

Denoting the nth eigenfunction of (A 6) as φn(r), the swirl velocity w∗(z, r) for any
Rew can be expressed as

w∗(r, z)=
∞∑

n=1

cnφn(r)(1+ 2Rewz)−λn/(2Rew). (A 10)

For the special case of tubes with impermeable walls, the swirl velocity is given by

w∗(r, z)=
∞∑

n=1

cnφ
0
n(r) exp(−λnz). (A 11)

A total of sixty terms are considered in the sum in (A 10). The first twenty
eigenvalues for selected Rew are given in table 1.

A.2. Axial and radial perturbations velocities
In order to determine the perturbation velocities u∗ and v∗, we eliminate the pressure
gradients by differentiating equation (2.2) with respect to r and (2.3) with respect to
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z, and subtracting one from the other (Kinney & Sparrow 1970). A single equation
can be written in terms of the tangential component of vorticity ω. We neglect the
streamwise diffusion terms,

u
Re0

∂ω

∂z
+ v

∂ω

∂r
−
vω

r
−

1
Re0

∂

∂z

(
w∗2

r

)
=

2
Re0

(
∂2ω

∂r2
+

1
r
∂ω

∂r
−
ω

r2

)
, (A 12)

and denote
ω=ωo

+ω∗. (A 13)

We then substitute (A 13) together with (2.19) into (A 12), and retain first-order terms
only, that is,

u∗

Re0

∂ωo

∂z
+

uo

Re0

∂ω∗

∂z
+ v∗

∂ωo

∂r
+ vo ∂ω

∗

∂r
−
v∗ωo

r
−
voω∗

r
−

1
Re0

∂

∂z

(
w∗2

r

)
=

1
Re0

(
∂2ω∗

∂r2
+

1
r
∂ω∗

∂r
−
ω∗

r2

)
, (A 14)

which can be further simplified if we note that

ωo
=−

∂uo

∂r
and ω∗ =−

∂u∗

∂r
. (A 15a,b)

Substituting the expressions for ωo, ω∗, uo and vo into (A 14), we obtain the
expression shown in (2.32). To solve the system composed of (2.32) and (2.33),
we assume (Kinney & Sparrow 1970)

u∗ =
5∑

n=0

an(z)rn. (A 16)

The choice of approximating the solution by a polynomial is made for simplicity,
and its suitability has been discussed by several authors (Talbot 1954; Kinney &
Sparrow 1970; Verma & Gaur 1974). The solution can also be obtained by other
techniques, such as the Green’s function method (Deka 1963, 1966) or integral
transform (Lavan et al. 1969). Therefore, the quintic function considered can be
viewed as an approximation to the exact solutions.

In addition to the two boundary conditions on u∗ with respect to r, one more can
be obtained upon integrating (2.33):∫ 1

0
u∗r dr= 0. (A 17)

Furthermore, the polynomial u∗ is required to satisfy (2.32) at the wall and at the
symmetry axis (Kinney & Sparrow 1970):[

∂3u∗

∂r3
+

(
∂2u∗

∂r2
−
∂u∗

∂r

)(
1+

Rew

2

)]
r=1

= 0, (A 18a)[
∂3u∗

∂r3
+

(
∂2u∗

∂r2
−

1
r
∂u∗

∂r

)
1
r

]
r=0

= 0. (A 18b)
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Non-premixed swirl-type tubular flames 235

The conditions from (2.34), (A 17), (A 18) are sufficient to allow the elimination of
five of the polynomial coefficients which can be written in terms of a0, given in (2.38).

The solution to ordinary differential equation for a0, equation (2.39), for the special
case of tubes with impermeable walls is given by

a0
0 =

∞∑
n=1

Bn exp(−2λnz)
C2 − 2C1λn

. (A 19)

A.3. Undisturbed scalar field
Both sides of (2.47) are functions of only one independent variable. However, the
boundary conditions for H in the radial direction are not both homogeneous. We
introduce the transformation

Θ =−(Ho
−Hw)/Hw, (A 20)

the conservation equation (2.46),

2
F

[
∂2Θ

∂r2
+

(
Pew

2
G+

1
r

)
∂Θ

∂r

]
= (1+ 2Rewz)Pr

∂Θ

∂z
, (A 21)

with boundary conditions

∂Θ

∂r

∣∣∣∣
r=0

=Θ(1, z)=Θ(r, 0)− 1= 0. (A 22)

The solution is obtained by the separating Θ(r, z) as

Θ(r, z)= R(r)X(z). (A 23)

Substituting (A 20) and (A 23) into (2.46),

2
FR

[
d2R
dr2
+

(
Pew

2
G+

1
r

)
dR
dr

]
= (1+ 2Rewz)Pr

1
X

dX
dz
=−β2, (A 24)

the solution for the axial direction is obtained by integrating the equation for X(z) as

X(z)= b(1+ 2Rewz)−β
2/Pew, (A 25)

where b is the constant of integration. The equation for R(r) is given by

d2R
dr2
+

(
Pew

2
G+

1
r

)
dR
dr
+ β2 F

2
R= 0, (A 26)

which can be cast into Sturm–Liouville form through the introduction of an integrating
factor,

qR(r)= exp
∫ (

Pew

2
G+

1
r

)
dr, (A 27)

yielding
d
dr

(
qR

dR
dr

)
+ β2σRR= 0, (A 28)
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n Rew = 0 Rew = 1 Rew = 10 n Rew = 0 Rew = 1 Rew = 10

1 2.7044 2.8495 4.0838 11 42.6677 42.8092 43.4852
2 6.6790 6.7567 7.4984 12 46.6676 46.8207 47.5395
3 10.6734 10.7423 11.3164 13 50.6675 50.8324 51.5954
4 14.6711 14.7427 15.2587 14 54.6674 54.8442 55.6526
5 18.6699 18.7483 19.2510 15 58.6674 58.8561 59.7109
6 22.6691 22.7564 23.2679 16 62.6673 62.8680 63.7700
7 26.6687 26.7658 27.2989 17 66.6673 66.8800 67.8298
8 30.6683 30.7760 31.3385 18 70.6672 70.8921 71.8901
9 34.6681 34.7868 35.3838 19 74.6672 74.9042 75.9510
10 38.6679 38.7979 39.4330 20 78.6671 78.9163 80.0122

TABLE 2. First twenty eigenvalues βn for selected Rew.

where the weight function σR(r) is given by

σR(r)= qRF/2, (A 29)

such that the orthogonality property of the eigenfunctions Rn(r) is given by∫ 1

0
Rm(r)Rn(r)σR(r) dr= δmn‖Rn‖

2. (A 30)

The solution R0
n(r) to the special case Rew = 0,

R0
n(r)= exp

(
−
βn

2
r2

)
1F1

(
1
2
−
βn

4
, 1, βnr2

)
, (A 31)

can be used as the initial guess to the solution of (A 26). The methodology is the
same as that used to obtain numerically the eigenfunction–eigenvalue pair for (A 26).
Denoting the nth eigenfunction of (A 26) as Rn(r), the dependent variable Θ(z, r) for
any Rew, is obtained as

Θ(r, z)=
∞∑

n=1

bnRn(r)(1+ 2Rewz)−β
2
n /(2Pew). (A 32)

For the special case of tubes with impermeable walls, the dependent variable Θ(z, r)
is given by

Θ(z, r)=
∞∑

n=1

bnR0
n(r) exp(−β2

n z/Pr). (A 33)

A total of sixty terms are considered in the sum in (A 32). The first twenty
eigenvalues for selected Rew are given in table 2.
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